首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently reported the isolation of a chicken cDNA clone encoding a basic fibroblast growth factor (FGF) receptor that has three immunoglobulinlike domains in the extracellular region. We have now identified four unique human cDNA clones encoding previously unknown FGF receptor variants which contain only two immunoglobulinlike domains. Two of the human clones encode membrane-spanning receptors, and two encode putative secreted forms. Both the three- and two-immunoglobulinlike-domain forms mediate biological responsiveness to acidic and basic FGF. Thus, the first immunoglobulinlike domain of the three-domain form may have a function other than binding of acidic and basic FGF.  相似文献   

2.
To determine the mechanisms by which multiple forms of fibroblast growth factor (FGF) receptors are generated, we have mapped the arrangement of exons and introns in the human FGF receptor 1 (FGFR 1) gene (flg). We found three alternative exons encoding a portion of the third immunoglobulin (Ig)-like domain of the receptor. One of these alternatives encodes a sequence that is part of a secreted form of FGFR 1. The other two encode sequences that are likely part of transmembrane forms of FGFR 1. One of these forms has not been previously reported in published cDNAs. Also, we have determined the structural organization of a portion of the human FGFR 2 gene (bek) and found a similar arrangement of alternative exons for the third Ig-like domain. The arrangement of these genes suggests that there are conserved mechanisms governing the expression of secreted FGF receptors as well as the expression of at least two distinct membrane-spanning forms of the FGF receptors. The diverse forms appear to be generated by alternative splicing of mRNA and selective use of polyadenylation signals.  相似文献   

3.
Among four closely related members of the FGF receptor family, FGFR 1, 2, and 3 have alternative splicing forms encoded by different exons for the C-terminal half of the third Ig-like domain, but FGFR 4 has no such alternative exon. Furthermore, FGFR 1, 2, and 3 have another splice variant of nontransmembrane type; however, such a variant has not been reported for FGFR 4. While searching for a novel receptor-type tyrosine kinase by RT-PCR, we identified a non-transmembrane-type receptor of FGFR 4 in human intestinal epithelial cell lines (Intestine 407 and Caco-2). Sequence analysis of this receptor revealed that exon 9 coding the single transmembrane domain was displaced by intron 9. Consequently, this variant form was 120 bp shorter than the normal form and had no transmembrane portion. Moreover, the signal sequence in exon 2 was maintained, suggesting that this splice variant is a soluble receptor. This soluble receptor was detected in human gastrointestinal epithelial cells and pancreas, and also in gastric, colon, and pancreatic cancer cell lines. Single cell RT-PCR showed that this soluble receptor was expressed simultaneously with the transmembrane-type receptor in the same cell. Western blot analysis revealed that this receptor was secreted from the transfected COS7 cells. Thus, a soluble-form splice variant of FGFR 4 was identified in human gastrointestinal epithelial cells and cancer cells. This is the first report of alternative splicing of FGFR 4.  相似文献   

4.
Alternatively spliced variants of fibroblast growth factor receptor 1 mRNA are predicted to encode secreted forms and membrane-bound forms of receptors. The predicted amino acid sequences of these receptor variants differ in a portion of the extracellular region. In this study, we characterized the function of one of these splice variants which was predicted by its cDNA to be a secreted FGF receptor. We expressed this secreted form of the human FGFR1 (sFGFR1) in Chinese hamster ovary cells. The sFGFR1 protein oligomerized upon ligand binding. Surprisingly, the sFGFR1 preferentially bound basic FGF over acidic FGF. In cross-linking experiments, the sFGFR1 showed higher binding affinity for basic FGF (Kd approximately 30 nM) than for acidic FGF (Kd greater than 300 nM). These results suggest that this secreted form of FGF receptor has an unusual ligand binding specificity that may be important for its biological role in vivo.  相似文献   

5.
The fibroblast growth factor receptor 2 (FGFR2) gene is expressed as alternatively spliced mRNAs that encode bacterially expressed kinase, the keratinocyte growth factor receptor, or K-sam. We have now isolated a novel FGFR2 cDNA that is identical with the previously cloned human bacterially expressed kinase, except in the third immunoglobulin-like domain. The ligand binding properties of FGFR2 were studied by expressing the protein in rat L6 muscle myoblasts. Unlike human bacterially expressed kinase which binds acidic and basic FGF with similar affinities, FGFR2 bound acidic FGF with approximately 1000-fold higher affinity than basic FGF. These results indicate that alternative splicing of the FGFR2 gene in the region encoding the carboxyl-terminal half of the third immunoglobulin domain determines the ligand specificity of this group of receptors.  相似文献   

6.
The rat homologue of the gene encoding the fibroblast growth factor receptor subtype 4 (FGFR4) was cloned from rat lung mRNA, and the cDNA sequence was found to be 95% similar and 92% identical to the human homologue. Northern blot analysis of adult rat tissues demonstrated that a 3.1-kb mRNA encoding FGFR4 is detectable only in the lung and kidney. The receptor variant described here encodes two potential immunoglobulin-like domains, 21 hydrophobic amino acids encoding a potential transmembrane domain, and a split tyrosine kinase motif. However, the acidic box and hydrophobic signal peptide domains are not present in this cDNA isolate.  相似文献   

7.
8.
Fibroblast growth factors (FGFs) transmit their signals through four transmembrane receptors that are designated FGFR1-4. Alternative splicing in the extracellular region of FGFR1-3 generates receptor variants with different ligand binding affinities. Thus two types of transmembrane receptors (IIIb and IIIc isoforms) have been identified for FGFR2 and FGFR3, and the existence of analogous variants has been postulated for FGFR1 based on its genomic structure. However, only a single full-length transmembrane FGFR1 variant (FGFR1-IIIc) has been identified so far. Here we describe the cloning of a full-length cDNA encoding FGFR1-IIIb from a mouse skin wound cDNA library. This receptor isoform was expressed at the highest levels in a subset of sebaceous glands of the skin and in neurons of the hippocampus and the cerebellum. FGFR1-IIIb was expressed in L6 rat skeletal muscle myoblasts and used in cross-linking and receptor binding studies. FGF-1 was found to bind the receptor with high affinity, whereas FGF-2, -10, and -7 bound with significantly lower affinities. Despite their apparently similar but low affinities, FGF-10 but not FGF-7 induced the activation of p44/42 mitogen-activated protein kinase in FGFR1-IIIb-expressing L6 myoblasts and stimulated mitogenesis in these cells, demonstrating that this new receptor variant is a functional transmembrane receptor for FGF-10.  相似文献   

9.
10.
《FEBS letters》1993,330(3):249-252
Four distinct FGF receptors were cloned and characterized and it was demonstrated that the ligand binding site of FGF receptors is confined to the extracellular immunoglobulin-like (Ig)-domain 2 and 3. The Ig-domain 3 is encoded by two separate exons: exon IIIa encodes the N-terminal half, and the C-terminal half is encoded by either exon IIIb or IIIc in FGFR1 and FGFR2, whereas FGFR4 is devoid of exon IIIb. Alternative usage of exons IIIb and IIIc determine the ligand binding specificity of the receptor. To analyze the arrangement of these exons in FGFR3 we cloned the genomic sequence between exon IIIa and IIIc of FGFR3 and identified an alternative exon, corresponding to exon IIIb of the FGFR1 and FGFR2. The sequence of this exon shows Ig-domain hallmarks, 44% identity with exon IIIb of other FGF receptors and 36% identity with exon IIIc of FGFR3. Using this exon as a probe for mouse RNA as well as PCR analysis, demonstrated that exon IIIb encodes an authentic form of FGFR3 that is expressed in mouse embryo, mouse skin and mouse epidermal keratinocytes. The results demonstrate that the presence of alternative exons for Ig-domain 3 is a general phenomena in FGFR1, 2 and 3, and represents a novel genetic mechanism for the generation of receptor diversity.  相似文献   

11.
A Yayon  Y Zimmer  G H Shen  A Avivi  Y Yarden    D Givol 《The EMBO journal》1992,11(5):1885-1890
Binding of cellular growth factors to their receptors constitutes a highly specific interaction and the basis for cell and tissue-type specific growth and differentiation. A unique feature of fibroblast growth factor (FGF) receptors is the multitude of structural variants and an unprecedented degree of cross-reactivity between receptors and their various ligands. To examine receptor-ligand specificity within these families of growth factors and receptors, we used genetic engineering to substitute discrete regions between Bek/FGFR2 and the closely related keratinocyte growth factor receptor (KGFR). We demonstrate that a confined, 50 amino acid, variable region within the third immunoglobulin-like domain of Bek and KGFR exclusively determines their ligand binding specificities. Replacing the variable region of Bek/FGFR2 with the corresponding sequence of KGFR resulted in a chimeric receptor which bound KGF and had lost the capacity to bind basic FGF. We present evidence that the two variable sequences are encoded by two distinct exons that map close together in the mouse genome and follow a constant exon, suggesting that the two receptors were derived from a common gene by mutually exclusive alternative mRNA splicing. These results identify the C-terminal half of the third immunoglobulin-like domain of FGF receptors as a major determinant for ligand binding and present a novel genetic mechanism for altering receptor-ligand specificity and generating receptor diversity.  相似文献   

12.
Alternative splicing in the extracellular domain is a characteristic feature of members of the fibroblast growth factor receptor (FGFR) family. This splicing event generates receptor variants, which differ in their ligand binding specificities. A poorly characterized splice variant is FGFR1-IIIb, recently found to be a functional FGF receptor predominantly expressed in the skin. Here we show that FGFR1-IIIb is expressed in normal and wounded mouse skin. Reduced expression of this type of receptor was found in wounds of healing-impaired genetically diabetic mice, suggesting that downregulation of FGFR1-IIIb is associated with wound healing defects. To address this possibility, we deleted the IIIb exon of FGFR1 in mice. The lack of FGFR-IIIb did not alter the expression of either FGFR1-IIIc, other FGF receptor genes or of FGFR1-IIIb ligands in normal and wounded skin. Histological analysis of the skin of FGFR1-IIIb knockout animals did not reveal any obvious abnormalities. Furthermore, full-thickness excisional skin wounds in these mice healed normally and no defects could be observed at the macroscopic or histological level. Finally, several genes that encode key players in wound repair were normally expressed in these animals. These data demonstrate that FGFR1-IIIb is dispensable for skin development and wound repair.  相似文献   

13.
A cloned cDNA encoding the major rat liver asialoglycoprotein receptor has been used to analyze the gene for this protein. Genomic Southern blot analysis reveals that the gene is contained on a single EcoRI restriction fragment and is unique. A clone containing the gene (isolated from a rat liver genomic library) has been characterized by sequence analysis. The mRNA for the receptor is encoded by nine exons separated by eight introns. The first exon is confined to the 5'-untranslated region of the mRNA, the second exon encodes most of the cytoplasmic NH2-terminal domain of the receptor polypeptide, the third exon corresponds to the hydrophobic transmembrane portion of the polypeptide, and the remaining exons encode the extracellular parts of the receptor. Some, but not all, of the divisions between exons correspond to boundaries between functional domains of the polypeptide.  相似文献   

14.
The heparin-binding growth factors constitute a family of homologous polypeptides including basic and acidic fibroblast growth factors (FGFs). These factors participate in a variety of processes, including wound healing, angiogenesis, neuronal survival, and inductive events in the early amphibian embryo. We have isolated three closely related species of cDNA clones for Xenopus FGF receptors. One of these, designated XFGFR-A1, encodes an open reading frame of 814 amino acids. A second class encodes an identical amino acid sequence with the exception of an 88-amino-acid deletion near the 5' end. This species probably arises through alternative splicing. A third class of cDNA corresponding to the shorter form of XFGFR-A1 was isolated and shown to be 95% homologous and is designated XFGFR-A2. Xenopus FGF receptors are similar to FGF receptors from other species in that they contain a transmembrane domain, a tyrosine kinase domain split by a 14-amino-acid insertion, and a unique conserved stretch of eight acidic residues in the extracellular domain. Overexpression of Xenopus FGF receptor protein by transfection of COS1 cells with the corresponding cDNA in a transient expression vector leads to the appearance of new FGF binding sites on transfected cells, consistent with these cDNAs encoding for FGF receptors. RNA gel blot analysis demonstrates that Xenopus FGF receptor mRNA is a maternal message and is expressed throughout early development. When blastula-stage ectoderm is cultured in control amphibian salt solutions, Xenopus FGF receptor mRNA declines to undetectable levels by late neurula stages. However, when cultured in the presence of FGF of XTC mesoderm-inducing factor, Xenopus FGF receptor RNA expression is maintained.  相似文献   

15.
16.
17.
18.
19.
20.
Kim I  Moon S  Yu K  Kim U  Koh GY 《Biochimica et biophysica acta》2001,1518(1-2):152-156
Using the polymerase chain reaction on human embryonic cDNAs, we isolated a cDNA encoding a novel 504 amino acid protein, termed fibroblast growth factor receptor (FGFR)-5, which is highly homologous to known FGFRs. The NH(2)-terminal portion of FGFR5 contains a putative secretory signal sequence, three typical immunoglobulin-like domains, six cysteines, and an acidic box, but no HAV motif. The COOH-terminal portion of FGFR5 contains one transmembrane domain but no intracellular kinase domain. Recombinant FGFR5 expressed in COS-7 cells is not secreted, but recombinant truncated FGFR5 lacking the predicted transmembrane domain is secreted. Acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) do not bind to FGFR5. Among 23 adult human tissues, FGFR5 mRNA is preferentially expressed in the pancreas. These results suggest that FGFR5 may provide a binding site for some other fibroblast growth factors and may regulate some pancreatic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号