首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using capillary gas-liquid chromatography, we have analyzed the alteration in the total fatty acid, phospholipid and neutral lipid compositions of the monkey erythrocyte, after infection by the malarial parasite Plasmodium knowlesi. Data based on fatty acid quantitation show that the phospholipid composition is altered, with particularly large increases in phosphatidylcholine (PC) and phosphatidylethanolamine (PE), the most abundant phospholipids in normal and P. knowlesi-schizont-infected cells. Unesterified fatty acids were found to be less abundant in infected cells. The total fatty acid content of the cell is increased 6-fold during infection, and total fatty acid composition is also changed: the infected cells are richer in palmitate (+23%), oleate (+29%) and linoleate (+89%), but contained less stearate (-27%) and arachidonate (-40%). The determination of the fatty acid composition of individual phospholipids, neutral lipids and unesterified fatty acids showed that choline-containing phospholipids (PC and sphingomyelin) were not as altered in their fatty acid pattern as anionic phospholipids (PE, phosphatidylserine (PS) and phosphatidylinositol (PI) and lysophosphatidylcholine (lysoPC). Specific alterations in the fatty acid compositions of individual phospholipids were detected, whereas the rise in linoleic acid was the only change during infection that was recovered in each phospholipid (except PC), neutral lipid and unesterified fatty acids. The fatty acid composition of the neutral lipids and unesterified fatty acids was particularly modified: the only rise in arachidonic acid level was observed in these lipid classes after infection. The total plasmalogen level of the erythrocyte is decreased in infected cells (-60%), but their level is increased in PI.  相似文献   

2.
Treatment of female rats with ethinylestradiol at a dose of 60 micrograms/rat, daily for 21 days, produced marked changes in red blood cell lipids. Cholesterol was decreased by 22% and total phospholipids were increased by 13%, resulting in a 31% decrease in the cholesterol to phospholipid ratio. The mass distribution of phosphatidylcholine and phosphatidylethanolamine relative to total phospholipids was unchanged. Whereas control red cells incorporated preferentially fatty acids in phosphatidylcholine, ethinylestradiol stimulated their incorporation specifically in phosphatidylethanolamine, where increases occurred with palmitic acid (+75%), oleic acid (+68%) and arachidonic acid (+31%). Incorporation in phosphatidylcholine was unaffected with any of the 3 fatty acids. The stimulation of fatty acid incorporation in phosphatidylethanolamine is likely to reflect an estrogen-dependent increase in turnover rate of fatty acids in this phospholipid. Such alterations in lipid composition and fatty acid incorporation in red cell phospholipids may have significant effects on membrane function.  相似文献   

3.
Ethanol (50 mM) had no effect on the growth rate or viability of arterial smooth muscle cells over 3.5 days. The cholesterol:phospholipid ratio of the cells was unchanged after 7 days exposure. The major phospholipid components phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were unchanged by ethanol exposure. Sphingomyelin content fell significantly within 12 hr. There were major changes in the fatty acid composition of the phospholipids with a reduction in saturated fatty acids and an increase in unsaturated fatty acids.  相似文献   

4.
Mitochondrial phospholipids from goldfish lateral line muscle were analysed with respect to polar and apolar groups. Groups of 20 goldfish, acclimated to 5, 20 and 30°C, were used. Temperature-induced shifts of both polar and apolar groups of the mitochondrial phospholipids were observed. The fatty acid composition of mitochondrial phospholipids is characterized by a large amount of polyenoic acids, dominated by docosahexaenoic acid and by octadecadienoic acid. At the higher acclimation temperatures, a significant decrease in docosahexaenoic acid is found. However, the resultant effect of environmental temperature on the degree of unsaturation is small, in contrast to the marked effect on mean chain length. Pronounced changes in the molar ratio of phosphatidylcholine and phosphatidylethanolamine are seen; a decrease in mitochondrial phosphatidylcholine is observed at low acclimation temperature, which is compensated for by a nearly equal increase in phosphatidylethanolamine. The main phospholipids are, apparently, phosphatidylcholine, phosphatidylethanolamine and cardiolipin, comprising 90% of the total pool of 12 species. It is found that the anionic nature of the phospholipids is increased at low acclimation temperatures. We discuss this effect and its probable importance in the stabilization of the surface potential of the mitochondrial membranes.  相似文献   

5.
Alterations of phospholipid fatty acid composition in the renewing intestine were studied in the infant piglet. Newborn piglets were fed from birth to 2 weeks of age a concentrated cow's milk which defined a standard supply of dietary fatty acids. Phospholipids were isolated from the whole mucosa, isolated intestinal cells and purified brush border membranes. Intestinal cells were isolated according to their position along the crypt-villus axis and cell phospholipids were extracted at each step of differentiation. Changes in fatty acid composition of cell phospholipids were related to those of lactase activity in the corresponding cell homogenates. In cell phospholipids, the relative content of linoleic and linoleic acids increased about 2-fold from crypt base to villus tip. Substantial contents of alkenylacyl glycerophospholipids (plasmalogens) were found in crypt cell phospholipids and in purified brush border membrane phosphatidylethanolamine (11 and 14% of alkenyl groups by weight of total fatty acids, respectively). The proportion of alkenylacyl glycerophospholipids decreased as cells ascended the villus column and became more differentiated. The results show that fatty acid compositional changes in differentiating cell phospholipids occurred in the immature intestine (before weaning) and suggest that these alterations might be related to the appearance of specific functions.  相似文献   

6.
Alteration of the fatty acid composition of monolayer cultures of LM cells grown in chemically defined medium was achieved by supplementation with fatty acids complexed to bovine serum albumin. Phospholipids containing up to 40% linoleate were found in cells grown in medium containing 20 mu g of linoleate/ml. Incorporation of linoleate into phospholipids reached a plateau after 12-24 hr, and cells remained viable for at least 3-4 days. Although linoleic, linolenic, and arachidonic acids were incorporated into LM cells equally well, only the latter was elongated by these cells under these experimental conditions. Nonadecanoic acid was incorporated to a lesser extent than the polyunsaturated fatty acids. Phosphatidylcholine and phosphatidylethanolamine of LM cells had different fatty acid compositions; phosphatidylethanolamine contained more longer chain and unsaturated fatty acids. Cells were also grown in the absence of choline and presence of choline analogs such as N,N-dimethylethanolamine, N-methylethanolamine, 3-amino-1-propanol, and 1-2-amino-1-butanol. The analog phospholipids in these cells had fatty acid compositions which were intermediate between those of phosphatidylethanolamine and phosphatidylcholine of control cells grown in the presence of choline. Linoleate was found in both phosphatidylcholine and phosphatidylethanolamine of cells supplemented with linoleate. The sphingolipid fraction of these cells, however, did not contain significant amounts of linoleate. When linoleate was present in the phospholipids, compensatory decreases in the oleate and palmitoleate content of phospholipids were observed. Lowering of the growth temperature to 28 degrees produced an increase in unsaturate fatty acid content of the phospholipids. When linoleate was supplied to cells grown at 28 degrees, there was no further increase in the unsaturated fatty acid composition of the phospholipids. Using both fatty acid supplementation and lowered growth temperature, LM cell membranes can be produced which have phospholipids with vastly different fatty acid compositions.  相似文献   

7.
Phospholipids and fatty acids of Neisseria gonorrhoeae.   总被引:9,自引:4,他引:5       下载免费PDF全文
The phospholipids and fatty acids of two strains of Neisseria gonorrhoeae of different penicillin susceptibilities were examined. The phospholipids, which comprise about 8% of the dry weight of the cells, consisted of phosphatidylethanolamine (70%) and phosphatidylglycerol (20%); small amounts of phosphatidylcholine and traces of cardiolipin were also present. Growing and stationary-phase cells were similar in content and composition of phospholipids except for phosphatidylcholine, which increased two- to fivefold in the stationary-phase cells. The fatty acids of the phospholipids were characterized by two major acids, palmitic and a C16:1, with myristic and a C18:1 acid present in smaller amounts. The fatty acids present in purified phospholipid fractions varied considerably in relative proportions from fraction to fraction. No significant difference in the composition of phospholipids from the two strains was evident. Large amounts of beta-hydroxy lauric acid were detected only after saponification of the organisms. Differences in the lipid composition between the gonococcus and other gram-negative bacteria are discussed.  相似文献   

8.
Mitichondria isolated from livers of rats which received D-galactosamine (375 mg/kg body wt., four times) demonstrated a marked decrease in respiratory control ratios, the ADP/O ratios, and state 3 respiration rates and an increase in state 4 respiration rates. The aberration was profound with site I being altered prior to sites II and III. Quantitation of phospholipids revealed a reduction of total phospholipids per mg protein with decreases in phosphatidylcholine and phosphatidylethanolamine contents. Caldiolipin was the only phospholipid which remained unaltered. Fatty acid composition was altered in these phospholipids; caldiolipin was altered most severely, showing reductions in linoleic and arachidonic acids, and an elevation in saturated fatty acids and in some other small components of fatty acids. In phosphatidylethanolamine, palmitic acid decreased, whereas stearic and docosahexonoic acids increased. These changes were smaller in phosphatidylcholine fatty acids. These mitochondria were also characterized by an altered composition in high molecular weight polypeptide components. By experiments with normal mitochondria in vitro, galactosamine, but not other aminohexoses, was proved to be an uncoupling agent of the oxidative phosphorylation system. Electron microscopic observation demonstrated that both in vivo and in vitro treatments with galactosamine induced marked disorganization of mitochondral structures. These results suggest that mitochondrial damage is also included in galactosamine-induced hepatic lesion.  相似文献   

9.
We have studied the changes in the fatty acid profiles of red blood cell membrane phospholipids in 47 infants who were exclusively fed human milk from birth to 1 month of life. Twenty blood samples were obtained from cord, 15 at 7 days and 12 at 30 days after birth. Membrane phospholipids were obtained from erythrocyte ghosts by thin-layer chromatography and fatty acid composition was determined by gas liquid chromatography. Phosphatidylcholine showed the most important changes during early life; stearic, w6 eicosatrienoic and arachidonic acids decreased whereas oleic and linoleic acids increased. In phosphatidylethanolamine, palmitic and stearic acid declined and oleic, linoleic and docosahexenoic acids increased with advancing age. Small changes were noted for individual fatty acids in phosphatidylserine. In sphingomyelin stearic acid increased from birth to 1 month and linoleic, arachidonic and nervonic acids decreased. Total polyunsaturated fatty acids of the w6 series greater than 18 carbon atoms increased with advancing age in phosphatidylethanolamine and decreased in choline and serine phosphoglycerides and in sphingomyelin. Long chain fatty acids derived from linoleic acid decreased in phosphatidylcholine but increased in ethanolamine and serine phosphoglycerides. The different behavior in the changes observed in fatty acid patterns for each erythrocyte membrane phospholipid may be a consequence of its different location in the cell membrane bilayer and specific exchange with plasma lipid fractions.  相似文献   

10.
The abundance or deficiency of thyroid hormones in rat organism influence the unsaturation and desaturation indices of total lipid fatty acids and phospholipids in liver mitochondria. The most conspicuous changes were observed in the fatty acid composition of the phospholipid fraction. The changes in the structure and function of rat liver mitochondria are considered to be due to alterations in the fatty acid composition of mitochondrial phospholipids.  相似文献   

11.
A significant increase in total phospholipid content of the endometrium took place during the secretory phase of the human menstrual cycle (26% increase from mid-proliferative to premenstrual stage). The major phospholipid, phosphatidylcholine, was increased by 30%, whereas phosphatidylethanolamine was unchanged. Phosphatidyl-serine and -inositol underwent the largest percentage increases (40%). Phosphatidic acid levels were the only ones to decrease (-52%), a finding consistent with the role of this lipid as precursor of the increased phospholipids. The changes did not markedly affect phospholipid composition, except for a significant decrease in the proportions of phosphatidate and phosphatidylethanolamine. Arachidonate and eicosatrienoate (n-6) were the major polyunsaturated fatty acids. C22 tetra-, penta- and hexa-enoic fatty acids of the n-3 and n-4 families were also present in all major endometrial glycerophospholipids throughout the cycle. The mass changes in phospholipids during the cycle occurred without alteration of their fatty acid composition.  相似文献   

12.
A tobacco-specific nitrosamine (TSNA), N-nitrosonornicotine (NNN), is a potent carcinogen present in cigarette smoke, and chronic exposure to it can lead to pulmonary cancer. NNN causes changes in phospholipid metabolism and the mechanism is yet to be elucidated. Exposure of Saccharomyces cerevisiae to 50 μM NNN leads to a substantial decrease in phosphatidylserine (PS) by 63%, phosphatidylcholine (PC) by 42% and phosphatidylethanolamine (PE) by 36% with a concomitant increase in lysophospholipids (LPL) by 25%. The alteration in phospholipid content was dependent on increasing NNN concentration. Reduced phospholipids were accompanied with increased neutral lipid content. Here we report for the first time that NNN exposure, significantly increases phospholipase B (PLB) activity and the preferred substrate is PC, a major phospholipid responsible for a series of metabolic functions. Furthermore, NNN also promotes the alteration of fatty acid (FA) composition; it increases the long chain fatty acid (C18 series) in phospholipids specifically phosphatidylethanolamine (PE) and PS; while on the contrary it increases short chain fatty acids in cardiolipin (CL). NNN mediated degradation of phospholipids is associated with enhanced PLB activity and alteration of phospholipid composition is accompanied with acyl chain remodelling. Understanding the altered phospholipid metabolism produced by NNN exposure is a worthwhile pursuit because it will help to understand the toxicity of tobacco smoke.  相似文献   

13.
Abstract: Changes in the free fatty acid pool size and fatty acyl chain composition of mitochondrial membrane phospholipids and their relation to disruption of mitochondrial function were examined in rat brains after 30 min of cerebral ischemia (Pulsinelli-Brierley model) and 60 min of normoxic reoxygenation. During ischemia, significant hydrolysis of polyunsaturated molecular species from diacyl phosphatidylcholine, particularly fatty acyl 20:4 (arachidonic acid; 20% decrease) and 22:6 (docosahexaenoic acid; 15% decrease), was observed. Thirty minutes of ischemia caused a 16% loss of 18:2 (linoleic acid) from phosphatidylethanolamine. Recirculation for 60 min did not return the polyunsaturated fatty acid content of phospholipids to normal. Total content of free fatty acids increased during ischemia, particularly 18:2 and 22:6, which exhibited the most dramatic rise. The free fatty acid pool size continued to increase during 60 min of recirculation. The respiratory control ratio decreased significantly during 30 min of ischemia with no apparent recovery following 60 min of reoxygenation. The degree of free radical-mediated lipid peroxidation in mitochondria was significantly increased during ischemia and reperfusion. It was concluded that (a) 30 min of cerebral ischemia caused differential degradation in each of the phospholipid classes and preferential hydrolysis of the polyunsaturated molecular species and (b) 60 min of normoxic reperfusion failed to promote reacylation of the mitochondrial phospholipids and restoration of normal respiration.  相似文献   

14.
Rats fed a 1% cholesterol and 0.5% cholate diet for 21 days were transferred to a sterol-free diet after variable periods of time. The effect of cholesterol removal on liver microsomal composition and fatty acid desaturases was studied. Some changes were already observed after 1 day. However, after 21 days of a sterol-free diet, the cholesterol content of liver microsomes decreased as well as that of phosphatidylcholine. So did the cholesterol/phospholipid ratio. Phosphatidylinositol, phosphatidylserine and sphingomyelin slightly increased along with time. The total fatty acid composition was altered by a decrease in monounsaturated acids and an increase in the saturated acids, palmitic and stearic acids. The arachidonic acid content rose. A similar pattern of change was found in the fatty acid composition of the main phospholipids: phosphatidylcholine and phosphatidylethanolamine. delta 9-Desaturase activity steadily decreased along with cholesterol removal, whereas delta 5- and delta 6-desaturase activities were enhanced towards the end of the removal period. The microsomal membrane became more 'fluid', according to the decrease of fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene incorporated into the membrane.  相似文献   

15.
No data are reported on changes in mitochondrial membrane phospholipids in non-alcoholic fatty liver disease. We determined the content of mitochondrial membrane phospholipids from rats with non alcoholic liver steatosis, with a particular attention for cardiolipin (CL) content and its fatty acid composition, and their relation with the activity of the mitochondrial respiratory chain complexes. Different dietary fatty acid patterns leading to steatosis were explored. With high-fat diet, moderate macrosteatosis was observed and the liver mitochondrial phospholipid class distribution and CL fatty acids composition were modified. Indeed, both CL content and its C18:2n-6 content were increased with liver steatosis. Moreover, mitochondrial ATP synthase activity was positively correlated to the total CL content in liver phospholipid and to CL C18:2n-6 content while other complexes activity were negatively correlated to total CL content and/or CL C18:2n-6 content of liver mitochondria. The lard-rich diet increased liver CL synthase gene expression while the fish oil-rich diet increased the (n-3) polyunsaturated fatty acids content in CL. Thus, the diet may be a significant determinant of both the phospholipid class content and the fatty acid composition of liver mitochondrial membrane, and the activities of some of the respiratory chain complex enzymes may be influenced by dietary lipid amount in particular via modification of the CL content and fatty acid composition in phospholipid.  相似文献   

16.
Previous studies have shown that aldosterone treatment of amphibian epithelial cells results not only in stimulation of Na(+) absorption but also in changes in phospholipid composition which are necessary for the mineralocorticoid action of aldosterone. The present study was designed to investigate the effect of aldosterone on phospholipids of mammalian epithelia. Phospholipid and fatty acid composition was examined in colonic epithelium (mineralocorticoid target tissue) and thymus (non-mineralocorticoid but glucocorticoid target tissue) of rats which had received aldosterone or vehicle by a miniosmotic pump for 7 days. Aldosterone increased the mass of colonic phospholipids relative to cellular proteins with concomitant changes in the percentage distribution of fatty acids, whereas the relative distribution of membrane phospholipds was not changed. Phosphatidylcholine increased the content of polyunsaturated and decreased that of monounsaturated fatty acids, which predominantly reflected the accretion of arachidonic and a decrease in oleic and palmitoleic acids. Within the phosphatidylethanolamine subclass, pretreatment of rats with aldosterone decreased the content of monounsaturated fatty acids (predominantly oleic and palmitoleic acid) and of n-3 fatty acids, and increased the content of saturated fatty acids (palmitic acid). The saturated-to-nonsaturated fatty acid ratio also significantly increased after aldosterone treatment. No changes in thymic phospholipids were seen. The results are consistent with the contention that aldosterone specifically modulates phospholipid concentration and metabolism in mineralocorticoid target tissue. The changes in phospholipid content and its fatty acid composition during the fully developed effect of aldosterone may reflect a physiologically important phenomenon with long-term consequences for membrane structure and function.  相似文献   

17.
The fatty acid composition of the phospholipids and triglycerides extracted from housefly larvae reared on diets containing no added fatty acids but containing differing concentrations of choline has been determined. Reducing the choline content of the diet resulted in a graded reduction of the percentage of phosphatidylcholine present in the phospholipids of the larvae. This was accompanied by changes in the fatty acid composition, choline deficiency causing an increased utilization of 16-C rather than 18-C acids by the phospholipids. Changes in the fatty acid composition of the triglyceride fraction were also observed but these were associated with insects containing very low levels of phosphatidylcholine. Examination of the fatty acids in the different classes of phospholipids showed that the major change resulting from choline deficiency was in the fatty acids of the phosphatidylethanolamine fraction—the phospholipid which increased as the phosphatidylcholine decreased.Although the fatty acid composition of the different classes of phospholipids was not completely fixed, some preferential utilization of certain fatty acids by certain classes was observed, in both larval and adult insects. The fatty acid composition of the phospholipids extracted from larval gut, muscle, fat body, cuticle, trachea, nervous tissue, and haemolymph was determined. Changes resulting from choline deficiency similar to those seen in the whole larva were observed in all tissues except the nervous tissue. The effect of rearing larvae at temperatures between 24 and 35°C resulted in only minor changes in the fatty acid composition of both phospholipid and triglyceride fractions but the difference due to choline deficiency was observed at all temperatures. The possibility that the observed changes in the fatty acids of the phospholipids are compensatory to the changes in the proportion of the choline to the ethanolamine phospholipids is discussed.  相似文献   

18.
Rhesus monkeys given pre- and postnatal diets deficient in n-3 essential fatty acids develop low levels of docosahexaenoic acid (22:6 n-3, DHA) in the cerebral cortex and retina and impaired visual function. This highly polyunsaturated fatty acid is an important component of retinal photoreceptors and brain synaptic membranes. To study the turnover of polyunsaturated fatty acids in the brain and the reversibility of n-3 fatty acid deficiency, we fed five deficient juvenile rhesus monkeys a fish oil diet rich in DHA and other n-3 fatty acids for up to 129 weeks. The results of serial biopsy samples of the cerebral cortex indicated that the changes of brain fatty acid composition began as early as 1 week after fish oil feeding and stabilized at 12 weeks. The DHA content of the phosphatidylethanolamine of the frontal cortex increased progressively from 3.9 +/- 1.2 to 28.4 +/- 1.7 percent of total fatty acids. The n-6 fatty acid, 22:5, abnormally high in the cerebral cortex of n-3 deficient monkeys, decreased reciprocally from 16.2 +/- 3.1 to 1.6 +/- 0.4%. The half-life (t 1/2) of DHA in brain phosphatidylethanolamine was estimated to be 21 days. The fatty acids of other phospholipids in the brain (phosphatidylcholine, -serine, and -inositol) showed similar changes. The DHA content of plasma and erythrocyte phospholipids also increased greatly, with estimated half-lives of 29 and 21 days, respectively. We conclude that monkey cerebral cortex with an abnormal fatty acid composition produced by dietary n-3 fatty acid deficiency has a remarkable capacity to change its fatty acid content after dietary fish oil, both to increase 22:6 n-3 and to decrease 22:5 n-6 fatty acids. The biochemical evidence of n-3 fatty acid deficiency was completely corrected. These data imply a greater lability of the fatty acids of the phospholipids of the cerebral cortex than has been hitherto appreciated.  相似文献   

19.
Prepupae of the Mediterranean arctiid moth Cymbalophora pudica spend hot spring and summer months in a summer diapause (aestivation). Although their cold-hardiness (survival after 1-day exposure to subzero temperatures) is relatively low, it may be moderately enhanced by prior cold acclimation at decreasing above-zero temperatures. In this study, fatty acids of phospholipids and triacylglycerols were analysed in five different tissues (body wall, midgut, fat body, silk glands and brain) dissected from both cold-acclimated and control aestivating prepupae. The five most abundant fatty acids (oleic, palmitic, stearic, linoleic and α-linolenic), found generally in both lipidic fractions and all five tissues, represent a typical fatty complement of Lepidoptera. The fatty acid profiles of individual tissues differed from each other and the response to cold acclimation was also tissue-specific. Moderate but significant increases in the proportion of unsaturated fatty acids after cold acclimation were observed in triacylglycerols of the body wall, fat body and silk glands. Additionally, significant rearrangements of fatty acid profiles were found in triacylglycerols of midgut and brain, without changing the unsaturation/saturation ratio. The adaptational value of enhanced fluidity of fat body triacylglycerols caused by their increased unsaturation remains unclear, because the lipidic energy depots are not utilized during aestivation of this insect. Minimal capacity to alter the membrane-bound fatty acids was found in all tissues except midgut, where the unsaturation/saturation ratio of phospholipids slightly increased after cold acclimation. A low ability to alter the composition of membrane lipids in response to low temperature, correlates well with the low capacity of C. pudica prepupae to enhance their cold-hardiness during cold-acclimation. This may be regarded as indirect support for the membrane lipid restructuring in insect cold adaptation. Accepted: 11 May 1998  相似文献   

20.
Once brain ischemia was induced in the gerbil cerebral fronto-parietal cortex, serial changes occurred in energy metabolites and various lipids. The amounts of inositol-containing phospholipids began to decrease immediately after energy failure, followed by an increase in the amount of 1,2-diacylglycerol with a subsequent liberation of arachidonic acid and other free fatty acids. The fatty acid compositions of inositol-containing phospholipids, of 1,2-diacylglycerols produced by ischemia, and of free fatty acids liberated during ischemia were quite similar. The amount of stearic acid liberated was much larger than that of arachidonic acid between 30 s and 1 min of ischemia. On the other hand, there was no significant decrease in the amount of the other phospholipids except for phosphatidic acid. Furthermore, there was also no change in the fatty acid composition of phosphatidylcholine or phosphatidylethanolamine throughout 15 min of ischemia. The amount of cytidine-monophosphate reached a peak (36.7 nmol/g wet wt) at 2 min of ischemia. These results indicated that arachidonic acid was predominantly liberated from inositol-containing phospholipids by phospholipase C, and by the diglyceride lipase and monoglyceride lipase system rather than from phosphatidylcholine or phosphatidylethanolamine by phospholipase A2 or plasmalogenase or choline phosphotransferase during the early period of ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号