首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibody against NADPH-cytochrome c reductase inhibited the NADPH-dependent omega and penultimate hydroxylation of lauric acid by microsomes from kidney cortex and liver of rats, but did not inhibit the NADH-dependent hydroxylation of lauric acid. By contrast, an antibody against cytochrome b5 inhibited both the NADH and the NADPH-dependent hydroxylation of lauric acid by these microsomal preparations. Although the antibody against cytochrome b5 did not inhibit NADPH-oxidation, this lack of inhibition could not be attributed to the presence of an endogenous substrate or an uncoupling inhibitor in the antibody preparation. These findings suggest that NADPH-cytochrome c reductase mediates the NADPH-dependent hydroxylation of lauric acid but not its NADH-dependent hydroxylation, whereas cytochrome b5 plays a role in both the NADPH and the NADH-dependent hydroxylation of the fatty acid.  相似文献   

2.
Cytochrome P-450 from rat lung microsomes has been solubilized and purified 8-fold by using affinity chromatography on an ω-amino-n-octyl derivative of Sepharose 4B. The purified fraction was free of cytochrome b5 and NADPH-cytochrome c reductase and showed spectral characteristics similar to those of lung microsomal cytochrome P-450. When combined with NADPH-cytochrome c reductase partially purified from liver microsomes, the cytochrome P-450 fraction supported the hydroxylation of benzo (α)pyrene and the activity was proportional to the content of the hemoprotein. No absolute requirement for phosphatidylcholine was found.  相似文献   

3.
Microsomes isolated from whole rat brain were found to contain cytochreme P-450 (0.025 to 0.051 nmoles/mg) and NADPH cytochrome c reductase activity (26.0 to 55.0 nmoles/mg/min). The oxidation of estradiol to a reactive metabolite that became covalently bound to rat brain microsomal protein was inhibited 63% by an atmosphere of CO:O2 (9:1), indicating the involvement of a cytochrome P-450 oxygenase. In contrast, this atmosphere had no effect on the binding of either the catechol estrogen, 2-hydroxyestradiol, or several catecholamines to rat brain microsomes. An antibody prepared against NADPH cytochrome c reductase was found to decrease significantly both the formation of 2-hydroxyestradiol from estradiol by rat brain microsomes and the covalent binding of the catechol estrogen and catecholamines to rat brain microsomal protein.  相似文献   

4.
In the presence of hepatic microsomes, vinyl chloride produces a ‘type I’ difference spectrum and stimulates carbon monoxide inhibitable NADPH consumption. A comparison of the binding and Michaelis parameters for the interaction of vinyl chloride with uninduced, phenobarbital and 3-methylcholanthrene induced microsomes indicates that the binding and metabolism of vinyl chloride is catalyzed by more than one type P-450 cytochrome, but predominantly by cytochrome P-450. Metabolites of vinyl chloride from this enzyme system decrease the levels of cytochrome P-450 and microsomal heme, but not cytochrome b5 or NADPH-cytochrome c reductase in vitro.  相似文献   

5.
J Baron  J A Redick  P Greenspan  Y Taira 《Life sciences》1978,22(12):1097-1102
NADPH-cytochrome c reductase (NADPH-cytochrome reductase, EC 1.6.2.4), the flavoprotein which is responsible for the NADPH-dependent reduction of cytochromes P-450 in hepatic microsomes, has been localized immunohistochemically at the light microscopic level in rat liver. Localization was achieved through the use of sheep antiserum to rat hepatic microsomal NADPH-cytochrome c reductase in an unlabeled antibody peroxidase-antiperoxidase technique. Parenchymal cells throughout the liver lobule were found to be stained positively for NADPH-cytochrome c reductase, although the intensity of immunostaining was slightly greater in the centrilobular regions. Immunostaining for NADPH-cytochrome c reductase was not detected in Kupffer cells, connective tissue cells, or in cells of the hepatic vasculature.  相似文献   

6.
A rabbit antiserum was prepared against rat liver microsomal cytochrome b5, and utilized in demonstrating the participation of this cytochrome in the microsomal stearyl-CoA desaturation reaction. The antiserum inhibited the NADH-cytochrome c reductase activity of rat liver microsorncs, but it did not inhibit either NADH-ferricyanide or NADPH-cytochrome c reductase activity of the microsomes. Thus, the inhibitory effect of the antiserum on the microsomal electron-transferring reactions seemed to be specific to those which require the participation of cytochrome b5.The NADH-dependent and NADPH-dependent desaturations of stearyl CoA by rat liver microsomes were strongly inhibited by the antiserum. The reduction of cytochrome b5 by NADH-cytochrome b5 reductase as well as the reoxidation of the reduced cytochrome b3 by the desaturase, the terminal cyanide-sensitive factor of the desaturation system, was also strongly inhibited by the antiserum. When about 90%, of cytochrome b5 was removed from rat liver microsomes by protease treatment, the desaturation activity of the microsomes became much more sensitive to inhibition by the antiserum. These results confirmed our previous conclusion that the reducing equivalent for the desaturation reaction is transferred from NAD(P)H to the cyanidesensitive factor mainly via cytochrome b5 in the microsomal membranes.  相似文献   

7.
In order to define the site of bioactivation of CCl4, CHCl3 and CBrCl3 in the NADPH cytochrome c reductase-cytochrome P-450 coupled systems of liver microsomes, the 14C-labeled hepatotoxins were incubated invitro with isolated rat liver microsomes and a NADPH-generating system. The covalent binding of radiolabel to microsomal protein was used as a measure of the conversion of the hepatotoxins to reactive intermediates. Omission of NADPH, incubation under CO:O2 (8:2) and addition of a cytochrome c reductase specific antisera mardedly reduced the covalent binding of all three compounds. When cytochrome P-450 was reduced to less than 25% of normal by pretreatment of rats with allylisopropylacetamide (AIA), but cytochrome c reductase activity was unchanged, the covalent binding of CCl4, CHCl3, and CBrCl3 was decreased by 63, 83, 70%, respectively. Incubation under an atmosphere of N2 enhanced the binding of CCl4, inhibited the binding of CHCl3 and did not influence the binding of CBrCl3. It is concluded that cytochrome P-450 is the site of bioactivation of these three compounds rather than NADPH cytochrome c reductase and that CCl4 bioactivation proceeds by cytochrome P-450 dependent reductive pathways, while CHCl3 activation proceeds by cytochrome P-450 dependent oxidative pathways.  相似文献   

8.
Platelet microsomes were shown to contain cytochromes P-450 and b5 and their respective reductases, NADPH-cytochrome c reductase and NADH-cytochrome b5 reductase. Metyrapone and carbon monoxide (CO), two inhibitors of cytochrome P-450, inhibited both the arachidonic acid-induced platelet aggregation and the formation of aggregating factors from arachidonic acid by isolated microsomes. In addition metyrapone produced a type II spectral change with platelet microsomal cytochrome P-450. The data suggest that cytochrome P-450 may play a role in the complex enzyme systems which convert arachidonic acid to the platelet aggregating factors, cyclic endoperoxides and thromboxane A2.  相似文献   

9.
F H Faas  W J Carter  J O Wynn 《Life sciences》1974,15(12):2059-2068
Rat liver microsomal NADH-cytochrome c reductase activity is stimulated by 20 μM thyroxine invitro. Thyroxine does not influence microsomal NADH-dichlorophenolindophenol reductase, NADPH-cytochrome c reductase, or NADPH-dichlorophenolindophenol reductase activity. Stimulation of NADH-cytochrome c reductase activity is not mediated by super-oxide and is likely due to enhanced reduction or oxidation of cytochrome b5.  相似文献   

10.
A highly purified reconstituted system isolated from the microsomes of 3-methylcholanthrene-treated rats consisting of cytochrome P-448, NADPH-cytochrome c reductase and synthetic dilauroyl phosphatidylcholine had no DT diaphorase activity, but hydroxylated benzo[a]pyrene at a faster rate than microsomes from 3-methylcholanthrene-treated rats. DT diaphorase purified from liver microsomes of 3-methylcholanthrene-treated rats when added to this reconstituted system did not stimulate or inhibit benzo[a]pyrene hydroxylation, nor could it replace or NADPH-cytochrome c reductase in supporting the reaction. We therefore conclude that microsomal DT diaphorase is not involved in microsomal hydroxylation of benzo[a]pyrene to its phenolic products despite the observation that both DT diaphorase activity and the hydroxylation of benzo[a]pyrene are induced by 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

11.
NADPH-cytochrome c reductase (NADPH : ferricytochrome oxido-reductase, EC 1.6.2.4), the flavoprotein which mediates the NADPH-dependent reduction of cytochromes P-450 in adrenocortical microsomes, has been localized immunohistochemically at the light microscopic level in rat adrenal glands. Localization was achieved through the use of sheep antiserum procued against purified, trypsin-solubilized rat hepatic microsomal NADPH-cytochrome c reductase in both an unlabeled antibody peroxidase-antiperoxidase techniques and an indirect fluorecent antibody method. The sheep antibody to rat hepatic microsomal NADPH-cytochrome c reductase concomitantly inhibited the NADPH-cytochrome c reductase and progesterone 21-hydroxylase activities catalyzed by isolated rat adrenal microsomes. When sections of rat adrenal glands were exposed to the reductase antiserum in both immunohistochemical procedures, positive staining for NADPH-cytochrome c reductase was observed in parenchymal cells of the three cortical zones but not in medullary chromaffin cells. The intensity of staining, however, was found to differ among the three cortical zones, with the most intense staining being found in the zona fasciculata and the least in the zona glomerulosa. The intensity of staining was also found differ among cells within the zona fasciculata. These immunohistochemical observations demonstrate that microsomal NADPH-cytochrome c reductase is not distributed uniformly throughout the rat adrenal cortex.  相似文献   

12.
The temperature dependence of drug monooxygenation in phenobarbital-induced rat liver microsomes has been investigated. With 7-ethoxycoumarin as a substrate the activity of the microsomes could be measured down to 0°C by the increase in fluorescence of the dealkylated reaction product 7-hydroxycoumarin (umbelliferone).Arrhenius plots of the activities at various temperatures between 0°C and 45°C showed a break in the activation energy around 20°C.Addition of deoxycholate or high concentrations of glycerol, known to solubilize membrane-bound enzymes, abolished the break of the activation energy. Cholesterol, incorporated into the microsomal membrane in amounts equimolar to the microsomal phospholipid content led to a decrease of the activation energy at low temperatures and to an increase at higher temperatures, resulting in a loss of the break.The activity of microsomal NADPH-cytochrome c reductase with the water-soluble electron acceptor dichlorophenolindophenol showed no discontinuity in the Arrhenius plot. In addition the cumene hydroperoxide-mediated and cytochrome P-450-dependent O-dealkylation of 7-ethoxycoumarin proceeded without a break in the activation energy.It is concluded that phospholipid phase transitions affect the electron transfer from the reductase to cytochrome P-450.  相似文献   

13.
Cytochrome P-450 was purified from phenobarbital-treated guinea pigs to a specific content of 19.8 nmoles per mg of protein, and was free of cytochrome b5 and NADPH-cytochrome c reductase. The purified cytochrome P-450 gave a single protein band on sodium dodecylsulfate-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 49,000 was estimated. Benzphetamine N-demethylation activity could be reconstituted by mixing the purified cytochrome, NADPH-cytochrome c reductase and phosphatidylcholine.  相似文献   

14.
2-Hydroxyestradiol, 2-hydroxyestrone and 2-hydroxy-17α-ethynylestradiol, oxidation products of naturally occurring estrogens and synthetic estrogens in some oral contraceptives were found to be converted by rat liver microsomes to reactive metabolites that become irreversibly bound to microsomal protein. The irreversible binding required microsomes, oxygen and NADPH. The NADPH could be replaced by a xanthine-xanthine oxidase system which is known to generate superoxide anions. The irreversible binding was substantially inhibited by superoxide dismutase, 30% in those incubations containing NADPH and 98% in those incubations containing the xanthine-xanthine oxidase system. Further studies with 2-hydroxyestradiol showed that microsomal cytochrome P-450 was rate limiting in the NADPH-dependent irreversible binding, because the binding was inhibited 62% by an antibody against NADPH-cytochrome c reductase and 70% in an atmosphere of CO:O2 (9:1) when compared to an atmosphere of N2:O2 (9:1). Phenobarbital, a known inducer of cytochrome P-450, had no effect on the irreversible binding of 2-hydroxyestradiol, whereas another inducer of P-450, pregnenolone-16α-carbonitrile, markedly increased the irreversible binding. In contrast, cobaltous chloride, an inhibitor of the synthesis of cytochrome P-450, decreased both P-450 and the irreversible binding. These results are consistent with a mechanism for irreversible binding of estrogens and 2-hydroxyestrogens to microsomes that requires oxidation of the catechol nucleus by cytochrome P-450-generated superoxide anion.  相似文献   

15.
Cytochrome P-450 was purified from liver microsomes of phenobarbital-pretreated rabbits to a specific content of 16 to 17 nmoles per mg of protein with a yield of about 10 %. The purified cytochrome yielded only a single protein band on sodium dodecylsulfate-urea-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 45,000 was estimated for the protein. The preparation was free of cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c reductase activities. Aniline hydroxylase and ethylmorphine N-demethylase activities could be reconstituted upon mixing the purified cytochrome with an NADPH-cytochrome c reductase preparation (purified by a detergent method) and phosphatidyl choline.  相似文献   

16.
Studies of the ratios of the amounts of 4-ipomeanol covalently bound to the total amounts metabolized support the view that the high rates of invitro pulmonary microsomal alkylation by 4-ipomeanol reflect high rates of NADPH-mediated metabolic activation of the compound rather than a relative deficiency of a microsomal detoxication pathway. Moreover, the ability of 3-methylcholanthene pretreatment, but not phenobarbital pretreatment, to shift the invivo target organ alkylation and toxicity of 4-ipomeanol from the lung to the liver in rats could not be explained by a major alteration in the balances between microsomal toxication and detoxication pathways measurable in the invitro systems examined, nor upon a major change in the nature of the reactive 4-ipomeanol metabolites produced in the lungs or livers of the pretreated animals.  相似文献   

17.
Cytochromes P-450 and b5 were observed in the microsomal fraction of interstitial tissue of rat testes. Microsomal cytochrome b5 was reduced by the NADH coupled with the activities of Δ5-3β-hydroxysteroid dehydrogenase with Δ54 isomerase through conversion of pregnenolone to progesterone. Activities of NADPH-supported 17α-hydroxylase and C-17-C-20 lyase which converted progesterone to androstenedione were stimulated by either the presence of NADH or the oxidative reaction by the dehydrogenase upon Δ5-3β-hydroxysteroids. Androstenedione production enhanced by the reaction of the dehydrogenase was decreased by addition of the antibody against NADH-cytochrome b5 reductase which was purified from rat hepatic microsomes, suggesting the active participation of cytochrome b5 in the androgen synthesis.  相似文献   

18.
Microsomes (105,000xg sediment) prepared from induced cells of A.ochraceus was found to hydroxylate progesterone to 11α-hydroxyprogesterone (11α-OHP) in high yields (85–90% in 30 min.) in the presence of NADPH and O2. The pH optimum for the hydroxylase was found to be 7.7. However, for the isolation of active microsomes grinding of the mycelium should be carried out at pH 8.3. Metyrapone, carbon monoxide, SKF-525A, p-CMB and N-methyl maleimide inhibited the hydroxylase activity indicating the involvement of cytochrome P-450 system. The inhibition of the hydroxylase by cytochrome c and the presence of high levels of NADPH-cytochrome c reductase in induced microsomes suggest that the reductase could be one of the components in the hydroxylase system.  相似文献   

19.
The phenomenon of induction of the NADPH-specific hydroxylase system by sodium phenobarbital was used to determine the content of cytochrome b5 in each microsomal electron-transfer chain. It turned out that the specific activities of NADPH-dependent reductases and the cytochrome P-450 quantity were increased approximately 1.86 times and the activities of NADH-dependent reductases were somewhat decreased (0.89 times) in microsomes of induced rats. It is assumed that a subfraction of cytochrome b5 included in the NADPH-oxygenase complex is induced together with the other carriers of the chain. The second subfraction of the hemoprotein, in the course of induction, behaves as a typical component of the NADH-oxidizing complex. On the basis of the data obtained, the calculation was made, which showed that the NADPH-oxidation chain contains from 15 to 13 of the total microsomal cytochrome b5 pool.  相似文献   

20.
The role of cytochrome b5 in the p-nitroanisole O-demethylation was studied with a reconstituted system containing a unique cytochrome P-450, isolated from rabbit liver microsomes as a species with a high affinity for cytochrome b5. The maximal activity was obtained in the complete system consisting of cytochrome P-450, NADPH-cytochrome P-450 reductase, NADH-cytochrome b5 reductase, and Triton X-100 in addition to cytochrome b5. The omission of cytochrome b5 from the complete system entirely abolished the activity. These results clearly show that cytochrome b5 is obligatory in the reconstitute p-nitroanisole O-demethylation system, and this cytochrome P-450 probably interacts with cytochrome b5 in such a way that the second electron is transferred from cytochrome b5 and thus exhibits the demethylase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号