首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nonsulfated di- to octadeca-saccharides having 2-acetamido-2-deoxy-d-galactose at the reducing end were prepared, in 81% yield, by treatment of chondroitin 6-sulfate (pyridinium salt) with dimethyl sulfoxide containing 10% of water for 14 h at 90°. N-Acetylchondrosine and N-acetyldermosine were obtained from dermatan sulfate of rooster comb, in 30% and 38% yields, respectively, by solvolysis with dimethyl sulfoxide, containing 10% of water, for 30 h at 105°. Hyaluronic acid was also depolymerized by the same solvent in the presence of an equimolar amount of pyridinium sulfate or chloride per disaccharide unit to give reducing di- and higher molecular weight oligo-saccharides. The results of solvolytic desulfation and depolymerization are compared with those of the conventional methods by acid hydrolysis.  相似文献   

2.
N-ortho, N-meta and N-para-(ferrocenyl)benzoyl tri- and tetrapeptide esters (2-7) were prepared by coupling ortho, meta and para-ferrocenyl benzoic acids to the tri- and tetrapeptide ethyl esters of GlyGlyGly(OEt) and GlyGlyGlyGly(OEt) in the presence of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride and 1-hydroxybenzotriazole. The compounds were characterized by a range of NMR spectroscopic techniques, mass spectrometry and cyclic voltammetry. The anti-proliferative effects of the ortho derivatives 2 and 5 were measured in vitro against H1299 lung cancer cells and both gave IC50 values greater than 50 μM. Therefore, extending the length of the peptide chain had a negative effect on activity, relative to N-(ferrocenyl)benzoyl amino acid and dipeptide derivatives.  相似文献   

3.
A series of 1-thioglycosides containing an ω-aldehydo group (as the dimethyl acetal) on the aglycon were prepared by reaction of O-acetyl-1-thioaldoses with N-(chloroacetyl)aminoacetaldehyde dimethyl acetal, a compound readily prepared by the action of chloroacetyl chloride or chloroacetic anhydride on 2-aminoacetaldehyde dimethyl acetal. O-Deacetylation of the 1-thioglycosides, followed by deacetalation, yielded the desired products. An analogous 1-thioglycoside having a longer aglycon was prepared by reaction of 1-thio-D-galactose with (6-aminohexanoyl)-aminoacetaldehyde dimethyl acetal, obtained by condensing 6-bromohexanoic acid and aminoacetaldehyde with 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide. These glycosides were found to be useful for modification of proteins to yield neoglyco-proteins.  相似文献   

4.
The structure of three neuraminyl-oligosaccharides isolated from rat urine-have been studied by chromatographic and mass spectrometric analyses of different hydrolysis and methylation products. The structures of the oligosaccharides were identifies as O-α-N-acetyl(O-acetyl)neuraminyl-(2 → 3)-O-β-galactopyranosyl-(1 → 4)-glucopyranose, O-α-N-acetylneuraminyl-(2 → 3)-O-β-galactopyranosyl-(1 → 4)-glucopyranose and O-α-N-glycolylneuraminyl-(2 → 3)-O-β-galactopyranosyl-(1 → 4)-glucopyranose.  相似文献   

5.
The long-period reaction of heparin with excess diazomethane at 20° resulted in cleavage at the β-position of the uronic acid carboxyl group to give a mixture of methyl α- and β-glycosides of N,O-methylated di-, tetra-, and hexa-saccharides having a 4,5-unsaturated uronic acid, nonreducing end-group. The major disaccharides obtained were methyl O-(4-deoxy-3-O-methyl-α-l-threo-hex-4-enopyranosyluronic acid 2-sulfate)-(1→4)-2-deoxy-3-O-methyl-2-(N-methylsulfoamino)-α- and -β-d-glucopyranoside. The reaction of heparin at 4° yielded a mixture of methylated, higher-molecular-weight oligosaccharides, which retained some affinity for antithrombin III-Sepharose.  相似文献   

6.
Eight hexasaccharide fractions were isolated from commercialshark cartilage chondroitin sulfate D by means of gel nitrationchromatography and HPLC on an amine-bound silica column afterexhaustive digestion with sheep testicular hyaluronidase. Capillaryelectrophoresis of the enzymatic digests as well as one- andtwo-dimensional 500 MHz 1H-NMR spectroscopy demonstrated thatthese hexasaccharides share the common core saccharide structureGlcAß1-3GalNAcß1-4GlcAß1-3GalNAcß1-4GlcAß1-3GalNAcwith three, four, or five sulfate groups in different combinations.Six structures had the same sulfation profiles as those of theunsaturated hexasaccharides isolated from the same source afterdigestion with chondroitinase ABC (Sugahara et al., Eur. J.Biochem., 293, 871–880, 1996) and the other two have notbeen reported so far. In the new components, a D disaccharideunit, GlcA(2-sulfate)ß1-3GalNAc(6-sulfate), characteristicof chondroitin sulfate D was arranged on the reducing side ofan A disaccharide unit, GlcAß1-3GalNAc(4-sulfate),forming an unusual A-D tetrasaccharide sequence, GlcAß1-3GalNAc(4-sulfate)-4GlcA(2-sulfate)ß1-3GaINAc(6-sulfate)which is known to be recognized by the monoclonal antibody MO225.These findings support the notion that the tetrasaccharide sequence,GlcAß1-3GalNAc(4-sulfate)ß1-4GlcAß1-3GalNAc(6-sulfate)is included in the acceptor site of a hitherto unreported 2-O-sulfotransferaseresponsible for its synthesis. The sulfated hexasaccharidesisolated in this study will be useful as authentic oligosaccharideprobes and enzyme substrates in studies of sulfated glycosaminogly-cans. sulfated hexasaccharides chondroitin sulfate D hyaluronidase 1 H-NMR  相似文献   

7.
Hog mucosal heparin (N-sulfate, 0.84 mol; O-sulfate, 1.55 mol; N-acetyl, 0.12 mol; anticoagulant activity assayed by the method of U.S. Pharmacopeia, 161 USP units/mg) or its partially N-desulfated heparin (N-sulfate, 0.71 mol; O-sulfate, 1.47 mol; N-acetyl 0.12 mol; anticoagulant activity, 117 USP units/ mg) was reacted with 5-isothiocyanatofluorescein in 0.5M carbonate buffer (pH 8.5) at 35°C for 6 h to yield the corresponding N-fluoresceinylthiocarbamoyl heparins (λem 516 nm, λex 491 nm; degree of substitution 0.006 and 0.013, respectively, anticoagulant activity, 174 and 140 USP units/mg, respectively).The fluorescent heparin (degree of substitution, 0.006; 174 USP units/mg) was injected into rabbits intravenously. The half-life of the fluorescent heparin determined by fluorometry was 24 min, that determined by the clotting time assay was 39 min. The time-course of concentration and the half-life of the fluorescent heparin and of the starting heparin obtained by the clotting the assay were virtually identical.  相似文献   

8.
Magnetic Fe3O4-chitosan nanoparticles are prepared by the coagulation of an aqueous solution of chitosan with Fe3O4 nanoparticles. The characterization of Fe3O4-chitosan is analyzed by FTIR, FESEM, and SQUID magnetometry. The Fe3O4-chitosan nanoparticles are used for the covalent immobilization of lipase from Candida rugosa using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) as coupling agents. The response surface methodology (RSM) was employed to search the optimal immobilization conditions and understand the significance of the factors affecting the immobilized lipase activity. Based on the ridge max analysis, the optimum immobilization conditions were immobilization time 2.14 h, pH 6.37, and enzyme/support ratio 0.73 (w/w); the highest activity obtained was 20 U/g Fe3O4-chitosan. After twenty repeated uses, the immobilized lipase retains over 83% of its original activity. The immobilized lipase shows better operational stability, including wider thermal and pH ranges, and remains stable after 13 days of storage at 25 °C.  相似文献   

9.
Solvolysis of chondroitin 4- or 6-sulfate (pyridinium salt) with dimethyl sulfoxide containing 10% of methanol for 18 h at 95° resulted in the cleavage of the 2-amino-2-deoxy-D-glucoside bonds together with initial desulfation to give methyl β-glycosides of N-acetylchondrosine as a main product and, in addition, higher oligosaccharides, without any loss of uronic acid. Dermatan sulfate was also depolymerized to yield methyl glycosides of di- and higher oligosaccharides under the same conditions. Hyaluronic acid (free acid) was depolymerized by the same solvent in the presence of an equimolar amount of pyridine-sulfur trioxide or pyridinium sulfate per disaccharide unit to give methyl glycosides of di- and higher oligosaccharides. In contrast N-desulfated, N-acetylated heparin was stable under these solvolytic conditions and did not yield heparin oligosaccharides.  相似文献   

10.
A novel series of 3-ethoxyquinoxalin-2-carboxamides were designed as per the pharmacophoric requirements of 5-HT3 receptor antagonist using ligand-based approach. The desired carboxamides were synthesized from the key intermediate, 3-ethoxyquinoxalin-2-carboxylic acid by coupling with appropriate amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) and 1-hydroxybenzotriazole (HOBt). The 5-HT3 receptor antagonism was evaluated in longitudinal muscle myenteric plexus preparation from guinea pig ileum against 5-HT3 agonist, 2-methy-5-HT, which was expressed in the form of pA2 values. Compound 6h (3-ethoxyquinoxalin-2-yl)(4-methylpiperazin-1-yl)methanone was found to be the most active compound, which expressed a pA2 value of 7.7. In forced swim test, the compounds with higher pA2 value exhibited good anti-depressant-like activity and compounds with lower pA2 value failed to show activity as compared to the vehicle-treated group.  相似文献   

11.
A series of quinoxalin-2-carboxamides were designed as per the pharmacophoric requirements of 5-HT3 receptor antagonists and synthesized by condensing the carboxylic group of quinoxalin-2-carboxylic acid with various amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and 1-hydroxybenzotriazole. The structures of the synthesized compounds were confirmed by physical and spectroscopic data. The carboxamides were evaluated for their 5-HT3 receptor antagonisms in longitudinal muscle-myenteric plexus preparation from guinea pig ileum against 5-HT3 agonist, 2-methy-5-HT. All the synthesized compounds showed 5-HT3 receptor antagonism, (4-benzylpiperazin-1-yl)(quinoxalin-2-yl)methanone was the most potent compound among this series.  相似文献   

12.
Glyoxylic acid, added to aqueous suspensions of chitosan, causes immediate dissolution of chitosan and gel formation within 3–4 h if the pH is 4.5–5.5. Solutions at lower pH values gel after 2 min of warming at 60–80°. Chitosan glyoxylate solutions brought to alkaline pH with sodium hydroxide do not precipitate chitosan. Evidence is given that a Schiff base, namely N-(carboxymethylidene)chitosan, is formed. N-(Carboxymethylidene)chitosans are reduced by sodium cyanoborohydride at room temperature to give N-(carboxymethyl)chitosans, obtained as white, free-flowing powders, soluble in water at all pH values. A series of N-(carboxymethyl)chitosans having various degrees of acetylation and N-carboxymethylation was obtained, and characterized by viscometry, elemental analysis, and i.r. spectrometry. For the fully substituted N-(carboxymethyl)chitosans, the pK′ is 2.3, the pK″ is 6.6, and the isoelectric point is 4.1. The addition of N-(carboxymethyl)chitosan to solutions (0.2–0.5mm) of transition-metal ions produces immediate insolubilization of N-(carboxymethyl)chitosan-metal ion chelates.  相似文献   

13.
A series of 3-(N-alkyl-N-phenylamino)propan-2-ol derivatives were synthesized from epichlorohydrine in a multi-step strategy and were evaluated as Src kinase inhibitors. First, epoxy ring opening of epichlorohydrine was carried out in the presence of N-alkylanilines to yield 3-(N-alkyl-N-phenylamino)-1-chloro-propan-2-ol derivatives using Ca(OTf)2 as catalyst based on our previous studies [1]. Second, ring closure was performed under basic conditions to afford N-epoxymethyl N-alkylaniline derivatives. Finally, the epoxide ring opening with four different secondary amines and three nucleobases afforded the final products, i.e., a series of β-amino alcohols. All compounds were screened for their inhibitory activity against Src kinase and anticancer activity on human breast carcinoma cells, BT-20 cell line. Among all compounds, 3-N-methyl-N-phenylamino-1-(pyrrolidin-1-yl)propan-2-ol (13b) exhibited the highest inhibitory potency (IC50 = 66.1 μM) against Src kinase. Structure-activity relationship studies suggested that the incorporation of bulky groups at position 1 and N-substitution with groups larger than methyl moiety, reduced the inhibitory potency of the compound significantly. Compounds 3-(N-ethyl-N-phenylamino-)-1-(4-methylpiperazin-1-yl)propan-2-ol (14c) and 3-(N-ethyl-N-phenylamino)-1-(thymine-1-yl)propan-2-ol (17) were found to inhibit the growth of breast carcinoma cells by approximately 45–49% at concentration of 50 μM.  相似文献   

14.
Abstract

The synthesis of cyclic ADP-carbocyclic-ribose (2), as a stable mimic for cyclic ADP-ribose, was investigated. Construction of the 18-membered backbone structure was successfully achieved by condensation of the two phosphate groups of 19, possibly due to restriction of the conformation of the substrate in a syn-form using an 8-chloro substituent at the adenine moiety. SN2 reactions between an optically active carbocyclic unit 8, which was constructed by a previously developed method, and 8-bromo-N 6-trichloroacetyl-2′,3′-O-isopropylideneadenosine 9c gave N-1-carbocyclic derivative, which was deprotected to give 5′,5′-diol derivatives 18. When 18 was treated with POCl3 in PO(OEt)3, the bromo group at the 8-position was replaced to give N-1-carbocyclic-8-chloroadenosine 5′,5′-diphosphate derivative 19 in 43% yield. Treatment of 19 with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride gave the desired intramolecular condensation product 20 in 10% yield. This is the first chemical construction of the 18-membered backbone structure containing an intramolecular pyrophosphate linkage of a cADPR-related compound with an adenine base.  相似文献   

15.
Addition of 5-bromo-2′,3′-O-isopropylidene-5′-O-trityluridine (2) in pyridine to an excess of 2-lithio-1,3-dithiane (3) in oxolane at 78° gave (6R)-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene -5′-O-trityluridine (4), (5S,6S)-5-bromo-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene-5′-O-trityluridine (5), and its (5R) isomer 6 in yields of 37, 35, and 10%, respectively. The structure of 4 was proved by Raney nickel desulphurization to (6S)-5,6-dihydro-2′,3′-O-isopropylidene-6-methyl-5′-O-trityluridine (7) and by acid hydrolysis to give D-ribose and (6R)-5,6-dihydro-6-(1,3-dithian-2-yl)uracil (9). Treatment of 4 with methyl iodide in aqueous acetone gave a 30&%; yield of (R,S)-5,6-dihydro-6-formyl-2′,3′-O-isopropylidene-5′-O-trityl-uridine (10), characterized as its semicarbazone 11. Both 5 and 6 gave 4 upon brief treatment with Raney nickel. Both 5 and 6 also gave 6-formyl-2′,3′-O-isopropylidene-5′- O-trityluridine (12) in ~41%; yield when treated with methyl iodide in aqueous acetone containin- 10%; dimethyl sulfoxide. A by-product, identified as the N-methyl derivative (13) of 12 was also formed in yields which varied with the amount of dimethyl sulfoxide used. Reduction of 12 with sodium borohydride, followed by deprotection, afforded 6-(hydroxymethyl)uridine (17), characterized by hydrolysis to the known 6-(hydroxymethyl)uracil (18). Knoevenagel condensation of a mixture of the aldehydes 12 and 13 with ethyl cyanoacetate yielded 38%; of E- (or Z-)6-[(2-cyano-2-ethoxycarbonyl)ethylidene]-2′,3′-O-isopropylidene-5′-O-trityluridine (19) and 10%; of its N-methyl derivative 20. Hydrogenation of 19 over platinum oxide in acetic anhydride followed by deprotection gave R (or S)-6-(3-amino-2-carboxypropyl)uridine (23).  相似文献   

16.
Neurospora crassa can utilize glucose 6-sulfate as its sole sulfur source, although this compound cannot serve as a carbon source for this organism. Neurospora possesses a transport system capable of glucose 6-sulfate uptake; the system is energy dependent, is inhibited by extracellular sulfate, and is clearly distinct from the permeases responsible for the uptake of glucose and those for sulfate transport. The metabolism of glucose 6-sulfate apparently involves its transport as an intact molecule, followed by a slow intracellular hydrolysis. Methionine, which represses the synthesis of a number of enzymes of sulfur anabolism, also represses the synthesis of the transport system responsible for glucose 6-sulfate uptake. A regulatory gene, cys-3, which controls the synthesis of aryl sulfatase, choline sulfatase, choline-O-sulfate permease, and two distinct permease species, also regulates the permease for glucose 6-sulfate.  相似文献   

17.
O-α-d-Mannopyranosyl-(1→6)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→4)-2-acetamido-N-(l-aspart-4-oyl)-2-deoxy-β-d-glucopyranosylamine (12), used in the synthesis of glycopeptides and as a reference compound in the structure elucidation of glycoproteins, was synthesized via condensation of 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide with 2-acetamido-4-O-(2-acetamido-3-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl azide (5) to give the intermediate, trisaccharide azide 7. [Compound 5 was obtained from the known 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl azide by de-O-acetylation, condensation with benzaldehyde, acetylation, and removal of the benzylidene group.] The trisaccharide azide 6 was then acetylated, and the acetate reduced in the presence of Adams' catalyst. The resulting amine was condensed with 1-benzyl N-(benzyloxycarbonyl)-l-aspartate, and the O-acetyl, N-(benzyloxycarbonyl), and benzyl protective groups were removed, to give the title compound.  相似文献   

18.
Substituted pyridines provide structural rigidity and thus permit the metal coordination geometry to guide the direction of propagation of the hydrogen-bonded links between building blocks. In this paper we present the crystal structures and spectroscopic properties of monomeric, dimeric and polymeric copper(II) chloroacetates with isonicotinamide (INA), N-methylnicotinamide (MNA) and N,N-diethylnicotinamide (DENA). The molecular structure of [Cu(ClCH2CO2)2(INA)2]2 (1) consists of a rather interesting dinuclear molecule with copper atoms bridged by anti, anti-O,O′ bridging oxygens of two chloroacetate anions. Each copper atom is octahedrally coordinated thus forming a CuN2O4 core with two nitrogens, originating from two different isonicotinamide molecules, in trans positions. This complex is one of a very few examples of this rare type of structure in which both carboxylate oxygen anions are coordinated to two copper metal ions. The crystal structure of 1 revealed an infinite 1-D linear hydrogen-bonded chain formed by discrete molecules [Cu(ClCH2CO2)2(INA)2]2 connected by strong hydrogen bonds between two amide groups. This structure is the first example, where two pairs of amide groups are involved in hydrogen bonding connecting two molecules. The X-ray structure of the complex [Cu(CCl3CO2)2(INA)2]n (3) revealed a tetragonal bipyramidal environment about the copper(II) atom. This structure represents the first example of copper(II) complex, where isonicotinamide acts as a bridging ligand. Strong intramolecular hydrogen bonds, N-H?O, create two eight-membered metallocycle rings which stabilizes the molecular structure. The crystal structure of 3 consists of 2-D sheets of a metal-organic framework. The coordination environment of the copper(II) atom in [Cu(CCl3CO2)2(MNA)2(H2O)2] · 2H2O (6 · 2H2O) is an elongated tetragonal bipyramid. Strong intramolecular hydrogen bond interactions involving an axial coordinated water molecule and a carboxylic oxygen atom stabilize the molecular structure. The crystal structure of [Cu2(ClCH2CO2)4(DENA)]n (7) shows that the complex is an extended zigzag coordination chain of alternating binuclear paddle-wheel units of the bridging tetracarboxylate type Cu2(ClCH2CO2)4 and N,N-diethylnicotinamide molecules. This complex represents the first example of copper(II) carboxylates where N,N-diethylnicotinamide molecule acts as a bidentate bridging ligand connecting binuclear paddle-wheel units. The variation in DENA coordination in the polymeric chain can be described by the following formula: -[Cu2(ClCH2CO2)4]-(DENA-N,O)- [Cu2(ClCH2CO2)4]-(DENA-O,N)-. All complexes were characterized by electron paramagnetic resonance (EPR) spectroscopy and IR spectroscopy. The present study shows that the pyridine-carboxyamides are very suitable molecules that can be employed as ligands in the construction of extended arrays of transition metal-containing molecules linked via hydrogen bonds.  相似文献   

19.
Three kinds of copper(II) azide complexes have been synthesised in excellent yields by reacting Cu(ClO4)2 · 6H2O with N,N-bis(2-pyridylmethyl)amine (L1); N-(2-pyridylmethyl)-N′,N′-dimethylethylenediamine (L2); and N-(2-pyridylmethyl)-N′,N′-diethylethylenediamine (L3), respectively, in the presence of slight excess of sodium azide. They are the monomeric Cu(L1)(N3)(ClO4) (1), the end-to-end diazido-bridged Cu2(L2)2(μ-1,3-N3)2(ClO4)2 (2) and the single azido-bridged (μ-1,3-) 1D chain [Cu(L3)(μ-1,3-N3)]n(ClO4)n (3). The crystal and molecular structures of these complexes have been solved. The variable temperature magnetic moments of type 2 and type 3 complexes were studied. Temperature dependent susceptibility for 2 was fitted using the Bleaney-Bowers expression which led to the parameters J = −3.43 cm−1 and R = 1 × 10−5. The magnetic data for 3 were fitted to Baker’s expression for S = 1/2 and the parameters obtained were J = 1.6 cm−1 and R = 3.2 × 10−4. Crystal data are as follows. Cu(L1)(N3)(ClO4): Chemical formula, C12H13ClN6O4Cu; crystal system, monoclinic; space group, P21/c; a = 8.788(12), b = 13.045(15), c = 14.213(15) Å; β = 102.960(10)°; Z = 4. Cu(L2)(μ-N3)(ClO4): Chemical formula, C10H17ClN6O4Cu: crystal system, monoclinic; space group, P21/c; a = 10.790(12), b = 8.568(9), c = 16.651(17) Å; β = 102.360(10)°; Z = 4. [Cu(L3)(μ-N3)](ClO4): Chemical formula, C12H21ClN6O4Cu; crystal system, monoclinic; space group, P21/c; a = 12.331(14), b = 7.804(9), c = 18.64(2) Å; β = 103.405(10)°; Z = 4.  相似文献   

20.
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β- -galactopyranoside (4) gave a fully acetylated (1→6)-β- -galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α- -galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β- -galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β- -galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号