首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Virus mutants (NDV(pi)) isolated from L cells persistently infected with the Herts strain of Newcastle disease virus have been previously reported by this laboratory to differ from the wild-type virus (NDV(o)) in several physical and biological properties. It has now been determined that, in addition to these differences, the NDV(pi) mutants are also spontaneously selected temperature-sensitive mutants. The temperature sensitivity of 10 NDV(pi) clones was confirmed by temperature inhibition, plaquing efficiency, and single-cycle yield experiments. The cut-off temperature, at which more than 90% of virus replication is inhibited was between 41 and 42 C. All 10 NDV(pi) clones were also found to be defective in virus-specific ribonucleic acid (RNA) synthesis in infected chick embryo cells at 42 C and are tentatively classified as RNA(-). The possible relationships of the temperature sensitivity, the other NDV(pi) properties, and the maintenance of the persistently infected state are discussed.  相似文献   

2.
The temperature-sensitive defects of virus mutants isolated from L cells persistently infected with Newcastle disease virus (NDV) were analyzed. Genetic grouping of the mutants by complementation tests was attempted by using several different methods, including yield analysis, RNA synthesis, and heterozygote formation at 42 to 43 C, the nonpermissive temperature. In each case, specific interference prevented detection of complementation. This interference was shown to occur prior to or at the level of virus RNA synthesis. Temperature-shift experiments with five different NDV(pi) clones showed that virus replication begun at 37 C could not be completed at the nonpermissive temperature. The activity of the NDV-specific RNA-dependent RNA polymerase in the cytoplasm of infected chicken embryo cells was not stable and could not be demonstrated directly. However, indirect measurement of RNA polymerase activity at the nonpermissive temperature was accomplished by studying the kinetics of virus-specific RNA synthesis in infected cells after temperature shift. Two types of response were obtained: with three NDV(pi) clones, virus-specific RNA synthesis ceased immediately upon transfer of infected cells to 42 to 43 C, whereas in cells infected with two other NDV(pi) clones, RNA synthesis continued for several hours at this temperature. These results suggested that there may be two types of ts defects in NDV(pi), both associated with virus-specific RNA polymerase activity.  相似文献   

3.
A comparison of the replication patterns in L cells and in chick embryo (CE) cell cultures was carried out with the Herts strain of Newcastle disease virus (NDV(o)) and with a mutant (NDV(pi)) isolated from persistently infected L cells. A significant amount of virus progeny, 11 plaque-forming units (PFU)/cell, was synthesized in L cells infected with NDV(o), but the infectivity remained cell-associated and disappeared without being detectable in the medium. In contrast, in L cells infected with NDV(pi), progeny virus (30 PFU/cell) was released efficiently upon maturation. It is suggested that the term "covert" rather than "abortive" be used to describe the infection of L cells with NDV(o). In both L and CE cells, the latent period of NDV(pi) was 2 to 4 hr longer than for NDV(o). The delay in synthesis of viral ribonucleic acid (RNA) in the case of NDV(pi) coincided with the delay in the inhibition of host RNA and protein synthesis. Although both NDV(o) and NDV(pi) produced more progeny and more severe cell damage in CE cells than in L cells, the shut-off of host functions was significantly less efficient in CE cells than in L cells. Paradoxically, no detectable interferon was produced in CE cells by either of the viruses, whereas in L cells most of the interferon appeared in the medium after more than 90% of host protein synthesis was inhibited. These results suggest that the absence of induction of interferon synthesis in CE cells infected with NDV is not related to the general shut-off of host cell synthetic mechanisms but rather to the failure of some more specific event to occur. In spite of the fact that NDV(pi) RNA synthesis commenced 2 to 4 hr later than that of NDV(o), interferon was first detected in the medium 8 hr after infection with both viruses. This finding suggests that there is no relation between viral RNA synthesis and the induction of interferon synthesis.  相似文献   

4.
An in vitro comparison was made of the RNA polymerase activity associated with Newcastle disease virus (NDVo) and three clones of the temperature-sensitive mutant (NDVpi) isolated from persistently infected L cells. Less polymerase activity was associated with the NDVpi clones. Also, compared to NDVo, an increase in incubation temperature from 32 to 37 or 42 C resulted in a marked decrease in polymerase activity for the temperature-sensitive mutants which coincided with their inability to replicate at 42 C.  相似文献   

5.
Serial passage of reovirus temperature-sensitive (ts) mutant C(447) produced by passage 9 (P9) a heavily defective population of virus from which the double-stranded RNA genomic segments L1, L3, and M1 were largely missing. Viral cores obtained from this P9 population were heterogeneous with respect to buoyant density in CsCl gradients, suggesting that particles were present with different combinations of deleted segments. Similar observations were made with the E(320) ts mutant of reovirus. By serial passage P15, 90% of the E(320) viral population was defective and the major missing genomic segments were L1 and L3. Persistent infections were readily established in monolayer cultures of L cells with P9 of C(447) virus and P15 of E(320) virus and in Vero cells with P9 of C(447) virus. Under similar conditions persistent infections could not be initiated with defective-free populations of C(447) or E(320) viruses. The greater the capacity of defective virus in the population to interfere with viral growth, the more readily persistent infection was initiated. During their maintenance persistently infected cells were subcultured approximately twice a week. More than 80% of the cells continuously produced virus. By subculture 6 the original ts infectious viral component had been replaced by a small-plaque mutant with a ts+ phenotype. Defective virus was always present in the carrier cells. In addition to the more commonly observed defectives whose cores banded at approximately ρ = 1.40 to 1.415 g/ml in CsCl gradients, a new class of defective core was seen banding in the region of 1.34 to 1.36 g/ml. This latter particle, which has not been thoroughly characterized as yet, is termed “light defective.” Persistently infected cells underwent periodic crises during their maintenance, during which the cultures partially lysed and then rapidly grew to confluence. Crises corresponded to a burst of infectious virus from the cells and a relatively low concentration of light defectives. During quiescent periods the concentration of light defectives amounted to as much as 98% of the total viral population. The function of light defectives is not yet clear, but it seems essential to assign major importance to defective virus in maintaining persistent infections in this system.  相似文献   

6.
Virus mutants (NDV(pi)) recovered from L cells persistently infected with Newcastle disease virus (NDV, Herts strain) are temperature-sensitive (ts) at 43 C, although the wild-type virus (NDV(o)) which initiated the persistent infection replicates normally at that temperature. To study the relationship between the ts marker of NDV(pi) and the other properties which distinguish this virus from NDV(o), NDV(pi) ts(+) revertants were selected at the nonpermissive temperature and NDV(o) ts mutants were generated by treating NDV(o) with nitrous acid. Spontaneously-occurring ts mutants in the Herts NDV population were also isolated. The different virus populations were characterized with regard to plaque size, virulence for eggs, and thermal stability of infectivity, hemagglutinin, and neuraminidase. The NDV(pi) ts(+) revertants, although no longer temperature-sensitive, retained NDV(pi) properties, whereas both spontaneously-occurring and mutagen-induced ts mutants remained wild-type in their other properties. These findings showed that the properties which characterized NDV(pi) were independent of the ts marker. However, the ts marker and the other markers of NDV(pi) were coselected during the persistent infection, and the combination of those markers appeared to be important in the outcome of NDV infection of L cells. NDV(pi) replicated productively in L cells, whereas NDV(o), the NDV(pi) ts(+) revertants, and the spontaneously-occurring ts mutants all yielded covert infections in L cells. The role of the selection of ts mutants in persistent infection was confirmed as follows: L cells were persistently infected with NDV(pi) ts(+) revertants and NDV(o) ts mutants. Virus recovered from the persistently infected cultures after eight cell passages was always temperature-sensitive and of smaller plaque size than the parental virus in chicken embryo cell cultures. Similar results were obtained with virus recovered from L-cell cultures persistently infected with two other velogenic strains of NDV, the Texas-GB and Kansas-Man strains. These results strongly suggest that selection of ts mutants during the persistent infection was not random and played a role in establishment or maintenance of the persistent infection, or both.  相似文献   

7.
Data were obtained which indicated the possible cause of the defective elution from erythrocytes of the mutant virus (NDV(pi)) isolated from L cells persistently infected with the Herts strain of Newcastle disease virus (NDV(o)). The chicken erythrocyte receptors for the mutant and wild-type viruses were equally sensitive to the action of Vibrio cholera filtrate neuraminidase; this suggests that the failure of NDV(pi) to elute from chicken erythrocytes is not due to a specific neuraminidase-resistant receptor for this virus on the erythrocyte membrane. There was no difference in the enzyme content of the intact virions of NDV(o) and NDV(pi) when tested with a soluble substrate, indicating that the inefficient elution of NDV(pi) was not due to a reduced enzyme content. The neuraminidase activity of intact NDV(pi) virions was significantly more stable at 55 C than the enzyme of NDV(o) virions, whereas the dissociated enzymes of the two viruses were inactivated at the same rate. On the basis of these findings, it seems likely there is a structural difference between the two viruses. The neuraminidase protein of the mutant NDV(pi) may be incorporated into the viral envelope in such a manner that it is prevented from reacting with the substrate in the erythrocyte membrane, although it can react with a soluble substrate. The hemagglutinin activity of both intact and disrupted NDV(pi) was significantly more resistant to thermal inactivation than that of the wild-type NDV(o). This finding suggests a genetic difference in the hemagglutinin protein of the two viruses.  相似文献   

8.
The synthesis of different viral ribonucleic acid (RNA) species was studied in chick embryo (CE) and mouse L-cell cultures infected with the Herts strain of Newcastle disease virus (NDV(o)) and a mutant isolated from persistently infected L cells (NDV(pi)). In CE cell cultures, both viruses synthesized significant amounts of 54, 36, and 18S RNA. However, in L cells, synthesis of 54S virion RNA was markedly reduced. From these results, it seems likely that the low yield of infective virus in L cells is due to a deficient synthesis of 54S RNA in this host. On this basis, however, it is apparent that the "covert" replication of NDV(o) in L cells is due to factors other than viral RNA synthesis. When low concentrations of interferon were used to pretreat CE cells, a differential effect on the synthesis of various RNA species was observed. The 18S RNA of NDV(o) was more sensitive to interferon action than the 36 and the 54S RNA species. In contrast, the 18S RNA of NDV(pi) was less sensitive than the 36S and the 54S RNA. The inhibition of 54S RNA synthesis correlated with the reduction of viral yield and explained the greater sensitivity of NDV(pi) to interferon.  相似文献   

9.
Subacute sclerosing panencephalitis (SSPE) is a demyelinating central nervous system disease caused by a persistent measles virus (MV) infection of neurons and glial cells. There is still no specific therapy available, and in spite of an intact innate and adaptive immune response, SSPE leads inevitably to death. In order to select effective antiviral short interfering RNAs (siRNAs), we established a plasmid-based test system expressing the mRNA of DsRed2 fused with mRNA sequences of single viral genes, to which certain siRNAs were directed. siRNA sequences were expressed as short hairpin RNA (shRNA) from a lentiviral vector additionally expressing enhanced green fluorescent protein (EGFP) as an indicator. Evaluation by flow cytometry of the dual-color system (DsRed and EGFP) allowed us to find optimal shRNA sequences. Using the most active shRNA constructs, we transduced persistently infected human NT2 cells expressing virus-encoded HcRed (piNT2-HcRed) as an indicator of infection. shRNA against N, P, and L mRNAs of MV led to a reduction of the infection below detectable levels in a high percentage of transduced piNT2-HcRed cells within 1 week. The fraction of virus-negative cells in these cultures was constant over at least 3 weeks posttransduction in the presence of a fusion-inhibiting peptide (Z-Phe-Phe-Gly), preventing the cell fusion of potentially cured cells with persistently infected cells. Transduced piNT2 cells that lost HcRed did not fuse with underlying Vero/hSLAM cells, indicating that these cells do not express viral proteins any more and are “cured.” This demonstrates in tissue culture that NT2 cells persistently infected with MV can be cured by the transduction of lentiviral vectors mediating the long-lasting expression of anti-MV shRNA.The neurodegenerative human disease subacute sclerosing panencephalitis (SSPE) occurs with an incidence rate of approximately 1:10,000 after infection with wild-type measles virus (MV) (4, 38). The course of the illness is quite variable, usually lasting from 1 to 3 years. Much more rapid forms that lead to death within a few months as well as prolonged courses with a duration of more than 20 years have been described (40). Neuropathological findings include diffuse encephalitis, affecting both the gray and white matters, characterized by perivascular cuffing and diffuse lymphocytic infiltrations. Neurons, oligodendrocytes, fibrous astrocytes, and some brain microvascular endothelial cells contain large aggregates of intranuclear inclusion bodies consisting of MV nucleocapsid structures (1, 16). In these persistently infected cells, viral ribonucleoprotein particles (RNPs) replicate intracellularly, whereas the budding of complete viruses and cell-cell fusion are not observed. A characteristic feature of this central nervous system disease is that the expression of viral envelope proteins (matrix [M], fusion [F], and hemagglutinin [H] proteins) is restricted by various means. In particular, the M protein and the cytoplasmic part of the F protein harbor single or hypermutations or deletions, which prevent their proper expression (2, 3, 9, 10). The lack of M reduces budding, supports cell fusion, and enhances the intracellular replication of RNPs (7, 8, 32, 37). As far as is known, the cell-to-cell spread of infectivity in the human brain occurs in the presence of normal cellular and strong humoral antiviral immune responses with very high anti-MV antibody titers in the cerebrospinal fluid. This, however, cannot prevent virus spread.A variety of approaches to the treatment of SSPE have been attempted, but an evaluation of their efficiency has been extremely difficult, since clinical trials are based on small numbers of patients, the course of SSPE is highly variable, and spontaneous remissions may also occur. Intrathecal or intraventricular administration of alpha interferon, inosiplex, and/or ribavirin is a common regimen, but despite many efforts, the establishment of an effective therapy has not been possible. Since the immune systems of the patients appear normal, and given the fact that virus spreads in the form of intracellular RNPs, a promising specific therapy must target this intracellular replication of MV.RNA interference (RNAi) may provide such a means and has already been used successfully to inhibit the expression of a number of viral infections, including the Ebola, influenza A, hepatitis B and C, human immunodeficiency, respiratory syncytial, and West Nile viruses, and several RNAi-based therapeutics are already in preclinical test phases (for reviews, see references 6 and 24). Small interfering RNAs (siRNAs) have also been described to be active against MV (20, 29, 32), including an MV isolate from an SSPE patient (SSPE-Kobe-1) (28). In the latter approach, the authors generated recombinant adenoviruses (rAdV) expressing siRNA against MV L mRNA and assessed them in freshly infected Vero/SLAM cells. In contrast to this work, we constructed lentiviral vectors expressing short hairpin RNAs (shRNAs) and transduced persistently infected human NT2 cells with these vectors. This lentiviral approach provided the proof of principle that a preexisting persistent MV infection can be cured by shRNA.  相似文献   

10.
口蹄疫病毒持续感染细胞系的快速选择及其特性研究   总被引:3,自引:0,他引:3  
采用NH4Cl弱碱法处理感染口蹄疫病毒的叙利亚仓鼠肾细胞系(BHK-21), 存活细胞经过单克隆和选择,获得32株阳性克隆细胞株.随机选取一株(BHK-ROp),常规传代并采用RT-PCR,透射电子显微镜,流式细胞仪进行持续感染特性分析,结果表明,BHK-ROp第4,16,36代细胞中病毒持续存在,但不影响细胞的生长特性,表现出病毒持续感染的基本特征.可见,NH4Cl弱碱法用于建立病毒持续感染细胞系是十分有效的.  相似文献   

11.
采用NH4Cl弱碱法处理感染口蹄疫病毒的叙利亚仓鼠肾细胞系(BHK—21),存活细胞经过单克隆和选择,获得32株阳性克隆细胞株。随机选取一株(BHK—ROp),常规传代并采用RT-PCR,透射电子显微镜,流式细胞仪进行持续感染特性分析,结果表明,BHK—ROp第4,16,36代细胞中病毒持续存在,但不影响细胞的生长特性,表现出病毒持续感染的基本特征。可见,NH4Cl弱碱法用于建立病毒持续感染细胞系是十分有效的。  相似文献   

12.
A previous report (Youngner et al., J. Virol. 19:90-101, 1976) documented that noncytocidal persistent infection can be established with wild-type vesicular stomatitis virus (VSV) in mouse L cells at 37°C and that a rapid selection of RNA, group I temperature-sensitive (ts) mutants consistently occurs in this system. To assess the selective advantage of the RNAts phenotype, evolution of the virus population was studied in persistent infections initiated in L cells by use of VSV ts 0 23 and ts 0 45, RNA+ mutants belonging to complementation groups III and V. In L cells persistently infected with ts 0 23, the ts RNA+ virus population was replaced gradually by viruses which had a ts RNA phenotype. VSV ts 0 45 (V) has another marker in addition to reduced virus yield at 39.5°C: a defective protein (G) which renders virion infectivity heat labile at 50°C. Persistent infections initiated with this virus (ts, heat labile, RNA+) evolved into a virus population which was ts, heat resistant, and RNA. These findings suggest that the ts phenotype itself is not sufficient to stabilize the VSV population in persistently infected L cells and also indicate that the ts RNA phenotype may have a unique selective advantage in this system. In addition to the selection of ts RNA mutants, other mechanisms which also might operate in the maintenance of persistent VSV infections of L cells were explored. Whereas defective-interfering particles did not seem to mediate the carrier state, evidence was obtained that interferon may play a role in the regulation of persistent infections of L cells with VSV.  相似文献   

13.
RNA-dependent DNA polymerase activity was found in peparations of a mutant of Newcastle disease virus. The enzyme activity was not found in wild-type virus preparations.  相似文献   

14.
王艳  李丹  马艳  韩悦  郭军巧 《病毒学报》2011,27(1):75-78
本研究用Vero/Slam细胞首次从辽宁省2008年流行性腮腺炎暴发和散发患者的临床标本中分离到3株流行性腮腺炎野病毒(Mumps virus,MuV),应用逆转录-聚合酶链反应(RT-PCR)针对MuV分离株的包括SH基因的1 028个核苷酸片段进行PCR扩增,将扩增产物连接在pMD19-T载体后转化到大肠杆菌中进行克隆。通过蓝白斑筛选,将鉴定为阳性的白色菌落进行核苷酸序列测定分析。将这3株MuV结合从GenBank下载的世界卫生组织(WHO)MuV基因型参考株在基于WHO基因定型靶序列SH基因的316核苷酸片段构建基因亲缘关系树,一起进行分子流行病学研究。结果提示:辽宁省2008年3株MuV分离株的核苷酸和氨基酸同源性在98.7%~100%和94.7%~100%之间,其中LN-2008-001-06与LN-2008-001-10序列完全一致;与F基因型参考株序列相比,核苷酸和氨基酸同源性分别为92.4%~96.2%和84.2%~94.7%。提示辽宁省2008年3株流行性腮腺炎野病毒分离株均属F基因型。由于此次毒株数量太少,尚不能说明F基因型是否为辽宁省的优势基因型,需进一步扩大范围加强监测。  相似文献   

15.
Ten temperature-sensitive mutants of simian virus 40 have been isolated and characterized in permissive cells. The mutants could be divided into three functional groups and two complementation groups. Seven mutants produced T antigen, infectious viral deoxyribonucleic acid (DNA), and structural viral antigen but predominantly the empty shell type of viral particles. Two mutants produced T antigen and infectious viral DNA, but, although viral structural protein(s) could be detected immunologically, no V antigen or viral particles were found. These two functional groups of mutants did not complement each other. A single mutant was defective in the synthesis of viral DNA, viral structural antigens, and viral particles. T antigen could be detected in infected cells by fluorescent antibody but was reduced by complement fixation assay. This mutant stimulated cell DNA synthesis at the restrictive temperature and complemented the other two functional groups of mutants.  相似文献   

16.
Temperature-sensitive mutants of simian virus 40 (SV40) have been classified as those that are blocked prior to viral DNA synthesis at the restrictive temperature, "early" mutants, and those harboring a defect later in the replication cycle, "late" mutants. Mutants of the A and D complementation groups are early, those of the B, C, and BC groups are late. Our results confirm earlier reports that A mutants are defective in a function required for the initiation of each round of viral DNA synthesis. D mutants, on the other hand, continue viral DNA replication at the restrictive temperature after preincubation at the permissive temperature. The length of time required for D function to be expressed at the permissive temperature-after which infection proceeds unabated on shifting of the cultures to the restrictive temperature-is 10 to 20 h. The viral DNA synthesized in D mutants under these conditions progresses in normal fashion through replicative intermediate molecules to mature component I and II DNA molecules.  相似文献   

17.
Defective particles were the major product after undiluted passage of certain temperature-sensitive (ts) mutants of the Indiana C strain of vesicular stomatitis virus in BHK-21 cells at the permissive temperature (31 C). Essentially homogeneous preparations of defective particles were obtained with the wild-type and individual ts mutants. The defective particles associated with some of the ts mutants, however, were morphologically and physically distinguishable from wild type and from each other. All varieties of defective particle interfered with the multiplication of mutant and wild-type virus at the permissive temperature at early times of infection but failed to complement virions of different complementation groups at the restrictive temperature (39 C) at any time during infection.  相似文献   

18.
All Sindbis virus temperature-sensitive mutants defective in "late" functions were systematically surveyed by acrylamide-gel electrophoresis for similarities and differences in the intracellular pattern of virus-specific proteins synthesized at the permissive and nonpermissive temperatures. Only cells infected with mutants of complementation group C showed an altered pattern. At the nonpermissive temperature, these mutants failed to induce the synthesis of a polypeptide corresponding to the nucleocapsid protein and instead overproduced a protein of higher molecular weight than either viral structural protein. This defect was shown to be irreversible by the finding that (3)H-leucine incorporated at 41.5 C specifically failed to appear in the nucleocapsid of virions subsequently released at 29 C. Attempts to demonstrate a precursor protein in wild-type infections were inconclusive.  相似文献   

19.
Phenotypic expression of the murine intraspecies and interspecies antigenic determinants of the major type C viral structural 30,000-dalton polypeptide, p30, was measured by radioimmunoassay inhibition in cell lines from different species. Uninfected normal rat kidney (NRK) cells did not contain detectable levels of murine intraspecies and interspecies p30 antigen, whereas rat cells transformed by and producing murine sarcoma virus (MSV)-Moloney leukemia virus (M-MSV-MuLV) contained high levels of both murine intraspecies and interspecies p30 antigen. Significant amounts of murine intraspecies and interspecies p30 antigen were detected in wild-type MSV-transformed nonproducer NRK cells. The control of p30 antigen expression was examined in temperature-sensitive MSV-transformed nonproducer cells [NRK(MSV-1b)] which are cold sensitive for maintenance of the transformed phenotype. Both murine intraspecies and interspecies p30 antigens were detected in NRK(MSV-1b) cells when grown at the permissive (39 C) or nonpermissive (33 C) temperature, suggesting that p30 antigen expression is not correlated with maintenance of the transformed phenotype. The results demonstrate that previously undetectable p30 antigens are expressed in MSV-transformed nonproducer NRK cells, and suggest that the expression of p30 antigen may be a useful marker for viral gene expression in mammalian cells.  相似文献   

20.
Infection of a subline of L cells adapted to grow in suspension (Ls) with Fushimi strain of HVJ (HVJ-F) resulted in a virus carrier state. Ls cells, when cultured in monolayer, showed morphological changes following infection of HVJ-F and were detached from the glass wall. However, when the detached cells were transferred to a new environment of suspension culture within 5 days after infection, the carrier state was again established. HVJ-F caused only lethal infection in L cells maintained exclusively in monolayer (Lm). On the other hand, both Ls and Lm, irrespective of their culture conditions, were lethally infected by Nagoya 1–60 strain of HVJ. The overall results showed that culture condition as well as the kind of host cells or virus strains is an important factor regulating the establishment and maintenance of the virus carrier state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号