首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the decay of chlorophyll a and the carotenoid fucoxanthin in oxic and anoxic sediment microcosms, with and without the deposit-feeding benthic amphipod Monoporeia affinis, over 57 days at 5 degrees C. Deep frozen phytoplankton from the Baltic Sea proper was added to all but a few microcosms. The range of chlorophyll a and fucoxanthin decay rate constants observed in microcosms with phytoplankton addition was 0.04-0.07 day(-1). The fastest pigment decay and build-up of chlorophyll breakdown products after phytoplankton addition were found in oxic treatments with amphipods. No effects of amphipods on pigment breakdown were found in anoxic treatments, or in treatments without phytoplankton addition. Greater losses of chlorophyll a in oxic (96%) than in anoxic (80%) treatments after 57 days indicates that preservation of sedimentary organic matter will be enhanced during periods of anoxia. Due to slow recruitment and recolonization in Baltic sediments, a single anoxic event may cause long-term (years) absence of significant macrobenthos. Anoxic events will thus not only reduce decay of plant pigments, and presumably other organic matter, while they last, but will also have longer-term effects, through elimination of macrofauna, which when present enhance organic matter decomposition.  相似文献   

2.
Field and laboratory nutrient (nitrogen and phosphorus) enrichment experiments were performed using natural phytoplankton and microphytobenthic assemblages from the brackish water Öresund, S.W. Sweden. The response of algae from a low-nutrient area (Falsterbo Canal) was compared to that of algae from a polluted, nutrient-rich area (Lomma Bay).The biomass (measured as chlorophyll a) of both phytoplankton and microphytobenthos from the Falsterbo Canal increased after the addition of nitrogen. Phytoplankton growth was stimulated by the addition of phosphorus to the nitrogen-rich water of the polluted Lomma Bay. Sediment chlorophyll a showed no significant increase after the addition of nutrients in the Lomma Bay. In containers without sediment, phytoplankton uptake was calculated to account for ≈ 90% of the disappearance of inorganic fixed nitrogen from the water. In the sediment containers the microphytobenthos was estimated to account for ≈20% of the nitrogen uptake. The rest was presumably lost mainly through denitrification.When containers with microphytobenthos from Lomma Bay were kept in the dark, phosphorus was released at a rate of up to ≈ 180 μM · m?2 · day?1. We suggest that by producing oxygen microbenthic algae keep the sediment surface oxygenated thereby decreasing phosphorus transport from the sediment to the overlying water.  相似文献   

3.
Summary We test the hypothesis that body size and population density of the deposit-feeding gastropod, Hydrobia truncata, are greater in muddy than in sandy habitats as a result of faster growth on fine- compared to coarse-grained sediments. We refute this hypothesis using a combination of field measurements and laboratory experiments. Three out of three populations tested had higher maximal growth rates and two of three populations approached their asymptotic size more quickly on sand than on silt-clay fractions of natural sediment. Growth decreased with increasing snail density and was as high or higher on sand as on silt-clay at all densities. Two populations were more fecund on sand than on silt-clay, and fecundity of the third population was not affected by sediment type. We show that the smaller body sizes observed in snails from the sandiest habitat result from late recruitment of these snails, relative to the other populations.  相似文献   

4.
The relative influence of consumers (top down) and resources (bottom up) on the distribution and abundance of organisms remains a key question in ecology. We examined the relationships between consumer and resource variables along a productivity gradient for a dominant predator–prey interaction in a marine soft‐sediment system. We 1) quantified density and size of the clam Macoma balthica (prey species) in six replicate sites at each of four habitat types (shallow mud, deep mud, muddy sand and detrital mud) in the Rhode River, Chesapeake Bay. We selected one habitat type of high food availability and clam density (shallow mud) and another of low food availability and clam density (muddy sand) for manipulative experiments. Then, we 2) measured M. balthica survival and growth through transplants, 3) measured food availability as sedimentary organic carbon content, 4) quantified predator density, and 5) calculated predator foraging efficiency in the two habitat types. Clam density in the four habitat types differed and was related to sedimentary carbon availability and predator density. One of the habitats, detrital mud, appeared to be a population sink because it only held juvenile Macoma that never survived to reproductive age. Macoma size and growth, and predator (mainly blue crab Callinectes sapidus) densities were positively correlated with productivity and were higher in shallow mud than muddy sand. In contrast, Macoma mortality, local ‘interaction strength’, and predator foraging efficiency were lower in the productive habitat (shallow mud). Thus, predation intensity was inversely correlated with productivity (food availability); consumer and resource effects differed by habitat type; and, at a relatively small spatial scale, consumer and resource forces jointly determined population dynamics in this soft‐sediment marine system.  相似文献   

5.
In a six month mesocosm tank experiment, hypotheses were tested concerning the role of benthopelagic mysid shrimps (Mysidacea) in the near-bottom food web of the Bothnian Sea, in the northern Baltic Sea. The first hypothesis tested was that the mysids interact, through predation, with benthic deposit-feeding Monoporeia affinis amphipods. A second hypothesis tested was that the sediment type is important for the overwintering success of the mysids. Changes in abundance and mass were recorded for M. affinis and mysids when separate and when coexisting, in two sediment types differing in organic content (food level); soft muddy clay (rich) and fine sand (poor). Despite the fact that newborn M. affinis offspring, a plausible target for predation by mysids, were present in substantial numbers in the tanks, no consistent evidence for any interaction between these taxa was found. The biomass of mysids was slightly higher in the muddy clay than in the sand tanks, and the mechanism behind this substrate effect is discussed. A third hypothesis, that the mysids interact with near-bottom zooplankton, was investigated. The tanks were continually supplied with in situ near-bottom sea-water containing a semi-natural assemblage of near-bottom plankton. As a result of mysid predation, tanks with mysids had lower abundance and biomass of cyclopoid copepods than tanks without mysids. Thus, the major interaction found was predation on near-bottom zooplankton by mysids and it is suggested that this interaction could potentially be an important food link, especially during periods with low food availability in the pelagic system.  相似文献   

6.
《Aquatic Botany》1986,24(3):233-240
Sedimentation resulting from storms may have been one of the reasons for the elimination of submersed aquatic vegetation from the tidal Potomac River in the late 1930's. Laboratory studies were conducted to investigate the effects of different depths of overlying sediment and composition of sediment on the survival of Vallisneria americana Michx (wildcelery) grown from tubers. Survival of plants grown from tubers decreased significantly with increasing sediment depth. Survival of tubers declined from 90% or more when buried in 10 cm to no survival in greater than 25 cm of sediment. Survival with depth in sand was significantly lower than in silty clay.Field investigation determined that the majority of tubers in Vallisneria beds are distributed between 10 and 20 cm in depth in silty clay and between 5 and 15 cm in depth in sand. Based on the field distribution of tubers and on the percent survival of plants growing from tubers at each depth in the laboratory experiment, we suggest that the deposition of 10 cm or more of sediment by severe storms such as occurred in the 1930s could contribute to the loss of vegetation in the tidal Potomac River.  相似文献   

7.
1. We examined the effects of nutrients, turbulent mixing, mosquitofish, Gambusia affinis Baird and Girard and sediments on algal composition, algal biomass and autotrophic picoplankton (APP) abundance in a 6-week experiment of factorial design in twenty-four 5-m3 outdoor mesocosms during late autumn 1995.
2. Turbulent mixing decreased surface temperature and increased turbidity, which also was increased by the addition of sediments. Total algal biomass was significantly enhanced by nutrients and mixing, and decreased by the sediment treatment. In the mixing × nutrient treatment, algal biomass increased more than expected from the individual effects, while the fish × mixing and mixing × sediment treatments increased algal biomass less than expected.
3.  Cryptomonas (cryptomonad) blooms were observed in the unmixed, high nutrient treatment; Synedra (diatom) blooms were observed in the high nutrient, high sediment treatment; Ulothrix (green algae) blooms were observed in the mixed, high nutrient, low sediment treatment.
4. Eukaryotic APP abundances were increased by sediment addition and by turbulent mixing, and increased synergistically by mixing × sediment and mixing × nutrient interactions. Prokaryotic APP abundances were decreased by nutrient enhancement and by a mixing × nutrient interaction. There were no main effects of fish on APP abundance, but fish were involved in some of the two–way interactions.
5. The large number of significant interaction effects indicates that APP and other phytoplankton are regulated by a complex set of interdependent factors which should be considered simultaneously in studies of phytoplankton population dynamics and community composition.  相似文献   

8.
Tellina tennis Da Costa was kept for four months in four large outdoor tanks containing sand and sea water. There was a 10 % daily exchange of sea water, pumped directly from the sea. Three tanks received daily addition of nutrients in the form of sodium nitrate and sodium dihydrogen phosphate, giving enrichment of approximately 3, 10, and 30 times natural sea-water levels of nitrate in the different tanks. Phosphate, nitrate, chlorophyll, and organic carbon in the water were measured regularly, the nitrate by Autoanalyser. Water temperature and solar radiation were recorded. Zooplankton samples were taken daily and Tellina were sampled monthly for length, weight, and biochemical analysis of tissues.Phosphate was always present in excess. The lowest level of nitrogen enrichment resulted in almost complete utilisation of nitrate, with a significant increase of organic carbon and chlorophyll above control levels. Zooplankton occurred in the greatest numbers in this tank, and Tellina showed the best survival, growth, and condition. In the tanks with the higher levels of enrichment, excess nutrients led to growth of macrophytic algae on the surface and sides of tank. This had an adverse effect on the phytoplankton production: zooplankton numbers were lower, as was growth of Tellina.  相似文献   

9.
1. Based on two mesocosm experiments and 10 in vitro predation experiments, this work aimed to evaluate the impact of nutrient supply and Chaoborus predation on the structure of the zooplankton community in a small reservoir in Côte d'Ivoire. 2. During the first mesocosm experiment (M1), P enrichment had no effect on phytoplankton biomass (chlorophyll a) but significantly increased the biomass of some herbivorous zooplankton species (Filinia sp, Ceriodaphnia affinis). During the second experiment (M2), N and P enrichment greatly increased phytoplankton biomass, rotifers and cladocerans (C. affinis, C. cornuta, Moina micrura and Diaphanosoma excisum). In both experiments, nutrient addition had a negative impact on cyclopoid copepods. 3. Larger zooplankton, such as cladocerans or copepodites and adults of Thermocyclops sp., were significantly reduced in enclosures with Chaoborus in both mesocosm experiments, whereas there was no significant reduction of rotifers and copepod nauplii. This selective predation by Chaoborus shaped the zooplankton community and modified its size structure. In addition, a significant Chaoborus effect on chlorophyll a was shown in both experiments. 4. The preference of Chaoborus for larger prey was confirmed in the predation experiments. Cladocerans D. excisum and M. micrura were the most selected prey. Rotifer abundance was not significantly reduced in any of the 10 experiments performed. 5. In conclusion, both bottom‐up and top‐down factors may exert a structuring control on the zooplankton community. Nutrients favoured more strictly herbivorous taxa and disadvantaged the cyclopoid copepods. Chaoborus predation had a strong direct negative impact on larger crustaceans, favoured small herbivores (rotifer, nauplii) and seemed to cascade down to phytoplankton.  相似文献   

10.
To restore deteriorated lake ecosystems, it is important to identify environmental factors that influence submerged macrophyte communities. While sediment is a critical environmental factor for submerged macrophytes and many studies have examined effects of sediment type on the growth of individual submerged macrophytes, very few have tested how sediment type affects the growth and species composition of submerged macrophyte communities. We constructed submerged macrophyte communities containing four co-occurring submerged macrophytes (Hydrilla verticillata, Myriophyllum spicatum, Ceratophyllum demersum and Chara fragilis) and subjected them to three sediment treatments, i.e., clay, a mixture of clay and quartz sand at a volume ratio of 1:1 and a mixture at a volume ratio of 1:4. Compared to the clay, the 1:1 mixture treatment greatly increased overall biomass, number of shoot nodes and shoot length of the community, but decreased its diversity. This was because it substantially promoted the growth of H. verticillata within the community, making it the most abundant species in the mixture sediment, but decreased that of M. spicatum and C. demersum. The sediment type had no significant effects on the growth of C. fragilis. As a primary nutrient source for plant growth, sediment type can have differential effects on various submerged macrophyte species and 1:1 mixture treatment could enhance the performance of the communities, increasing the overall biomass, number of shoot nodes and shoot length by 39.03%, 150.13% and 9.94%, respectively, compared to the clay treatment. Thus, measures should be taken to mediate the sediment condition to restore submerged macrophyte communities with different dominant species.  相似文献   

11.
1. High water column NO3? concentrations, low light availability and anoxic, muddy sediments are hypothesised to be key factors hampering growth of rooted submerged plants in shallow, eutrophic fresh water systems. In this study, the relative roles and interacting effects of these potential stressors on survival, growth, allocation of biomass and foliar nutrient concentrations of Potamogeton alpinus were determined in a mesocosm experiment using contrasting values of each factor (500 versus 0 μmol L?1 NO3?; low irradiance, corresponding to the eutrophic environment, versus ambient irradiance; and muddy versus sandy sediment). 2. Low irradiance, high NO3? and sandy sediment led to reduced growth. In a muddy sediment, plants had lower root : shoot ratios than in a sandy sediment. 3. Growth at high NO3? and on the sandy sediment resulted in lower foliar N and C concentrations than in the contrasting treatments. The C : N ratio was higher at high NO3? and on the sandy sediment. Foliar P was higher on the muddy than on the sandy sediment but was not affected by irradiance or NO3?. The N : P ratio was lowest at high NO3? on the sandy sediment. 4. Total foliar free amino acid concentration was lowest on sand, low irradiance and high NO3?. Total free amino acid concentration and growth were not correlated. 5. Turbidity and ortho‐PO43? concentration of the water layer were lower at high water column NO3? indicating that the growth reduction was not associated with increased algal growth but that physiological mechanisms were involved. 6. We conclude that high water column NO3? concentrations can significantly reduce the growth of ammonium preferring rooted submerged species such as P. alpinus, particularly on sediments with a relatively low nutrient availability. Further experiments are needed to assess potential negative effects on other species and to further elucidate the underlying physiological mechanisms.  相似文献   

12.
A laboratory assay (SAGA or Sediment Algal Growth Assay) was developed to assess the potential impact of sediment resuspension on the structure of phytoplankton communities, and to evaluate the effectiveness of various sediment treatments in decreasing the abundance of blue-green algae in the event of sediment resuspension during storms. In assays with sediment from eutrophic Akanoi Bay, Lake Biwa, Japan, 7–11 species of phytoplankton seeded from the sediments grew during the 3-week assay indicating that sediment resuspension has the potential to increase both phytoplankton biomass and species diversity. Treatment of sediments with Ca(NO3)2 substantially decreased phytoplankton biomass (measured as chlorophyll concentration) in assays with sediments from Akanoi Bay and the North Basin of Lake Biwa. Further, among various oxidation treatments of sediments, Ca(NO3)2 was most effective in decreasing or preventing filamentous blue-green algal growth in N- and P-replete media. In contrast, when sediments were added to P-limited phytoplankton dominated by green algae and diatoms, no growth of blue-green algae occurred regardless of sediment treatment. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
闫小莉  王德炉 《生态学报》2019,39(19):7208-7217
研究苦丁茶树叶片生长与光合特性对不同类型土壤栽培的响应特征,确定最适苦丁茶栽培的土壤类型,可为高产优质化的苦丁茶种植业及其规模化生产基地的建立提供科学依据。通过土壤栽培实验研究了不同类型的土壤对苦丁茶树叶片生长、叶片解剖结构、叶绿素含量和光合特性的影响。结果表明:石灰岩土壤栽培条件下,苦丁茶叶长和叶面积比其他6种土壤栽培下的显著提高了34%—57%和43%—68%,叶绿素总量显著增加9%—33%,叶片、上下表皮、海绵组织和栅栏组织的厚度均显著高于其他6种土壤栽培。不同类型土壤栽培下苦丁茶净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和饱和蒸气压亏缺(Vpdl)的日变化趋势均呈单峰型,日均Pn和Tr值大小依次为:石灰岩石英砂岩玄武岩长石石英砂岩第四纪红色黏土变余砂岩煤系砂页岩,其中石灰岩土壤栽培下的日均Pn值相比其他6种土壤下的显著提高了13%—45%,且叶片最大净光合速率、表观量子效率、暗呼吸速率、光补偿点(LCP)和光饱和点(LSP)也最大,而煤系砂页岩栽培时最低,其LSP和LCP较石灰岩栽培的分别显著下降了40%和46%。综上,在7种类型的土壤中,石灰岩土壤栽培最有利于苦丁茶树叶片的生长发育、并促进叶绿素的合成和加强对光能的吸收利用,最终提高其叶片光合能力,其次为玄武岩土壤,而煤系砂页岩土壤是最不利于苦丁茶树叶片生长发育和光合作用。建议在苦丁茶种植业的发展和规模化生产基地建立时因选择由石灰岩性母岩发育的土壤进行栽培,从而提高苦丁茶的产量和品质。  相似文献   

14.
The response of clonal growth and ramet morphology to water depth (from 60 to 260 cm) and sediment type (sand versus organic clay) was investigated for the stoloniferous submersed macrophyte Vallisneria natans in an outdoor pond experiment. Results showed that water depth significantly affected clonal growth of V. natans in terms of clone weight, number of ramets, number of generations, clonal radius and stolon length. V. natans showed an optimal clonal growth at water depths of 110–160 cm, but at greater depths clonal growth was severely retarded. A high allometric effect was exhibited in ramet morphology. Along the sequentially produced ramet generations, ramet weight and plant height decreased while stolon length and the root:leaf weight ratio increased. When using ramet generations as covariate, sediment type rather than water depth more strongly affected the ramet characteristics. For plants grown in clay, ramet weight, ramet height and stolon length were greater, and plants exhibited lower root:leaf weight ratio. These data suggest that water depth and sediment type have differential effects on clonal growth of V. natans: Water depth appears primarily to affect numerical increase in ramets and spatial spread, whereas sediment type mainly affects biomass accumulation and biomass allocation. Handling editor: S. M. Thomaz  相似文献   

15.
We studied chlorophyll a (chl. a), biovolume and species composition of benthic algae and phytoplankton in the eutrophic lower River Spree in 1996. The chl. a concentration was estimated as 3.5 (2.7–4.5) µg/cm2 for epipsammon, 9.4 (7.4–11.9) µg/cm2 for epipelon and 6.7 (5.7–7.8) µg/cm2 for the epilithon (median and 95% C. L.). The mean total biomass of benthic algae was significantly higher (6.0 µg chl. a/cm2) than the areal chl. a content of the pelagic zone (1.6 µg chl. a/cm2). Although certain phytoplankton taxa were abundant in the periphyton, benthic taxa generally dominated the assemblages. Seasonal dynamics of benthic algae were probably controlled by light and nitrate supply (sand), discharge fluctuations (sand, mud) and invertebrate grazing (stones). This paper shows the importance of benthic algae even in phytoplankton‐rich lowland rivers with sandy or muddy sediments. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In temperate coastal seas, phytodetritus settling from the spring phytoplankton bloom is a potential food source for benthic deposit-feeders. The ability to exploit this seasonally variable resource could be enhanced by sensitivity to chemical cues signalling its arrival at the seabed. The biogenic sulphur compound dimethylsulphide (DMS), a breakdown product of dimethylsulphonioproprionate (DMSP) produced by some phytoplankton species, is a potential candidate for this role. We investigated the behavioural response of a sedentary surface deposit-feeder, the echiuran worm Maxmuelleria lankesteri, to DMS by observations and manipulative experimentation under natural conditions in a Scottish sea loch. Experimental addition of sediment enriched with DMSP-producing phytoplankton caused no significant increase in either the frequency of feeding by M. lankesteri or the rate of sediment ejection from observed burrows. Naturally occurring (DMSP+DMS) content of surface sediment was low during the winter, then peaked in April before declining in May. There was no consistent relationship between this parameter and rate of sediment ejection from M. lankesteri burrows. The results therefore provide no evidence that M. lankesteri uses DMSP or DMS as a stimulus to increased activity. An observed imbalance between the frequency of surface deposit-feeding and sediment ejection from individual burrows remains unexplained.  相似文献   

17.
Survival of Escherichia coli in lake bottom sediment.   总被引:8,自引:6,他引:2       下载免费PDF全文
The survival of Escherichia coli in bottom sediment (Lake Onalaska, navigation pool no. 7, Mississippi River) was studied by using in situ dialysis culture of sterile (autoclaved) and unsterile sediment samples. Bags made from dialysis tubing were filled with either course sand sediment (28.8% fine) or organic, silty clay sediment (77.2% fine) and placed at the sediment-water interface. Bags representing sterile controls, unsterile uninoculated controls, autoclaved inoculated sediment, and unsterile inoculated sediment were studied during a 5-day period for each sediment type. Daily most-probable-number determinations indicated that E. coli populations in unsterile inoculated sediment fluctuated between 5.3 X 10(2) and 2.2 X 10(3) bacteria per g of silty clay and between 3.0 X 10(3) and 1.4 X 10(4) bacteria per g of sand. Autoclaved silty clay sediment inoculated with 1.0 X 10(6) bacteria per g increased to 2.2 X 10(8) bacteria per g in 3 days. During the same period, autoclaved sand sediment inoculated with 1.2 X 10(5) cells per g increased to 5.4 X 10(7) bacteria per g. By day 5, populations in both cultures had decreased by 1 log. The ability of E. coli to survive for several days in aquatic sediment in situ suggests that fecal coliforms in water may not always indicate recent fecal contamination of that water but rather resuspension of viable sediment-bound bacteria.  相似文献   

18.
McKinnon  Sally L.  Mitchell  S. F. 《Hydrobiologia》1994,279(1):163-170
In an earlier study, regression models were developed which related black swan populations to macrophyte biomass and to phytoplankton productivity in Tomahawk Lagoon No 2, a small South Island, New Zealand, lake in which phytoplankton and macrophytes vary widely from year to year, in an irregular inverse cycle. Two years of further study confirmed that winter swan populations are directly correlated with macrophytes, for samples taken on a single day in winter each year. They also confirmed that winter maximum swan populations can be predicted from measurements of phytoplankton productivity in the previous summer. This relationship is inverse. For 6 other lakes, 9 of the 11 data points lay within the 95% confidence intervals of the macrophyte-swan relationship, with the only outlier being a lake in which the macrophytic vegetation is dominated by filamentous algae. Further analysis, giving equal weight to each of the 7 lakes in the sample, confirmed that there is a significant correlation in winter between swan populations and macrophyte biomass for these lakes which show a wide range of size and trophic status. There was no such significant correlation in summer. All of the 8 data points from 7 other lakes lay within the rather broad 95% confidence intervals of the phytoplankton- swan relationship. The 4 lakes which fitted most closely to the predictions of this relationship have silty sediment. The other 3, which all had lower swan populations than predicted, have sediment predominantly of sand or fine clay, and macrophyte biomass and swan populations may be constrained by the nature of the sediment, rather than by shading effects from phytoplankton.  相似文献   

19.
Riparian plants in arid regions face a highly variable water environment controlled by hydrological processes. To understand whether riparian plants adapt to such environments through plastic responses, we compared the root traits, biomass allocation and growth of Populus euphratica Oliv. Seedlings grown in lysimeters filled with clay or clay/river sand sediments under inundation and varying water table conditions. We hypothesized that adaptive phenotypic plasticity is likely to develop or be advantageous in seedlings of this species to allow them to adapt desert floodplain environments. Growth was significantly reduced by inundation. However, rather than following relatively fixed trait and allocation patterns, the seedlings displayed adaptive mechanisms involving the development of adventitious roots to enhance plant stability and obtain oxygen, together with a lower proportion of root biomass. At the whole-plant level, at deeper water table depths, seedlings allocated more biomass to the roots, and total root length increased with decreasing water table depths, regardless of the sediment, consistent with optimal partitioning theory. The sediment type had a significant effect on seedling root traits. P. euphratica displayed very different root traits in different sediment types under the same hydrological conditions, showing a greater first-order root number in clay sediment under shallower water table conditions, whereas rooting depth was greater in clay/river sand sediment under deep water table conditions. In clay sediment, seedlings responded to lower water availability via greater root elongation, while the root surface area was increased through increasing the total root length in clay/river sand sediment, suggesting that seedlings facing deeper water tables are not always likely to increase their root surface area to obtain more water. Our results indicate that P. euphratica seedlings are able to adapt to a range of water table conditions through plastic responses in root traits and biomass allocation.  相似文献   

20.
The dilution technique was used to estimate chlorophyll and pheopigment, net and gross production as well as zooplankton grazing over a 12-month period in a coastal lagoon in Southern France. Chlorophyll a (Cha) based gross growth rates of phytoplankton ranged from undetectable in February to 2.6 day−1 in June, corresponding to 3.8 divisions per day. Cha-based grazing rates ranged from undetectable in February to 1.1 d−1 in June. The seasonal growth pattern of picoplankton was similar to that of the whole community, with a peak in July, corresponding to four divisions per day. Grazing processes represented from 20 to 150% of the phytoplankton daily growth, and the grazing pressure was stronger on small phytoplankton cells than on larger cells. Gross growth rates of phytoplankton were related to zooplankton grazing rates, and both were related to water temperature. Mesozooplankton which escaped sampling or oysters had to be also invoked as additional sinks for the primary production. In the fall, pheopigment concentrations greater than chlorophyll concentrations coincided with high ammonium levels in the water column. Pheopigment a production rates were highly correlated to chlorophyll -based microzooplankton grazing rates. The pheopigment a to chlorophyll a ratio was correlated with ammonium concentrations and could be used an index of the balance between ammonium supply (degradation) and demand (uptake by phytoplankton). In addition, pheopigment degradation rates in absence of grazing could be related to irradiance, indicating photo-degradation of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号