首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depolarizing voltage steps activate voltage-dependent K(+) (Kv) channels by moving the voltage sensor, which triggers a coupling reaction leading to the opening of the pore. We constructed chimeric channels in which intracellular regions of slowly activating Kv2.1 channels were replaced by respective regions of rapidly activating Kv1.2 channels. Substitution of either the N-terminus, S4-S5 linker, or C-terminus generated chimeric Kv2.1/1.2 channels with a paradoxically slow and approximately exponential activation time course consisting of a fast and a slow component. Using combined chimeras, each of these Kv1.2 regions further slowed activation at the voltage of 0 mV, irrespective of the nature of the other two regions, whereas at the voltage of 40 mV both slowing and accelerating effects were observed. These results suggest voltage-dependent interactions of the three intracellular regions. This observation was quantified by double-mutant cycle analysis. It is concluded that interactions between N-terminus, S4-S5 linker, and/or C-terminus modulate the activation time course of Kv2.1 channels and that part of these interactions is voltage dependent.  相似文献   

2.
A J Patel  M Lazdunski    E Honoré 《The EMBO journal》1997,16(22):6615-6625
The molecular structure of oxygen-sensitive delayed-rectifier K+ channels which are involved in hypoxic pulmonary artery (PA) vasoconstriction has yet to be elucidated. To address this problem, we identified the Shab K+ channel Kv2.1 and a novel Shab-like subunit Kv9.3, in rat PA myocytes. Kv9.3 encodes an electrically silent subunit which associates with Kv2.1 and modulates its biophysical properties. The Kv2.1/9.3 heteromultimer, unlike Kv2.1, opens in the voltage range of the resting membrane potential of PA myocytes. Moreover, we demonstrate that the activity of Kv2.1/Kv9.3 is tightly controlled by internal ATP and is reversibly inhibited by hypoxia. In conclusion, we propose that metabolic regulation of the Kv2.1/Kv9.3 heteromultimer may play an important role in hypoxic PA vasoconstriction and in the possible development of PA hypertension.  相似文献   

3.
Neuronal Kv3 voltage-gated K(+) channels have two absolutely conserved N-glycosylation sites. Here, it is shown that Kv3.1, 3.3, and 3.4 channels are N-glycosylated in rat brain. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced faster migrating immunobands than those of undigested membranes. Additionally, partial PNGase F digests showed that both sites are occupied by oligosaccharides. Neuraminidase treatment produced a smaller immunoband shift relative to PNGase F treatment. These results indicate that both sites are highly available and occupied by N-linked oligosaccharides for Kv3.1, 3.3, and 3.4 in rat brain, and furthermore that at least one oligosaccharide is of complex type. Additionally, these results point to an extracytoplasmic S1-S2 linker in Kv3 proteins expressed in native membranes. We suggest that N-glycosylation processing of Kv3 channels is critical for the expression of K(+) currents at the surface of neurons, and perhaps contributes to the pathophysiology of congenital disorders of glycosylation.  相似文献   

4.
Dendrotoxin (DTX) homologues are powerful blockers of K+ channels that contain certain subfamily Kv1 (1.1-1.6) alpha- and beta-subunits, in (alpha)4(beta)4 stoichiometry. DTXk inhibits potently Kv1.1-containing channels only, whereas alphaDTX is less discriminating, but exhibits highest affinity for Kv1.2. Herein, the nature of interactions of DTXk with native K+ channels composed of Kv1.1 and 1.2 (plus other) subunits were examined, using 15 site-directed mutants in which amino acids were altered in the 310-helix, beta-turn, alpha-helix and random-coil regions. The mutants' antagonism of high-affinity [125I]DTXk binding to Kv1. 1-possessing channels in rat brain membranes and blockade of the Kv1. 1 current expressed in oocytes were quantified. Also, the levels of inhibition of [125I]alphaDTX binding to brain membranes by the DTXk mutants were used to measure their high- and low-affinity interactions, respectively, with neuronal Kv1.2-containing channels that possess Kv1.1 as a major or minor constituent. Displacement of toxin binding to either of these subtypes was not altered by single substitution with alanine of three basic residues in the random-coil region, or R52 or R53 in the alpha-helix; accordingly, representative mutants (K17A, R53A) blocked the Kv1.1 current with the same potency as the natural toxin. In contrast, competition of the binding of the radiolabelled alphaDTX or DTXk was dramatically reduced by alanine substitution of K26 or W25 in the beta-turn whereas changing nearby residues caused negligible alterations. Consistently, W25A and K26A exhibited diminished functional blockade of the Kv1.1 homo-oligomer. The 310-helical N-terminal region of DTXk was found to be responsible for recognition of Kv1.1 channels because mutation of K3A led to approximately 1246-fold reduction in the inhibitory potency for [125I]DTXk binding and a large decrease in its ability to block the Kv1.1 current; the effect of this substitution on the affinity of DTXk for Kv1.2-possessing oligomers was much less dramatic (approximately 16-fold).  相似文献   

5.
Kv7 K+-channel subunits differ in their apparent affinity for PIP2 and are differentially expressed in nerve, muscle, and epithelia in accord with their physiological roles in those tissues. To investigate how PIP2 affinity affects the response to physiological stimuli such as receptor stimulation, we exposed homomeric and heteromeric Kv7.2, 7.3, and 7.4 channels to a range of concentrations of the muscarinic receptor agonist oxotremorine-M (oxo-M) in a heterologous expression system. Activation of M1 receptors by oxo-M leads to PIP2 depletion through Gq and phospholipase C (PLC). Chinese hamster ovary cells were transiently transfected with Kv7 subunits and M1 receptors and studied under perforated-patch voltage clamp. For Kv7.2/7.3 heteromers, the EC50 for current suppression was 0.44 ± 0.08 µM, and the maximal inhibition (Inhibmax) was 74 ± 3% (n = 5–7). When tonic PIP2 abundance was increased by overexpression of PIP 5-kinase, the EC50 was shifted threefold to the right (1.2 ± 0.1 µM), but without a significant change in Inhibmax (73 ± 4%, n = 5). To investigate the muscarinic sensitivity of Kv7.3 homomers, we used the A315T pore mutant (Kv7.3T) that increases whole-cell currents by 30-fold without any change in apparent PIP2 affinity. Kv7.3T currents had a slightly right-shifted EC50 as compared with Kv7.2/7.3 heteromers (1.0 ± 0.8 µM) and a strongly reduced Inhibmax (39 ± 3%). In contrast, the dose–response curve of homomeric Kv7.4 channels was shifted considerably to the left (66 ± 8 nM), and Inhibmax was slightly increased (81 ± 6%, n = 3–4). We then studied several Kv7.2 mutants with altered apparent affinities for PIP2 by coexpressing them with Kv7.3T subunits to boost current amplitudes. For the lower affinity (Kv7.2 (R463Q)/Kv7.3T) or higher affinity (Kv7.2 (R463E)/Kv7.3T) channels, the EC50 and Inhibmax were similar to Kv7.4 or Kv7.3T homomers (0.12 ± 0.08 µM and 79 ± 6% [n = 3–4] and 0.58 ± 0.07 µM and 27 ± 3% [n = 3–4], respectively). The very low-affinity Kv7.2 (R452E, R459E, and R461E) triple mutant was also coexpressed with Kv7.3T. The resulting heteromer displayed a very low EC50 for inhibition (32 ± 8 nM) and a slightly increased Inhibmax (83 ± 3%, n = 3–4). We then constructed a cellular model that incorporates PLC activation by oxo-M, PIP2 hydrolysis, PIP2 binding to Kv7-channel subunits, and K+ current through Kv7 tetramers. We were able to fully reproduce our data and extract a consistent set of PIP2 affinities.  相似文献   

6.
Regulation of voltage-gatedK+ channel genes represents animportant mechanism for modulating cardiac excitability. Here we demonstrate that expression of twoK+ channel mRNAs is reciprocallycontrolled by cell-cell interactions between adult cardiac myocytes. Itis shown that culturing acutely dissociated rat ventricular myocytesfor 3 h results in a dramatic downregulation of Kv1.5 mRNA and a modestupregulation of Kv4.2 mRNA. These effects are specific, because similarchanges are not detected with other channel mRNAs. Increasing myocytedensity promotes maintenance of Kv1.5 gene expression, whereas Kv4.2mRNA expression was found to be inversely proportional to cell density. Conditioned culture medium did not mimic the effects of high cell density. However, paraformaldehyde-fixed myocytes were comparable tolive cells in their ability to influenceK+ channel message levels. Thusthe reciprocal effects of cell density on the expression of Kv1.5 andKv4.2 genes are mediated by direct contact between adult cardiacmyocytes. These findings reveal for the first time that cardiac myocytegene expression is influenced by signaling induced by cell-cell contact.

  相似文献   

7.
8.
Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment   总被引:1,自引:0,他引:1  
Jogini V  Roux B 《Biophysical journal》2007,93(9):3070-3082
All-atom molecular dynamics simulations are used to better understand the dynamic environment experienced by the Kv1.2 channel in a lipid membrane. The structure of the channel is stable during the trajectories. The pore domain keeps a well-defined conformation, whereas the voltage-sensing domains undergo important lateral fluctuations, consistent with their modular nature. A channel-like region at the center of the S1-S4 helical bundle fills rapidly with water, reminiscent of the concept of high-dielectric aqueous crevices. The first two arginines along S4 (R294 and R297) adopt an interfacial position where they interact favorably with water and the lipid headgroups. The following two arginines (R300 and R303) interact predominantly with water and E226 in S2. Despite the absence of a structurally permanent gating pore formed by protein residues and surrounding the S4 helix, as traditionally pictured, the charged residues are located in a favorable environment and are not extensively exposed to the membrane nonpolar region. Continuum electrostatic computations indicate that the transmembrane potential sensed by the charged residues in the voltage sensor varies abruptly over the outer half of the membrane in the arginine-rich region of S4; thus, the voltage gradient or membrane electric field is "focused". Interactions of basic residues with the lipid headgroups at the intracellular membrane-solution interface reduce the membrane thickness near the channel, resulting in an increased transmembrane field.  相似文献   

9.
H Yang  Z Gao  P Li  K Yu  Y Yu  TL Xu  M Li  H Jiang 《Biophysical journal》2012,102(8):1815-1825
Voltage sensing confers conversion of a change in membrane potential to signaling activities underlying the physiological processes. For an ion channel, voltage sensitivity is usually experimentally measured by fitting electrophysiological data to Boltzmann distributions. In our study, a two-state model of the ion channel and equilibrium statistical mechanics principle were used to test the hypothesis of empirically calculating the overall voltage sensitivity of an ion channel on the basis of its closed and open conformations, and determine the contribution of individual residues to the voltage sensing. We examined the theoretical paradigm by performing experimental measurements with Kv1.2 channel and a series of mutants. The correlation between the calculated values and the experimental values is at respective level, R(2) = 0.73. Our report therefore provides in silico prediction of key conformations and has identified additional residues critical for voltage sensing.  相似文献   

10.
The choroid plexuses secrete, and maintain the composition of, the cerebrospinal fluid. K+ channels play an important role in these processes. In this study the molecular identity and properties of the delayed-rectifying K+ (Kv) conductance in rat choroid plexus epithelial cells were investigated. Whole cell K+ currents were significantly reduced by 10 nM dendrotoxin-K and 1 nM margatoxin, which are specific inhibitors of Kv1.1 and Kv1.3 channels, respectively. A combination of dendrotoxin-K and margatoxin caused a depolarization of the membrane potential in current-clamp experiments. Western blot analysis indicated the presence of Kv1.1 and Kv1.3 proteins in the choroid plexus. Furthermore, the Kv1.3 and Kv1.1 proteins appear to be expressed in the apical membrane of the epithelial cells in immunocytochemical studies. The Kv conductance was inhibited by 1 µM serotonin (5-HT), with maximum inhibition to 48% of control occurring in 8 min (P < 0.05 by Student's t-test for paired data). Channel inhibition by 5-HT was prevented by the 5-HT2C antagonist mesulergine (300 nM). It was also attenuated in the presence of calphostin C (a protein kinase C inhibitor). The conductance was partially inhibited by 1,2-dioctanoyl-sn-glycerol and phorbol 12-myristate 13-acetate, both of which activate protein kinase C. These data suggest that 5-HT acts at 5-HT2C receptors to activate protein kinase C, which inhibits the Kv channels. In conclusion, Kv1.1 and Kv1.3 channels make a significant contribution to K+ efflux at the apical membrane of the choroid plexus. delayed-rectifying potassium channel; serotonin  相似文献   

11.
Wang L  Takimoto K  Levitan ES 《FEBS letters》2003,547(1-3):162-164
Kvbeta2 subunits associate with Kv1 and Kv4 K+ channels, but the basis of preferential association is not understood. For example, detergent resistance suggests stronger auxiliary subunit association with Kv4.2 than with Kv1.2, but Kvbeta2 preferentially localizes with the latter channels in brain. Here we examine the interaction of Kvbeta2 with two native binding partners in brain: Kv4.3 and Kv1.4. We show that the auxiliary subunit binds more efficiently to Kv1.4 than to Kv4.3 in mammalian cells. However, preexisting Kvbeta2 complexes with Kv1.4 and Kv4.3 have similar detergent sensitivity. Thus, preferential steady state binding may reflect a difference in initial association rather than stability. We also find that that the cytoplasmic C-terminus of Kv4.3 inhibits Kvbeta2 association. Apparently, a region proximal to the Kv4.3 pore contributes to the inefficient auxiliary subunit interaction that produces preferential binding of Kvbeta2 to Kv1 channels.  相似文献   

12.
Kv7 potassium channels whose mutations cause cardiovascular and neurological disorders are members of the superfamily of voltage-gated K(+) channels, comprising a central pore enclosed by four voltage-sensing domains (VSDs) and sharing a homologous S4 sensor sequence. The Kv7.1 pore-forming subunit can interact with various KCNE auxiliary subunits to form K(+) channels with very different gating behaviors. In an attempt to characterize the nature of the promiscuous gating of Kv7.1 channels, we performed a tryptophan-scanning mutagenesis of the S4 sensor and analyzed the mutation-induced perturbations in gating free energy. Perturbing the gating energetics of Kv7.1 bias most of the mutant channels towards the closed state, while fewer mutations stabilize the open state or the inactivated state. In the absence of auxiliary subunits, mutations of specific S4 residues mimic the gating phenotypes produced by co-assembly of Kv7.1 with either KCNE1 or KCNE3. Many S4 perturbations compromise the ability of KCNE1 to properly regulate Kv7.1 channel gating. The tryptophan-induced packing perturbations and cysteine engineering studies in S4 suggest that KCNE1 lodges at the inter-VSD S4-S1 interface between two adjacent subunits, a strategic location to exert its striking action on Kv7.1 gating functions.  相似文献   

13.
We studied the activation properties of members of the Shaker-related subfamily of voltage-gated K+ channels cloned from rat brain and expressed in Xenopus oocytes. We find that Kv1.1, Kv1.4, Kv1.5, and Kv1.6 have similar activation and deactivation kinetics. The K+ currents produced by step depolarisations increase with a sigmoidal time course that can be described by a delay and by the derivative of the current at the inflection point. The delay tends to zero and the logarithmic derivative seems to approach a finite value at large positive voltages, but these asymptotic values are not yet reached at +80 mV. Deactivation of the currents upon stepping to negative membrane potentials below -60 mV is fairly well described by a single exponential. The decrease of the deactivation time constant at increasingly negative voltages tends to become less steep, indicating that this parameter also has a finite limiting value, which is not yet reached, however, at –160 mV The various clones studied have very similar voltage dependencies of activation with half-activation voltages ranging between –50 and –11 mV and maximum steepness yielding an e-fold change for voltage increments between 3.8 and 7.0 mV The shallower activation curve of Kv1.4 is likely to be due to coupling with the fast inactivation process present in this clone. Correspondence to: O. Moran  相似文献   

14.
The two-pore K2P channel family comprises TASK, TREK, TWIK, TRESK, TALK, and THIK subfamilies, and TALK-1, TALK-2, and TASK-2 are functional members of the TALK subfamily. Here we report for the first time the single-channel properties of TALK-2 and its pHo sensitivity, and compare them to those of TALK-1 and TASK-2. In transfected COS-7 cells, the three TALK K2P channels could be identified easily by their differences in single-channel conductance and gating kinetics. The single-channel conductances of TALK-1, TALK-2, and TASK-2 in symmetrical 150 mM KCl were 21, 33, and 70 pS (-60 mV), respectively. TALK-2 was sensitive mainly to the alkaline range (pH 7-10), whereas TALK-1 and TASK-2 were sensitive to a wider pHo range (6-10). The effect of pH changes was mainly on the opening frequency. Thus, members of the TALK family expressed in native tissues may be identified based on their single-channel kinetics and pHo sensitivity.  相似文献   

15.
BgK is a peptide from the sea anemone Bunodosoma granulifera, which blocks Kv1.1, Kv1.2, and Kv1.3 potassium channels. Using 25 analogs substituted at a single position by an alanine residue, we performed the complete mapping of the BgK binding sites for the three Kv1 channels. These binding sites included three common residues (Ser-23, Lys-25, and Tyr-26) and a variable set of additional residues depending on the particular channel. Shortening the side chain of Lys-25 by taking out the four methylene groups dramatically decreased the BgK affinity to all Kv1 channels tested. However, the analog K25Orn displayed increased potency on Kv1.2, which makes this peptide a selective blocker for Kv1.2 (K(D) 50- and 300-fold lower than for Kv1.1 and Kv1.3, respectively). BgK analogs with enhanced selectivity could also be made by substituting residues that are differentially involved in the binding to some of the three Kv1 channels. For example, the analog F6A was found to be >500-fold more potent for Kv1.1 than for Kv1.2 and Kv1.3. These results provide new information about the mechanisms by which a channel blocker distinguishes individual channels among closely related isoforms and give clues for designing analogs with enhanced selectivity.  相似文献   

16.
Inhibition of inward rectifier K(+) channels under ischemic conditions may contribute to electrophysiological consequences of ischemia such as cardiac arrhythmia. Ischemia causes metabolic inhibition, and the use of metabolic inhibitors is one experimental method of simulating ischemia. The effects of metabolic inhibitors on the activity of inward rectifier K(+) channels K(ir)2.1, K(ir)2.2, and K(ir)2.3 were studied by heterologous expression in Xenopus oocytes and two-electrode voltage clamp. 10 microm carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) inhibited K(ir)2.2 and K(ir)2.3 currents but was without effect on K(ir)2.1 currents. The rate of decline of current in FCCP was faster for K(ir)2.3 than for K(ir)2.2. K(ir)2.3 was inhibited by 3 mm sodium azide (NaN(3)), whereas K(ir)2.1 and K(ir)2.2 were not. K(ir)2.2 was inhibited by 10 mm NaN(3). All three of these inward rectifiers were inhibited by lowering the pH of the solution perfusing inside-out membrane patches. K(ir)2.3 was most sensitive to pH (pK = 6.9), whereas K(ir)2.1 was least sensitive (pK = 5.9). For K(ir)2.2 the pK was 6.2. These results demonstrate the differential sensitivity of these inward rectifiers to metabolic inhibition and internal pH. The electrophysiological response of a particular cell type to ischemia may depend on the relative expression levels of different inward rectifier genes.  相似文献   

17.
The precise subcellular localization of ion channels is often necessary to ensure rapid and efficient integration of both intracellular and extracellular signaling events. Recently, we have identified lipid raft association as a novel mechanism for the subcellular sorting of specific voltage-gated K(+) channels to regions of the membrane rich in signaling complexes. Here, we demonstrate isoform-specific targeting of voltage-gated K(+) (Kv) channels to distinct lipid raft populations with the finding that Kv1.5 specifically targets to caveolae. Multiple lines of evidence indicate that Kv1.5 and Kv2.1 exist in distinct raft domains: 1) channel/raft association shows differential sensitivity to increasing concentrations of Triton X-100; 2) unlike Kv2.1, Kv1.5 colocalizes with caveolin on the cell surface and redistributes with caveolin following microtubule disruption; and 3) immunoisolation of caveolae copurifies Kv1.5 channel. Both depletion of cellular cholesterol and inhibition of sphingolipid synthesis alter Kv1.5 channel function by inducing a hyperpolarizing shift in the voltage dependence of activation and inactivation. The differential targeting of Kv channel subtypes to caveolar and noncaveolar rafts within a single membrane represents a unique mechanism of compartmentalization, which may permit isoform-specific modulation of K(+) channel function.  相似文献   

18.
19.
Voltage-dependent potassium (Kv) channels play a pivotal role in the modulation of macrophage physiology. Macrophages are professional antigen-presenting cells and produce inflammatory and immunoactive substances that modulate the immune response. Blockage of Kv channels by specific antagonists decreases macrophage cytokine production and inhibits proliferation. Numerous pharmacological agents exert their effects on specific target cells by modifying the activity of their plasma membrane ion channels. Investigation of the mechanisms involved in the regulation of potassium ion conduction is, therefore, essential to the understanding of potassium channel functions in the immune response to infection and inflammation. Here, we demonstrate that the biophysical properties of voltage-dependent K+ currents are modified upon activation or immunosuppression in macrophages. This regulation is in accordance with changes in the molecular characteristics of the heterotetrameric Kv1.3/Kv1.5 channels, which generate the main Kv in macrophages. An increase in K+ current amplitude in lipopolysaccharide-activated macrophages is characterized by a faster C-type inactivation, a greater percentage of cumulative inactivation, and a more effective margatoxin (MgTx) inhibition than control cells. These biophysical parameters are related to an increase in Kv1.3 subunits in the Kv1.3/Kv1.5 hybrid channel. In contrast, dexamethasone decreased the C-type inactivation, the cumulative inactivation, and the sensitivity to MgTx concomitantly with a decrease in Kv1.3 expression. Neither of these treatments apparently altered the expression of Kv1.5. Our results demonstrate that the immunomodulation of macrophages triggers molecular and biophysical consequences in Kv1.3/Kv1.5 hybrid channels by altering the subunit stoichiometry.  相似文献   

20.
Lu Y  Hanna ST  Tang G  Wang R 《Life sciences》2002,71(12):1465-1473
A large array of voltage-gated K(+) channel (Kv) genes has been identified in vascular smooth muscle tissues. This molecular diversity underlies the vast repertoire of native Kv channels that regulate the excitability of vascular smooth muscle tissues. The contributions of different Kv subunit gene products to the native Kv currents are poorly understood in vascular smooth muscle cells (SMCs). In the present study, Kv subunit-specific antibodies were applied intracellularly to selectively block various Kv channel subunits and the whole-cell outward Kv currents were recorded using the patch-clamp technique in rat mesenteric artery SMCs. Anti-Kv1.2 antibody (8 microg/ml) inhibited the Kv currents by 29.2 +/- 5.9% (n = 6, P < 0.05), and anti-Kv1.5 antibody (6 microg/ml) by 24.5 +/- 2.6% (n = 7, P < 0.05). Anti-Kv2.1 antibody inhibited the Kv currents in a concentration-dependent fashion (4-20 microg/ml). Co-application of antibodies against Kv1.2 and Kv2.1 (8 microg/ml each) induced an additive inhibition of Kv currents by 42.3 +/- 3.1% (n = 7, P < 0.05). In contrast, anti-Kv1.3 antibody (6 microg/ml) did not have any effect on the native Kv current (n = 6, P > 0.05). A control antibody (anti-GIRK1) also had no effect on the native Kv currents. This study demonstrates that Kv1.2, Kv1.5, and Kv2.1 subunit genes all contribute to the formation of the native Kv channels in rat mesenteric artery SMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号