首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The natriuretic peptide receptors (NPRs) are a family of three cell surface glycoproteins, each with a single transmembrane domain. Two of these receptors, designated NPR-A and NPR-B, are membrane guanylyl cyclases that synthesize cGMP in response to hormone stimulation. The third receptor, NPR-C, has been reported to function in the metabolic clearance of ligand and in guanylyl cyclase-independent signal transduction. We engineered three chimeric proteins consisting of the natriuretic peptide receptor extracellular domains fused to the Fc portion of human IgG-gamma 1. These molecules provide material for detailed studies of the human receptor's extracellular domain structure and interaction with the three human natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and type-C natriuretic peptide (CNP). The homodimeric fusion proteins, designated A-IgG, B-IgG, and C-IgG, were secreted from Chinese hamster ovary cells and purified by protein-A affinity chromatography. We present here the primary characterization of these fusion proteins as represented by the intrinsic hormone affinities measured by saturation binding and competition assays. The dissociation constant of 125I-ANP for A-IgG was 1.6 pM and for C-IgG, 1.2 pM. The dissociation constant of 125I-Y0-CNP (CNP with addition of tyrosine at the amino terminus) for B-IgG was 23 pM. The rank order of potency in competitive binding for A-IgG was ANP greater than BNP much greater than CNP, whereas for B-IgG the ranking was CNP much greater than ANP greater than BNP. For C-IgG, we observed ANP greater than CNP greater than or equal to BNP. These data demonstrate that the receptor-IgG fusion proteins discriminate among the natriuretic peptides in the same manner as the native receptors and provide a basis for future structural studies with these molecules. The purified fusion proteins have a variety of potential applications, one of which we illustrate by a solid phase screening assay in which rabbit sera from a series of synthetic-peptide immunizations were titered for receptor reactivity and selectivity.  相似文献   

2.
3.
C-type natriuretic peptide (CNP) stimulates endochondrial ossification by activating the transmembrane guanylyl cyclase, natriuretic peptide receptor-B (NPR-B). Recently, a spontaneous autosomal recessive mutation that causes severe dwarfism in mice was identified. The mutant, called long bone abnormality (lbab), contains a single point mutation that converts an arginine to a glycine in a conserved coding region of the CNP gene, but how this mutation affects CNP activity has not been reported. Here, we determined that 30-fold to greater than 100-fold more CNP(lbab) was required to activate NPR-B as compared to wild-type CNP in whole cell cGMP elevation and membrane guanylyl cyclase assays. The reduced ability of CNP(lbab) to activate NPR-B was explained, at least in part, by decreased binding since 10-fold more CNP(lbab) than wild-type CNP was required to compete with [(125)I][Tyr(0)]CNP for receptor binding. Molecular modeling suggested that the conserved arginine is critical for binding to an equally conserved acidic pocket in NPR-B. These results indicate that reduced binding to and activation of NPR-B causes dwarfism in lbab(-/-) mice.  相似文献   

4.
M Huang  O P Rorstad 《Peptides》1990,11(5):1015-1020
Vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are homologous neuropeptides with parallel biological actions. These similarities raise the question whether VIP and PHI have common or distinct mechanisms of action, including receptors. The present study attempted to distinguish specific binding sites for VIP and PHI in normal rat tissues using the homologous radioligands [Tyr(125I)10]VIP and [Tyr(125I)10]rat PHI. In rat brain, anterior pituitary, and liver membranes both radioligands identified a VIP-preferring receptor. Rat PHI had less than 10% the binding potency of VIP in these tissues irrespective of which radioligand was used. In rat uterine membranes [Tyr(125I)10]VIP bound to a receptor with approximately 100 times greater affinity for VIP over PHI. No specific binding of [Tyr(125I)10]rat PHI to rat uterus could be demonstrated. In conclusion, these results support the predominance of VIP-preferring receptors as opposed to PHI-preferring receptors in normal rat brain, anterior pituitary, liver and uterus.  相似文献   

5.
Atrial natriuretic peptide (ANP) and the closely-related peptides BNP and CNP are highly conserved cardiovascular hormones. They bind to single transmembrane-spanning receptors, triggering receptor-intrinsic guanylyl cyclase activity. The "truncated" type-C natriuretic peptide receptor (NPR-C) has long been called a clearance receptor because it lacks the intracellular guanylyl cyclase domain, though data suggest it might negatively couple to adenylyl cyclase via G(i). Here we report the molecular cloning and characterization of the Xenopus laevis type-C natriuretic peptide receptor (XNPR-C). Analysis confirms the presence of a short intracellular C-terminus, as well as a high similarity to fish and mammalian NPR-C. Injection of XNPR-C mRNA into Xenopus oocytes resulted in expression of high affinity [(125)I]ANP binding sites that were competitively and completely displaced by natriuretic analogs and the unrelated neuropeptide vasoactive intestinal peptide (VIP). Measurement of cAMP levels in mRNA-injected oocytes revealed that XNPR-C is negatively coupled to adenylyl cyclase in a pertussis toxin-sensitive manner. When XNPR-C was co-expressed with PAC(1) receptors for pituitary adenylyl cyclase-activating polypeptide (PACAP), VIP and natriuretic peptides counteracted the cAMP induction by PACAP. These results suggest that VIP and natriuretic peptides can potentially modulate the action of PACAP in cells where these receptors are co-expressed.  相似文献   

6.
We describe the isolation of a 3,276 base pair cDNA for the bovine natriuretic peptide receptor-B (NPR-B). Expression of this clone in Cos-P cells demonstrates that it encodes an agonist-dependent guanylyl cyclase. Porcine CNP stimulates the activity of this receptor up to 200-fold with an ED50 of 12±2 nM, whereas brain natriuretic peptide C-type natriuretic peptide (CNP) and atrial natriuretic factor (ANF) are less efficacious. In addition, ligand binding studies indicate that this receptor exhibits the pharmacology appropriate for the bovine NPR-B. CNP binds to Cos-P cell membranes expressing this clone with a Kd of 13±1 pM, and natriuretic peptides compete for [125I]-CNP binding with a rank order of pCNP>pBNP>rANF. Thus, the expressed receptor-guanylyl cyclase exhibits the expected pharmacological profile for ligand binding and cyclase activation of the bovine NPR-B receptor.Abbreviations BSA bovine serum albumin - dNTP deoxynucleotide triphosphate - SDS sodium dodecyl sulfate - DEAE-dextran diethylaminoethyl-dextran - EDTA ethylenediamine tetraacetic acid - Tris Tris(hydroxymethyl)aminomethane - DMSO dimethyl sulfoxide - RP-HPLC reverse phase-high performance liquid chromatography - AMV avian myeloblastosis virus - Arg arginine - Lys lysine  相似文献   

7.
We have previously used immunohistochemistry to show that the brain of the hagfish, Myxine glutinosa, contains a rich distribution of natriuretic peptide-immunoreactive elements with the densest distribution occurring in the telencephalon and the diencephalon. In this study, the distribution of (125)I-rat ANP and (125)I-porcine CNP binding sites was determined in the brain of M. glutinosa. The binding pattern of (125)I-rat ANP and (125)I-porcine CNP showed similarities; however, some differences were observed in the olfactory bulb and the caudal brain regions. Specific (125)I-rat ANP and (125)I-porcine CNP binding was observed in the olfactory bulb, outer layers of the pallium, and in regions of the diencephalon. Very little specific binding was observed in the habenula and the primordium hippocampi. In the diencephalon, a distinct zone of specific (125)I-rANP binding separated a region of moderate binding in the lateral regions of the diencephalon from the thalamic and hypothalamic nuclei. Moderate levels of specific (125)I-rANP binding were observed in the mesencephalon and medulla oblongata; little or no (125)I-porcine CNP binding was observed in these regions. The data, in combination with previous immunohistochemical studies, show that the natriuretic peptide system of the hagfish brain is well-developed and suggest that natriuretic peptides have a long evolutionary history as neurotransmitters and/or neuromodulators in the vertebrate brain. J. Exp. Zool. 284:407-413, 1999.  相似文献   

8.
Lee MC  Hu HC  Huang SC 《Regulatory peptides》2005,129(1-3):31-36
Atrial natriuretic peptide (ANP) binding sites have been demonstrated in the guinea-pig gallbladder muscle with unclear function. To investigate effects of natriuretic peptides in the gallbladder, we measured relaxation of isolated human and guinea-pig gallbladder strips caused by natriuretic peptides, including C-type natriuretic peptide (CNP), brain natriuretic peptide (BNP) and ANP, as well as des[Gln18, Ser19, Gly20, Leu21, Gly22]ANP(4-23) amide (cANP(4-23)), a selective natriuretic peptide receptor-C (NPR-C) agonist. Results in the human gallbladder were similar to those in the guinea-pig gallbladder. CNP, BNP, ANP and cANP(4-23) alone did not cause contraction or relaxation in resting gallbladder strips. However, in carbachol or endothelin-1-contracted strips, CNP caused moderate, sustained and concentration-dependent relaxation. The relaxation was not affected by tetrodotoxin or atropine in endothelin-1-contracted gallbladder strips and not by tetrodotoxin in carbachol-contracted strips. These indicate a direct effect of CNP on the gallbladder muscle. The relative potencies for natriuretic peptides to cause relaxation were CNP>BNP> or = ANP. cANP(4-23) did not cause relaxation. These indicate the existence of the natriuretic peptide receptor-B (NPR-B) mediating the relaxation. Taken together, these results demonstrate that natriuretic peptides cause relaxation of human and guinea-pig gallbladder muscle through interaction with the natriuretic peptide receptor-B.  相似文献   

9.
Natriuretic peptide receptors in the central vasculature of the toad, Bufo marinus, were characterized using autoradiographical, molecular, and physiological techniques. Specific 125I-rat ANP binding sites were present in the carotid and pulmonary arteries, the lateral aorta, the pre- and post-cava, and the jugular vein, and generally occurred in each layer of the blood vessel. The 125I-rat ANP binding was partially displaced by the specific natriuretic peptide receptor C ligand, C-ANF, which indicates the presence of two types of natriuretic peptide receptors in the blood vessels. This was confirmed by a RT-PCR study, which demonstrated that guanylyl cyclase receptor (NPR-GC) and NPR-C mRNAs are expressed in arteries and veins. An in vitro guanylyl cyclase assay showed that frog ANP stimulated the production of cGMP in arterial membrane fractions. Physiological recordings from isolated segments of the carotid and pulmonary arteries and the lateral aorta, which had been pre-constricted with arginine vasotocin, showed that rat ANP, frog ANP and porcine CNP relaxed the vascular smooth muscle with relatively similar potency. Together, the data show that the central vasculature contains two types of natriuretic peptide receptors (NPR-C and NPR-GC) and that the vasculature is a target for ANP and CNP.  相似文献   

10.
D Müller  C Schulze  H Baumeister  F Buck  D Richter 《Biochemistry》1992,31(45):11138-11143
The degradation of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) by insulin-degrading enzyme (IDE) has been investigated. As revealed by high-performance liquid chromatography, all three peptides are sequentially cleaved at a limited number of sites, the latter of which were identified by mass spectrometric analyses. The studies revealed that ANP is preferred as substrate over BNP and CNP. ANP degradation is rapidly initiated by hydrolysis at the Ser25-Phe26 bond. Three additional cleavage sites were identified in ANP after prolonged incubation with IDE; in contrast, three and two bonds were hydrolyzed in BNP and CNP, respectively. Analysis of the nine cleavage sites shows a preference for basic or hydrophobic amino acid residues on the carboxyl side of a cleaved peptide bond. In contrast to most of the peptide fragments generated by IDE activity, the initial ANP cleavage product, F-R-Y, is rapidly degraded further by cleavage of the R-Y bond. Cross-linking studies with 125I-ANP in the presence of sulfhydryl-modifying agent indicate that IDE activity is inhibited at the level of initial substrate binding whereas metal-ion chelating agents only prevent hydrolysis. On the basis of its structural and enzymatic properties, IDE exhibits striking similarity to a number of recently-described endopeptidases.  相似文献   

11.
12.
C-type natriuretic peptide (CNP) is mainly distributed in the brain and vascular endothelium and is considered to act as a local regulator in many tissues. The present study was aimed to determine the presence of CNP system and its biological function in rabbit colon. The serial dilution curves of tissue extracts were parallel to the standard curve of CNP-22. With gel permeation chromatography and reverse-phase HPLC, the major immunoreactive peak of CNP was observed at the same elution time corresponding to the synthetic CNP-53. The concentration of CNP in the mucosal layer of colon was 212.49 ± 30.44 pg/g tissue wet weight (n = 7), which was significantly higher than that in the muscular layer. The presence of CNP mRNA was also detected by RT-PCR and Southern blot analysis. Production of cGMP by the activation of particulate guanylyl cyclase stimulated by BNP and CNP was higher in membranes obtained from the muscular layer than from mucosal layer. More cGMP was produced by CNP than by ANP. Both natriuretic peptide receptor-A and -B mRNAs were detected by RT-PCR and specific binding sites to 125I-[Tyr0]-CNP-22 were mainly localized to the muscular layer. Synthetic CNP inhibited basal tension, frequency and amplitude of basal motility of taenia coli of the right colon. This study showing the presence of CNP system and its biological function in colon suggests that endogenous CNP synthesized in the mucosal layer may have a paracrine function as a local regulator of colonic motility.  相似文献   

13.
Natriuretic peptides stimulate steroidogenesis in the fetal rat testis   总被引:1,自引:0,他引:1  
To study the regulation of fetal testicular steroidogenesis in the rat, we examined effects of members of the natriuretic peptide family, that is, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), on testosterone production of dispersed Leydig cells of rat fetuses at Embryonic Day (E) 18.5. All three peptides stimulated testosterone production, with significant effect at concentrations > or =1 x 10(-8) mol/L of ANP, > or =1 x 10(-9) mol/L of BNP, and > or =1 x 10(-6) mol/L of CNP. Likewise, receptors for all three peptides (i.e., NPR-A, NPR-B, and NPR-C) were expressed in the fetal testis as early as E15.5. The natriuretic peptides had no effect on cAMP production by fetal Leydig cells. When tested in combination with two other peptides previously shown to stimulate fetal testicular steroidogenesis, vasoactive intestinal peptide and pituitary adenylate cyclase-stimulating polypeptide (PACAP-27), the combined effects did not differ significantly from the maximum effect with any one of the peptides alone. In conclusion, our present findings provide both functional and molecular evidences for NPR-A, NPR-B, and NPR-C in the fetal testis. Because ANP has previously been detected in fetal plasma and we now demonstrate the expression of BNP and CNP in fetal testes, these findings indicate involvement of the natriuretic peptides in endocrine and paracrine regulation during the early phase of fetal testicular steroidogenesis at E15.5--19.5 (i.e., before the onset of pituitary LH secretion).  相似文献   

14.
The natriuretic peptide system of a euryhaline teleost, the Japanese eel (Anguilla japonica), consists of three types of hormones [atrial natriuretic peptide (ANP), ventricular natriuretic peptide (VNP), and C-type natriuretic peptide (CNP)] and four types of receptors [natriuretic peptide receptors (NPR)-A, -B, -C, and -D]. Although ANP is recognized as a volume-regulating hormone that extrudes both Na(+) and water in mammals, ANP more specifically extrudes Na(+) in eels. Accumulating evidence shows that ANP is secreted in response to hypernatremia and acts to inhibit the uptake and to stimulate the excretion of Na(+) but not water, thereby promoting seawater (SW) adaptation. In fact, ANP is secreted immediately after transfer of eels to SW and ameliorates sudden increases in plasma Na(+) concentration through inhibition of drinking and intestinal absorption of NaCl. ANP also stimulates the secretion of cortisol, a long-acting hormone for SW adaptation, whereas ANP itself disappears quickly from the circulation. Thus ANP is a primary hormone responsible for the initial phase of SW adaptation. By contrast, CNP appears to be a hormone involved in freshwater (FW) adaptation. Recent data show that the gene expression of CNP and its specific receptor, NPR-B, is much enhanced in FW eels. In fact, CNP infusion increases (22)Na uptake from the environment in FW eels. These results show that ANP and CNP, despite high sequence identity, have opposite effects on salinity adaptation in eels. This difference apparently originates from the difference in their specific receptors, ANP for NPR-A and CNP for NPR-B. VNP may compensate the effects of ANP and CNP for adaptation to respective media, because it has high affinity to both receptors. On the basis of these data, the authors suggest that the natriuretic peptide system is a key endocrine system that allows this euryhaline fish to adapt to diverse osmotic environments, particularly in the initial phase of adaptation.  相似文献   

15.
Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [(125)I]-ANP from NPR-C with pM-to-nM K(i) values. DNP displaced [(125)I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K(i)>1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.  相似文献   

16.
OBJECTIVE AND METHODS: We investigated the effects of individual natriuretic peptides (atrial natriuretic peptide, ANP; brain natriuretic peptide, BNP, and C-type natriuretic peptide, CNP) on rat corticotropin-releasing factor stimulated adrenocorticotropic hormone (ACTH) secretion by the pituitary gland of 21-day-old rat fetuses in vitro and on pro-opiomelanocortin gene expression using in situ hybridization. RESULTS: Graded concentrations of ANP, BNP, or CNP (10(-10), 10(-9), and 10(-8) mol/l) induced a log dose dependent inhibition of ACTH secretion induced by rat corticotropin-releasing factor (10(-10) mol/l). These natriuretic peptides showed equipotent effects on a molar basis. Moreover, ANP, BNP, or CNP at 10(-10) mol/l reduced significantly the pituitary pro-opiomelanocortin mRNA expression. In addition, the immunoreactive ANP, BNP, and CNP cells were localized in the anterior lobe, but not in the intermediate lobe of the fetal pituitary gland. CONCLUSIONS: These data suggest that the fetal pituitary gland may be both a source and a target for natriuretic peptides that might control ACTH synthesis and release via an endocrine and/or paracrine mechanism. The natriuretic peptides could participate, as well as glucocorticoids, in the control of the corticotropin-stimulating activity of the fetal rat in late gestation.  相似文献   

17.
Chang BS  Huang SC 《Regulatory peptides》2008,146(1-3):224-229
Natriuretic peptides have been demonstrated to cause relaxation of the human gallbladder muscle through interaction with natriuretic peptide receptor-B (NPR-B/NPR2). Effects of natriuretic peptides in the human esophageal muscle were unknown. To investigate the effects of natriuretic peptides in the human esophagus, we measured relaxation of muscularis mucosae strips isolated from the human esophagus caused by C-type natriuretic peptide (CNP), brain natriuretic peptide (BNP), atrial natriuretic peptide (ANP) and des[Gln(18), Ser(19), Gly(20), Leu(21), Gly(22)]ANP(4-23) amide (cANP(4-23)), a selective natriuretic peptide receptor-C (NPR-C) agonist. In endothelin-1 or carbachol-contracted mucosal muscle strips, CNP caused moderate, sustained and concentration-dependent relaxation. BNP caused a very mild relaxation whereas ANP and cANP(4-23) did not cause any relaxation. CNP was much more potent than BNP and ANP in causing relaxation. These suggest the existence of NPR-B mediating relaxation. The CNP-induced relaxation was not affected by tetrodotoxin or atropine in endothelin-1-contracted esophageal strips and not by tetrodotoxin in carbachol-contracted strips, indicating a direct effect of CNP on the human esophageal muscularis mucosae. Taken together, these results demonstrate that natriuretic peptides cause relaxation of the muscularis mucosae of the human esophagus and suggest that the relaxation is through interaction with NPR-B. Natriuretic peptides may play an important role in the control of human esophageal motility.  相似文献   

18.
Sellitti DF  Koles N  Mendonça MC 《Peptides》2011,32(9):1964-1971
C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs its major functions in an autocrine or paracrine manner. Those functions, mediated through binding to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification, reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the regulation of CNP gene expression has not received the attention that has been paid to regulation of the ANP and BNP genes. CNP expression in vitro is regulated by TGF-β and receptor tyrosine kinase growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box, and shown to be a binding site for several putative regulatory proteins, including transforming growth factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review is to summarize the current literature on the regulation of CNP expression, emphasizing in particular the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate with them.  相似文献   

19.
Atrial natriuretic peptide (ANP), brain type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) comprise a family of natriuretic peptides that mediate their biological effects through three natriuretic peptide receptor subtypes, NPR-A (ANP, BNP), NPR-B (CNP) and NPR-C (ANP, BNP, CNP). Several reports have provided evidence for the expression of ANP and specific binding sites for ANP in the pancreas. The purpose of this study was to identify the ANP receptor subtype and to localize its expression to a specific cell type in the human pancreas. NPR-C immunoreactivity, but neither ANP nor NPR-A, was detected in human islets by immunofluorescent staining. No immunostaining was observed in the exocrine pancreas or ductal structures. Double-staining revealed that NPR-C was expressed mainly in the glucagon-containing alpha cells. NPR-C mRNA and protein were detected in isolated human islets by RT-PCR and Western blot analysis, respectively. NPR-C expression was also detected by immunofluorescent staining in glucagonoma but not in insulinoma. ANP, as well as BNP and CNP, stimulated glucagon secretion from perifused human islets (1,111 ± 55% vs. basal [7.3 fmol/min]; P < 0.001). This response was mimicked by cANP(4–23), a selective agonist of NPR-C. In conclusion, the NPR-C receptor is expressed in normal and neoplastic human alpha cells. These findings suggest a role for natriuretic peptides in the regulation of glucagon secretion from human alpha cells.  相似文献   

20.
This paper describes the purification, sequence, and biological properties of a 38-amino acid residue peptide from the venom of Dendroaspis angusticeps which shared important sequence homologies with natriuretic peptides. Dendroaspis natriuretic peptide (DNP) relaxed aortic strips that had been contracted by 40 mM KCl with a potency (K0.5 = 20 nM) similar to that of atrial natriuretic peptide (ANP) and larger than that of C type natriuretic peptide (CNP). The relaxing actions of ANP and DNP (both at 100 nM) were mutually exclusive. Bovine aortic endothelial cells responded to ANP (K0.5 = 3 nM) and DNP (K0.5 = 3 nM) but not to CNP by a large activation of guanylate cyclase. Rat aortic myocytes showed larger cGMP responses to CNP (K0.5 = 10 nM) than to ANP or DNP (K0.5 = 100 nM). Finally, DNP completely prevented the specific 125I-ANP binding to clearance receptors in cultured aortic myocytes with a potency (Kd = 10 nM) that was less than that of ANP (Kd = 0.3 nM). It is concluded that DNP is a new member of the family of natriuretic peptides and that it recognizes ANPA receptors and clearance, ANPc receptors, but not CNP-specific ANPB receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号