首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chronic iron overload (CIO) enhances nitric oxide (*NO) production in the liver, which may represent a hepatoprotective mechanism against CIO toxicity. In order to test this hypothesis, the influence of CIO (diet enriched with 3% (wt/wt) carbonyl-iron for 8 weeks) in the absence or presence of the (*)NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) on NOS activity, extracellular signal-regulated kinase (ERK1/2) and NF-kappaB activation was studied, in relation to ferritin expression and liver morphology. CIO increased liver NOS activity, ERK1/2 phosphorylation, NF-kappaB DNA binding, and ferritin expression, with normal liver histology. These changes were suppressed by combined CIO and L-NAME treatment, with the resulting inflammatory response of the liver. It is concluded that (*)NO response induced by CIO represents a molecular mechanism affording protection against iron toxicity, which is related to both the activation of the ERK/NF-kappaB pathway involving inducible NOS expression and ferritin upregulation, changes that may be interrelated.  相似文献   

2.
The development of lower extremity venous insufficiency (VI) during pregnancy has been associated with placental damage. VI is associated with increased oxidative stress in venous wall. We have investigated potential disturbance/dysregulation of the production of reactive oxygen species (ROS) in placenta and its eventual systemic effects through the measurement of malondialdehyde (MDA) plasma levels in women with VI. A total of 62 women with VI and 52 healthy controls (HCs) were studied. Levels of nicotinamide adenine dinucleotide phosphate-oxidase 1 (NOX1), 2 (NOX2), inducible nitric oxide synthase (iNOS), endothelial (eNOS), poly(ADP-ribose) polymerase PARP (PARP) and ERK were measured in placental tissue with immunohistochemistry and RT-qPCR. Plasma and placental levels of MDA were determined by colorimetry at the two study times of 32 weeks of gestation and post-partum. Protein and gene expression levels of NOX1, NOX2, iNOS, PARP and ERK were significantly increased in placentas of VI. eNOS activity was low in both study groups, and there were no significant differences in gene or protein expression levels. Women with VI showed a significant elevation of plasma MDA levels at 32 weeks of gestation, and these levels remained elevated at 32 weeks post-partum. The MDA levels were significantly higher in placentas of women with VI. Placental damage that was found in the women with VI was characterized by overexpression of oxidative stress markers NOX1, NOX2, and iNOS, as well as PARP and ERK. Pregnant women with VI showed systemic increases in oxidative stress markers such as plasma MDA levels. The foetuses of women with VI had a significant decrease in their venous pH as compared to those from HC women. The situation of oxidative stress and cellular damage created in the placenta is in coexpression with the production of a pH acidification.  相似文献   

3.
为了研究热应激对小鼠肝脏抗氧化功能及Keap1 (kelch-like ECH-associated protein- 1)/Nrf2(NF-E2-related factor 2)/ARE (antioxidant response element)通路相关基因表达的影响,选用30只8周龄雄性小鼠随机分成6组,每 d连续42 ℃热处理2 h,分别在热处理0 d(对照组)、1 d、2 d、4 d、8 d和12 d时观察肝脏组织形态学和免疫组织化学分析,另取一部分肝脏组织保存于-80 ℃用于后续荧光定量PCR实验,检测肝脏抗氧化指标及Keap1/Nrf2/ARE通路相关基因的表达.结果显示:小鼠的体表温度和直肠温度在热处理后都极显著高于热处理前.组织形态学观察发现,热处理导致小鼠肝脏组织充血和肝细胞水肿.小鼠肝脏氧化应激指标 MDA (malondialdehyde)含量在热处理第2 d较对照组显著升高,GSH (glutathione)含量、GSH-PX (glutathione peroxidase)活力和总SOD (superoxide dismutase)活力在第4 d和12 d都有升高.免疫组织化学发现,与对照组和第12 d组相比,Nrf2蛋白在第1 d,2 d,4 d,8 d表达明显,其中Nrf2蛋白在第4 d表达最为显著. 荧光定量RT PCR结果表明,与对照组比较Keap1基因的表达量从热处理第1 d开始显著降低,Nrf2基因的表达量在第4 d和12 d显著升高,HO-1 (Heme oxygenase-1)基因的表达量在第1 d显著升高,NQO1 (Quinone oxidoreductase)和GCLC (Glutamate cysteine ligase catalytic)基因的表达量在第1 d和4 d显著升高.上述结果表明,热应激引起了小鼠肝脏氧化损伤, Keap1/Nrf2/ARE通路可能参与了肝脏自身缓解热应激的过程.  相似文献   

4.
5.
It has been known that many immediately early genes are expressed during ischemia/reperfusion (I/R) injury. Here, employing a model of hepatic I/R, we show that inducible nitric oxide synthase (iNOS) is induced via the activation of nuclear factor kappaB (NF-kappaB) after I/R in rat liver. When liver was subjected to ischemia followed by reperfusion, but not ischemia alone, an NF-kappaB complex composed of p50/p65 heterodimer and p50 homodimer was rapidly activated within 1 h and remained elevated for up to 3 h, and then tended to decline after 5 h of reperfusion. Also, the expression of iNOS mRNA was initiated after 1 h and continued to increase after 5 h of reperfusion during the time course studied. This upregulated iNOS mRNA expression coincides with increased iNOS enzyme activity and NF-kappaB binding activity after hepatic I/R. Administration of N-acetylcysteine (NAC, 20 mg/kg i.v. 10 min before reperfusion), an antioxidant, not only significantly inhibited the expression of iNOS mRNA but also blocked upregulated NF-kappaB binding activity after reperfused liver. These results suggest that NF-kappaB is activated by oxidative stress during hepatic I/R and may play a significant role in the induction of the iNOS gene.  相似文献   

6.
Alcoholic liver disease is multifactorial and oxidative stress is believed to play an intimate role in the initiation and progression of this pathology. The goals of this study were to investigate the effect of chronic ethanol treatment on inducing hepatic oxidative stress and peroxiredoxin 6 expression. After 9 weeks of treatment with an ethanol-containing diet, significant increases in serum ALT activity, liver to body weight ratio, liver triglycerides, CYP2E1 protein expression, and CYP2E1 activity were observed. Chronic ethanol feeding resulted in oxidative stress as evidenced by decreases in hepatic glutathione content and increased deposition of 4-hydroxynonenal and 4-oxononenal protein adducts. In addition, novel findings of decreased PRX6 protein and mRNA and increased levels of carbonylated PRX6 protein were observed in the ethanol-treated animals compared to the pair-fed controls. Lastly, NF-kappaB activity was found to be significantly increased in the ethanol-treated animals. Concurrent with the increase in NF-kappaB activity, decreases in both MEK1/2 and ERK1/2 phosphorylation were also observed in the ethanol-treated animals compared to the pair-fed controls. Together, these data demonstrate that chronic ethanol treatment results in oxidative stress, implicating NF-kappaB activation as an integral mechanism in the negative regulation of PRX6 gene expression in the mouse liver.  相似文献   

7.
Butein and phloretin are chalcones that are members of the flavonoid family of polyphenols. Flavonoids have well-known antioxidant and anti-inflammatory activities. In rat primary hepatocytes, we examined whether butein and phloretin affect tert-butylhydroperoxide (tBHP)-induced oxidative damage and the possible mechanism(s) involved. Treatment with butein and phloretin markedly attenuated tBHP-induced peroxide formation, and this amelioration was reversed by l-buthionine-S-sulfoximine [a glutamate cysteine ligase (GCL) inhibitor] and zinc protoporphyrin [a heme oxygenase 1 (HO-1) inhibitor]. Butein and phloretin induced both HO-1 and GCL protein and mRNA expression and increased intracellular glutathione (GSH) and total GSH content. Butein treatment activated the ERK1/2 signaling pathway and increased Nrf2 nuclear translocation, Nrf2 nuclear protein-DNA binding activity, and ARE-luciferase reporter activity. The roles of the ERK signaling pathway and Nrf2 in butein-induced HO-1 and GCL catalytic subunit (GCLC) expression were determined by using RNA interference directed against ERK2 and Nrf2. Both siERK2 and siNrf2 abolished butein-induced HO-1 and GCLC protein expression. These results suggest the involvement of ERK2 and Nrf2 in the induction of HO-1 and GCLC by butein. In an animal study, phloretin was shown to increase GSH content and HO-1 expression in rat liver and decrease carbon tetrachloride-induced hepatotoxicity. In conclusion, we demonstrate that butein and phloretin up-regulate HO-1 and GCL expression through the ERK2/Nrf2 pathway and protect hepatocytes against oxidative stress.  相似文献   

8.
Glutamate-induced oxidative toxicity is mediated by glutathione depletion in the HT22 mouse hippocampal cell line. Previous results with pharmacological agents implicated the extracellular signal-regulated kinases-1/2 (ERK1/2) in glutamate toxicity in HT22 cells and immature embryonic rat cortical neurons. In this report, we definitively establish a role for ERK1/2 in oxidative toxicity using dominant negative MEK1 expression in transiently transfected HT22 cells to block glutamate-induced cell death. In contrast, chronic activation of ERK (i.e. brought about by transfection of constitutively active ERK2 chimera) is not sufficient to trigger HT22 cell death demonstrating that ERK1/2 activation is not sufficient for toxicity. Activation of ERK1/2 in HT22 cells has a distinct kinetic profile with an initial peak occurring between 30 min and 1 h of glutamate treatment and a second peak typically emerging after 6 h. We demonstrate here that the initial phase of ERK1/2 induction is because of activation of metabotropic glutamate receptor type I (mGluRI). ERK1/2 activation by mGluRI contributes to an HT22 cell adaptive response to oxidative stress as glutamate-induced toxicity is enhanced upon pharmacological inhibition of mGluRI. The protective effect of ERK1/2 activation at early times after glutamate treatment is mediated by a restoration of glutathione (GSH) levels that are reduced because of depletion of intracellular cysteine pools. Thus, ERK1/2 appears to play dual roles in HT22 cells acting as part of a cellular adaptive response during the initial phases of glutamate-induced oxidative stress and contributing to toxicity during later stages of stress.  相似文献   

9.
10.
11.
12.
Advanced glycation end products (AGEs) play an important role in the development of angiopathy in diabetes mellitus and atherosclerosis. Here, we show that adducts of N(epsilon)-(carboxymethyl)lysine (CML), a major AGE, and bovine serum albumin (CML-BSA) stimulated gamma-glutamylcysteine synthetase (gamma-GCS), which is a key enzyme of glutathione (GSH) synthesis, in RAW264.7 mouse macrophage-like cells. CML-BSA stimulated the expression of gamma-GCS heavy subunit (h) time- and dose-dependently and concomitantly increased GSH levels. CML-BSA also stimulated DNA-binding activity of activator protein-1 (AP-1) within 3h, but the stimulatory effect decreased in 5h, and nuclear factor-kappaB (NF-kappaB) with a peak activity at 1h and the stimulatory effect diminished in 3h. Studies of luciferase activity of the gamma-GCSh promoter showed that deletion and mutagenesis of the AP-1-site abolished CML-BSA-induced up-regulation, while that of NF-kappaB-site did not affect CML-BSA-induced activity. CML-BSA also stimulated the activity of protein kinase C, Ras/Raf-1, and MEK/ERK1/2. Inhibition of ERK1/2 abolished CML-BSA-stimulated AP-1 DNA-binding activity and gamma-GCSh mRNA expression. Our results suggest that induction of gamma-GCS by CML adducts seems to increase the defense potential of cells against oxidative stress produced during glycation processes.  相似文献   

13.
14.
Many individuals with cardiovascular diseases undergo periodic exercise conditioning with or with out medication. Therefore, this study investigated the interaction of exercise training and chronic nitric oxide synthase (NOS) inhibitor (Nitro-L-Arginine Methyl Ester, L-NAME) treatment on blood pressure and its correlation with aortic nitric oxide (NO), antioxidant defense system and oxidative stress parameters in rats. Fisher 344 rats were divided into four groups: (1) sedentary control, (2) exercise training (ET) for 8 weeks, (3) L-NAME (10 mg/kg, subcutaneous for 8 weeks) and (4) ET + L-NAME. Blood pressure (BP) was monitored weekly for 8 weeks with tail-cuff method. The animals were sacrificed 24 h after last treatments and thoracic aortic rings were isolated and analyzed. Exercise conditioning resulted in a significant increase in respiratory exchange ratio (RER), aortic NO production, NO synthase activity and inducible iNOS protein expression. Training significantly enhanced aortic GSH levels, GSH/GSSG ratio and up-regulation of aortic CuZn-SOD, Mn-SOD, catalase (CAT) glutathione peroxidase (GSH-Px) activity and protein expression and significantly decreased aortic lipid peroxidation. Chronic L-NAME administration resulted in a significant depletion of aortic NO, NOS activity, endothelial (eNOS) and iNOS protein expression, GSH level, GSH/GSSG ratio, down-regulation of aortic antioxidant enzyme activities and protein expressions. Aortic xanthine oxidase (XO) activity significantly increased with increased lipid peroxidation and protein oxidation after L-NAME administration. The biochemical changes were accompanied by increased in BP. Interaction of training and chronic NOS inhibitor treatment resulted in normalization of BP and aortic antioxidant enzyme activity and protein expression, up-regulation of aortic GSH/GSSG ratio, NO levels, Mn-SOD protein expression, depletion of GSSG, protein oxidation and lipid peroxidation. The data suggest that training attenuated the oxidative injury caused by chronic NOS inhibitor treatment by up-regulating the NO and antioxidant systems and lowering the BP in rats.  相似文献   

15.
Angiotensin II is implicated in pathophysiological processes associated with vascular injury and repair, which include regulating the expression of numerous NF-kappaB-dependent genes. The present study examined the effect of angiotensin II on interleukin-1beta-induced NF-kappaB activation and the subsequent expression of inducible NO synthase (iNOS) and vascular cell adhesion molecule-1 (VCAM-1) in cultured rat vascular smooth muscle cells. Neither NF-kappaB activation nor iNOS or VCAM-1 expression was induced in cells treated with angiotensin II alone. However, when added together with interleukin-1beta, angiotensin II, through activation of the AT(1) receptor, inhibited iNOS expression and enhanced VCAM-1 expression induced by the cytokine. The inhibitory effect of angiotensin II on iNOS expression was associated with a down-regulation of the sustained activation of extracellular signal-regulated kinase (ERK) and NF-kappaB by interleukin-1beta, whereas the effect on VCAM-1 was independent of ERK activation. The effect of angiotensin II on iNOS was abolished by inhibition of p38 mitogen-activated protein kinase (MAPK) with SB203580, but not by inhibition of PI3 kinase with wortmannin or stress-activated protein kinase/c-Jun NH(2)-terminal kinase (JNK) with JNK inhibitor II. Thus, angiotensin II, by a mechanism that requires the participation of p38 MAPK, differentially regulates the expression of NF-kappaB-dependent genes in response to interleukin-1beta stimulation by controlling the duration of activation of ERK and NF-kappaB.  相似文献   

16.
17.
18.
Involvement of oxidative stress is implicated in the progression of complication of diabetes mellitus. With respect to heart diseases, we have studied role of oxidative stress/antioxidants using rats treated with streptozotocin to induce diabetes (DM). Hemodynamic and echocardiographic measurements showed thickening of the wall and an increase in the internal dimension of the left ventricle (LV) in DM rats at 8th week. Decrease in diastolic posterior wall velocity and rate of LV pressure change, and increase in LV end diastolic pressures also proved cardiac dysfunction. These changes were further developed in DM rats after 12 weeks. Utilizing rat hearts at 8th and 12th weeks, the following estimations were performed. There was a decrease in the activity of Mn-superoxide dismutase (SOD), suggesting abnormal mitochondrial metabolism of reactive oxygen species. The level of glutathione (GSH) decreased concomitant with a decrease in the expression of γ-glutamylcysteine synthetase (γ-GCS). The expression of transforming growth factor-β1 (TGF-β1), known as a growth factor and a suppressor of GSH synthesis, elevated in DM rat hearts. Immunohistochemical estimation showed an increase in type IV collagen in DM hearts. Collectively, it was suggested a linkage between mitochondrial damage to generate reactive oxygen species and inactivation of Mn-SOD and elevation of the expression of TGF-β1 to lead suppression of GSH synthesis and induction of fibrous change for the consequent cardiac dysfunction in DM.  相似文献   

19.
Environmental pollutants inducing oxidative stress stimulate chronic inflammatory responses in the lung leading to pulmonary tissue dysfunction. In response to oxidative stress, alveolar macrophages produce both reactive oxygen species and reactive nitrogen species, which induce the expression of a wide variety of immune-response genes. We found that a prolonged exposure of alveolar macrophages to a nonlethal dose (8 microg/ml) of JP-8, the kerosene-based hydrocarbon jet fuel, induced the persistent expression of IL-1, iNOS, and COX-2, as well as cell adhesion molecules (ICAM-1 and VCAM-1). Because poly(ADP-ribose) polymerase (PARP-1), a coactivator of NF-kappaB, regulates inflammatory responses and associated disorders in the airways, we determined whether JP-8 induces the poly(ADP-ribosyl)ation automodification of PARP-1 in alveolar macrophages. We observed that PARP-1 is activated in a time-dependent manner, which was temporally coincident with the prolonged activation of NF-kappaB and with the augmented expression of the proinflammatory factors described above. The 4 microg/ml dilution of JP-8 also increased the activity of PARP-1 as well as the expression of iNOS and COX-2, indicating that lower doses of JP-8 also affect the regulation of proinflammatory factors in pulmonary macrophages. Together, these results demonstrate that an extensive induction of PARP-1 might coordinate the persistent expression of proinflammatory mediators in alveolar macrophages activated by aromatic hydrocarbons that can result in lung injury from occupational exposure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号