首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The episialin gene (MUC1) encodes an epithelial mucin containing a variable number of repeats with a length of twenty amino acids, resulting in many different alleles that can be subdivided into two size classes. The episialin pre-mRNA uses either one of two neighbouring splice acceptor sites for exon 2, which mainly encodes the repeats. Using the genetic polymorphism of the episialin gene to identify different alleles, we show here that the splice site recognition is allele dependent and is based on a single A/G nucleotide difference in exon 2 eight nucleotides downstream of the second splice acceptor site. Transfection experiments confirm that this polymorphic nucleotide regulates the splice site selection. The identity of this nucleotide is in most cases correlated with one of the size classes of the alleles, indicating that mutations altering the number of repeats seldom arise by unequal cross-over between the repeat regions.  相似文献   

2.
Xia H  Bi J  Li Y 《Nucleic acids research》2006,34(21):6305-6313
Alternative splicing plays an important role in regulating gene expression. Currently, most efficient methods use expressed sequence tags or microarray analysis for large-scale detection of alternative splicing. However, it is difficult to detect all alternative splice events with them because of their inherent limitations. Previous computational methods for alternative splicing prediction could only predict particular kinds of alternative splice events. Thus, it would be highly desirable to predict alternative 5'/3' splice sites with various splicing levels using genomic sequences alone. Here, we introduce the competition mechanism of splice sites selection into alternative splice site prediction. This approach allows us to predict not only rarely used but also frequently used alternative splice sites. On a dataset extracted from the AltSplice database, our method correctly classified approximately 70% of the splice sites into alternative and constitutive, as well as approximately 80% of the locations of real competitors for alternative splice sites. It outperforms a method which only considers features extracted from the splice sites themselves. Furthermore, this approach can also predict the changes in activation level arising from mutations in flanking cryptic splice sites of a given splice site. Our approach might be useful for studying alternative splicing in both computational and molecular biology.  相似文献   

3.
A set of 43 337 splice junction pairs was extracted from mammalian GenBank annotated genes. Expressed sequence tag (EST) sequences support 22 489 of them. Of these, 98.71% contain canonical dinucleotides GT and AG for donor and acceptor sites, respectively; 0.56% hold non-canonical GC-AG splice site pairs; and the remaining 0.73% occurs in a lot of small groups (with a maximum size of 0.05%). Studying these groups we observe that many of them contain splicing dinucleotides shifted from the annotated splice junction by one position. After close examination of such cases we present a new classification consisting of only eight observed types of splice site pairs (out of 256 a priori possible combinations). EST alignments allow us to verify the exonic part of the splice sites, but many non-canonical cases may be due to intron sequencing errors. This idea is given substantial support when we compare the sequences of human genes having non-canonical splice sites deposited in GenBank by high throughput genome sequencing projects (HTG). A high proportion (156 out of 171) of the human non-canonical and EST-supported splice site sequences had a clear match in the human HTG. They can be classified after corrections as: 79 GC-AG pairs (of which one was an error that corrected to GC-AG), 61 errors that were corrected to GT-AG canonical pairs, six AT-AC pairs (of which two were errors that corrected to AT-AC), one case was produced from non-existent intron, seven cases were found in HTG that were deposited to GenBank and finally there were only two cases left of supported non-canonical splice sites. If we assume that approximately the same situation is true for the whole set of annotated mammalian non-canonical splice sites, then the 99.24% of splice site pairs should be GT-AG, 0.69% GC-AG, 0.05% AT-AC and finally only 0.02% could consist of other types of non-canonical splice sites. We analyze several characteristics of EST-verified splice sites and build weight matrices for the major groups, which can be incorporated into gene prediction programs. We also present a set of EST-verified canonical splice sites larger by two orders of magnitude than the current one (22 199 entries versus approximately 600) and finally, a set of 290 EST-supported non-canonical splice sites. Both sets should be significant for future investigations of the splicing mechanism.  相似文献   

4.
5.
6.
Mutant mice are important for elucidating mammalian gene functions and for modeling human disease phenotypes. In recent years, chemical mutagenesis has become an increasingly popular method to disrupt gene functions due to its high efficiency of inducing mutations throughout the genome. Mutagenesis of embryonic stem (ES) cells offers the possibility of gene-driven approaches, which, however, require efficient mutation detection procedures to screen archives of mutated samples for lesions in particular genes. We have developed an approach that focuses on the detection of splice mutations in highly pooled cDNA samples using exon-skipping PCR primers. As a proof of concept, splice mutants for the Kit gene were isolated from a library comprising approximately 40,000 ES cell clones treated with N-ethyl-N-nitrosourea followed by transmission through the mouse germ-line. The approach will be useful for the production of mouse models for human disease-related splice mutations and as a general gene disruption strategy.  相似文献   

7.
8.
9.
10.
11.
In permissive Rous sarcoma virus-infected chicken embryo fibroblasts (CEF), approximately equimolar amounts of env and src mRNAs are present. In nonpermissive mammalian cells, the src mRNA level is elevated and env mRNA level is reduced. A cis element in the region between the env gene and the src 3' splice site, which we have termed the suppressor of src splicing (SSS), acts specifically in CEF but not in human cells to reduce src mRNA levels. The splicing inhibition in CEF is not caused by a base-paired structure which is predicted to form between the SSS and the src 3' splice site. To further investigate the mechanism of the inhibition, we have used human HeLa cell nuclear extracts to compare in vitro the rates of splicing of RNA substrates containing the Rous sarcoma virus major 5' splice site and either the env or src 3' splice sites. We show that the src 3' splice site is used approximately fivefold more efficiently than the env 3' splice site. The efficiency of in vitro splicing at the src 3' splice site is specifically reduced by addition of CEF nuclear extract. The inhibition is dependent on the presence of the SSS element and can be abrogated by addition of competitor RNA. We propose that the SSS region represents a binding site for a negative-acting CEF splicing factor(s).  相似文献   

12.
13.
Simian immunodeficiency virus from rhesus macaques (SIVmac), like human immunodeficiency virus type 1 (HIV-1), encodes a transactivator (tat) which stimulates long terminal repeat (LTR)-directed gene expression. We performed cotransfection assays of SIVmac and HIV-1 tat constructs with LTR-CAT reporter plasmids. The primary effect of transactivation for both SIVmac and HIV-1 is an increase in LTR-directed mRNA accumulation. The SIVmac tat gene product partially transactivates an HIV-1 LTR, whereas the HIV-1 tat gene product fully transactivates an SIVmac LTR. Significant transactivation is achieved by the product of coding exon 1 of the HIV-1 tat gene; however, inclusion of coding exon 2 results in a further increase in mRNA accumulation. In contrast, coding exon 2 of the SIVmac tat gene is required for significant transactivation. These results imply that the tat proteins of SIVmac and HIV-1 are functionally similar but not interchangeable. In addition, an in vitro-generated mutation in SIVmac tat disrupts splicing at the normal splice acceptor site at the beginning of coding exon 2 and activates a site approximately 15 nucleotides downstream. The product of this splice variant stimulates LTR-directed gene expression. This alternative splice acceptor site is also used by a biologically active provirus with an efficiency of approximately 5% compared with the upstream site. These data suggest that a novel tat protein is encoded during the course of viral infection.  相似文献   

14.
Rush M  Zhao X  Schwartz S 《Journal of virology》2005,79(18):12002-12015
Successful inhibition of human papillomavirus type 16 (HPV-16) late gene expression early in the life cycle is essential for persistence of infection, the highest risk factor for cervical cancer. Our study aimed to locate regulatory RNA elements in the early region of HPV-16 that influence late gene expression. For this purpose, subgenomic HPV-16 expression plasmids under control of the strong human cytomegalovirus immediate early promoter were used. An exonic splicing enhancer that firmly supported the use of the E4 3' splice site at position 3358 in the early region of the HPV-16 genome was identified. The enhancer was mapped to a 65-nucleotide AC-rich sequence located approximately 100 nucleotides downstream of the position 3358 3' splice site. Deletion of the enhancer caused loss of both splicing at the upstream position 3358 3' splice site and polyadenylation at the early polyadenylation signal, pAE. Direct splicing occurred at the competing L1 3' splice site at position 5639 in the late region. Optimization of the position 3358 3' splice site restored splicing to that site and polyadenylation at pAE. Additionally, a sequence of 40 nucleotides with a negative effect on late mRNA production was located immediately downstream of the enhancer. As the E4 3' splice site is employed by both early and late mRNAs, the enhancer constitutes a key regulator of temporal HPV-16 gene expression, which is required for early mRNA production as well as for the inhibition of premature late gene expression.  相似文献   

15.
16.
17.
The human erythrocyte alpha-spectrin gene which spans 80 kbp has been cloned from human genomic DNA as overlapping lambda recombinants. The exon-intron junctions were identified and the exons mapped. The gene is encoded by 52 exons whose sizes range from 684 bp to the smallest of 18 bp. The donor and acceptor splice site sequences match the splice site consensus sequences, with the exception of one splice site where a donor sequence begins with -GC. The size and location of exons do not correlate with the 106-amino-acid repeat, except in three locations where the surrounding codons are conserved as well. The lack of correspondence between exons and 106-amino-acid repeat is interpreted to reflect the appearance of a spectrin-like gene from a minigene early in the evolution of eukaryotes. Since current evidence indicates that introns were present in genes before the divergence of prokaryotes and eukaryotes, it is possible that the original distribution of introns within the minigene has been lost by the random deletion of introns from the spectrin gene.  相似文献   

18.
19.
Intron sequences involved in lariat formation during pre-mRNA splicing   总被引:114,自引:0,他引:114  
R Reed  T Maniatis 《Cell》1985,41(1):95-105
We have shown that lariat formation during in vitro splicing of several RNA precursors, from Drosophila to man, occurs at a unique and identifiable but weakly conserved site, 18 to 37 nucleotides proximal to the 3' splice site. Lariat formation within an artificial intron lacking a normal branch-point sequence occurs at a cryptic site a conserved distance (approximately 23 nucleotides) from the 3' splice site. Analysis of beta-thalassemia splicing mutations revealed that lariat formation in the first intron of the human beta-globin gene occurs at the same site in normal and mutant precursors, even though alternate 5' and 3' splice sites are utilized in the mutants. Remarkably, cleavage at the 5' splice site and lariat formation do not occur when the precursor contains a beta-thalassemia deletion removing the polypyrimidine stretch and AG dinucleotide at the 3' splice site. In contrast, a single base substitution in the AG dinucleotide blocks cleavage at the 3' splice site but not at the 5' site.  相似文献   

20.
《Gene》1998,208(2):279-283
In an effort to obtain a small genomic construct for the generation of a HIRA transgenic mouse, we have isolated and sequenced the Fugu TUPLE1/HIRA gene. We have compared the gene organization and the proteins encoded in pufferfish and human and also searched for conserved DNA sequences that might be important in gene regulation. The pufferfish gene spans approx. 9 kb, which is approx. 11 times smaller than the human gene, owing to the reduced size of the introns. Like its human counterpart, it is organized into 25 exons. The majority of the splice sites are in identical positions to those found in the human gene, however, for three internal exons the positions of the splice sites are not directly comparable. The coding regions are almost identical in size and show a high degree of similarity, especially at the amino and carboxy termini. Comparisons of 5′ and 3′ sequences failed to detect similarities or sequences involved in regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号