首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摘要:【目的】作为一种次级代谢产物,ε-聚赖氨酸生物合成受不同因素制约,为评价细胞活性对ε-聚赖氨酸生物合成的影响,研究发酵过程细胞活性、ε-聚赖氨酸合成及其它发酵参数变化,基于此改进发酵工艺。【方法】以BacLight Live/Dead和5-氰基-2,3-二甲苯基氯化四唑(5-cyano-2,3-ditolyl tetrazolium chloride,CTC) 为荧光探针,激光扫描共聚焦显微镜监测不同发酵时期细胞活性,并分析pH、细胞生长、ε-聚赖氨酸生物合成以及葡萄糖利用;通过向ε-聚赖氨酸合成期细胞添加酵母粉调控细胞活性改进发酵工艺。【结果】BacLight Live/Dead为探针的共聚焦显示ε-聚赖氨酸发酵过程生长期(0-16 h)的细胞大都具有活性;CTC作为探针的分析显示生长期及ε-聚赖氨酸合成期前期(16-30 h)细胞活性高,ε-聚赖氨酸合成终止时细胞仅显示微弱活性;调控ε-聚赖氨酸合成期细胞活性的发酵工艺ε-聚赖氨酸终浓度达2.24 g/L(对照1.04 g/L)。【结论】调控ε-聚赖氨酸合成期细胞活性的发酵工艺可有效促进ε-聚赖氨酸生物合成。  相似文献   

2.
ε-聚赖氨酸(ε-poly-L-lysine,ε-PL)是由25-35个L-赖氨酸(L-lysine)通过α-ε酰胺键连接的具有很强抗菌活性的聚合物,是自然界中迄今为止仅发现的2种均聚氨基酸(ε-聚赖氨酸和γ-聚谷氨酸)之一。目前,研究发现ε-聚赖氨酸的合成酶是一种非核糖体肽合成酶,它催化前体物质L-lysine经多轮缩合反应合成链长不均一的ε-聚赖氨酸,与I型聚酮合成酶的合成过程相似。ε-聚赖氨酸的合成不受降解酶控制。同时,针对产生菌遗传转化的穿梭质粒载体pLAE001和pLAE003已构建成功,为进一步探索ε-聚赖氨酸生物合成提供了条件。本文主要就ε-聚赖氨酸生物合成及产生菌遗传转化体系进行综述。另外,扼要介绍了作者所在课题组的相关研究工作、取得的进展并提出了相应的见解,论文最后部分对组合生物合成在ε-PL产生菌菌种改造中的应用前景进行了探讨。  相似文献   

3.
《生物加工过程》2012,(2):14-14
2012年2月18日,江苏省教育厅在南京工业大学对徐虹教授主持完成的省农业支撑项目“生物防腐剂ε-聚赖氨酸制备关键技术及其应用研究”进行了鉴定和验收。项目组自主选育获得1株ε-聚赖氨酸高产菌株,对其合成代谢关键酶基因、酶学性质及代谢途径进行研究,构建了ε-聚赖氨酸生物合成的代谢网络。  相似文献   

4.
ε-聚赖氨酸是由L-赖氨酸α-COOH和ε-NH2 缩合而成,由微生物合成的一种同型氨基酸聚合物.ε-聚赖氨酸是一种优良的生物防腐剂,对G+、G-、酵母菌和霉菌都有较好的抑菌效果.本文综述了ε-聚赖氨酸的来源与性质、产生菌的筛选与改造、发酵过程优化与调控、ε-聚赖氨酸分解酶、ε-聚赖氨酸合成机理和ε-聚赖氨酸酯化结构与...  相似文献   

5.
以ε-聚赖氨酸产量为1.60g/L的Streptomyces albulus M-Z18为出发菌株,利用核糖体工程技术选育具有双重抗生素抗性的ε-聚赖氨酸高产菌株,并对高产菌株和出发菌株的生理生化性能进行比较。通过链霉素诱变成功选育出了1株遗传稳定的ε-聚赖氨酸产生菌S.albulus S-7,ε-聚赖氨酸产量为2.03g/L;对S.albulus S-7叠加巴龙霉素,获得1株遗传稳定的具有双重抗性的ε-聚赖氨酸产生菌S.albulus SP-14,ε-聚赖氨酸产量为2.37g/L,比出发菌株S.albulus M-Z18的ε-聚赖氨酸产量增加了48.10%。使用链霉素和巴龙霉素选育具有双重抗生素抗性的ε-聚赖氨酸高产菌株是一种有效的手段。  相似文献   

6.
生物抑菌剂抑制大肠埃希菌效果研究   总被引:1,自引:0,他引:1  
为研究生物防腐剂壳聚糖、ε-聚赖氨酸、乳酸链球菌素(Nisin)能否代替化学性食品防腐剂,通过敏感性测定、杀菌动力学测定、正交优化实验、应用效果试验,研究了其对指示菌大肠埃希菌的抑制效果。结果表明,壳聚糖、Nisin、ε-聚赖氨酸的最小抑菌浓度分别为10、2.5、0.078mg/mL。当壳聚糖、Nisin、ε-聚赖氨酸的浓度分别为5、0.04、0.01mg/mL时对大肠埃希菌的抑制作用最好,在这一最佳组合条件下对大肠埃希菌杀菌率达88.57%。  相似文献   

7.
聚赖氨酸(ε-PL)是由20~35个赖氨酸残基通过α-羧基和ε-氨基聚合成的具有抑菌功效的多肽.它具有安全性高、对革兰氏阳性菌,革兰氏阴性菌,真菌等都有广泛的抑制繁殖作用等优点且热稳定性,水溶性好.在食品保鲜防腐、医学等方面都有广泛的应用.  相似文献   

8.
聚赖氨酸的研究进展   总被引:3,自引:0,他引:3  
聚赖氨酸(ε-PL)是由20~35个赖氨酸残基通过α-羧基和ε-氨基聚合成的具有抑菌功效的多肽。它具有安全性高、对革兰氏阳性菌,革兰氏阴性菌,真菌等都有广泛的抑制繁殖作用等优点且热稳定性,水溶性好。在食品保鲜防腐、医学等方面都有广泛的应用。  相似文献   

9.
【目的】利用核糖体工程技术选育Streptomyces albulus AS3-14的链霉素和利福平双重抗性突变株,以提高其ε-聚赖氨酸合成能力。【方法】通过链霉素抗性筛选,获得链霉素抗性的ε-聚赖氨酸产量提高突变株;在此基础上,继续筛选其利福平抗性突变株,实现链霉素和利福平双重抗性ε-聚赖氨酸高产菌选育。【结果】获得的双重抗性高产突变株Streptomyces albulus WG-608的ε-聚赖氨酸摇瓶产量达到3.7 g/L,5 L发酵罐补料分批发酵ε-聚赖氨酸产量达到53.0 g/L,较出发菌株分别提高了42.3%和32.5%。【结论】链霉素和利福平双重抗性选育能够显著提高ε-聚赖氨酸产生菌Streptomyces albulus的产物合成能力。  相似文献   

10.
水杨醛保护法鉴定生物合成聚赖氨酸的单体连接方式   总被引:1,自引:0,他引:1  
建立了一种有效、方便的分析和鉴定聚赖氨酸结构的方法。采用水杨醛与游离氨基反应生成席夫碱.用NaBH4将席夫碱C=N还原成C-N,在酸性条件下将还原产物水解,用薄层层析法分析了水解产物,根据生成的N保护氨基酸不同,鉴定了生物合成的聚赖氨酸的结构为ε-型结构。此法也可用于蛋白质或多肽的N-末端氨基酸的分析。  相似文献   

11.
国内简讯     
徐虹教授主持的"生物防腐剂ε-聚赖氨酸制备关键技术及其应用研究"项目通过鉴定和验收2012年2月18日,江苏省教育厅在南京工业大学对徐虹教授主持完成的省农业支撑项目"生物防腐剂ε-聚赖氨酸制备关键技术及其应用研究"进行了鉴定和验收。项目组自主选育获得1株ε-聚赖氨酸高产菌  相似文献   

12.
【目的】研究ε-聚赖氨酸发酵过程中污染微生物的种类。【方法】采用稀释涂布法、划线法、环境胁迫法和液体营养富集法等对污染样本进行微生物的分离与纯化,通过菌落形态和显微观察,再结合16S rRNA基因序列分析,确定分离菌株的系统发育地位,并对分离菌株的ε-聚赖氨酸耐受性进行考察。【结果】液体营养富集法实现了污染微生物的分离,通过16S rRNA基因序列分析鉴定其为一株Acinetobacter bereziniae,并证实该菌能在高浓度ε-聚赖氨酸条件下生长。【结论】Acinetobacter bereziniae是ε-聚赖氨酸发酵过程中的主要污染微生物,这为后期发酵污染防治提供了一定的指导作用。  相似文献   

13.
ε-聚赖氨酸产生菌TUST-2的分离鉴定   总被引:3,自引:0,他引:3  
【目的】ε-聚赖氨酸是一种天然氨基酸同聚物,本研究目的为分离筛选新的ε-聚赖氨酸产生菌。【方法】采用一种新的分离方法从土壤中分离ε-PL产生菌。分离方法含3步:(1)富集培养ε-PL耐受菌;(2)通过改进的Nishikawa方法筛选;(3)挑选高浓度ε-PL耐受菌株。【结果】从海南省土样中分离获得ε-聚赖氨酸产生菌TUST-2。分类和形态特征属链霉菌属。16S rDNA序列分析比对结果表明TUST-2属淀粉酶产色链霉菌(Streptomyces diastatochromogenes)。经特征反应分析、水解物分析、红外光谱、1H NMR、13C NMR和MALDI-TOF-MS分析表明TUST-2发酵产物为ε-聚赖氨酸。【结论】根据16S rRNA基因序列比对和形态及生理生化特征表明ε-聚赖氨酸产生菌TUST-2属于淀粉酶产色链霉菌,命名为淀粉酶产色链霉菌TUST-2。  相似文献   

14.
ε-聚赖氨酸生物合成研究进展   总被引:1,自引:0,他引:1  
张扬  冯小海  徐虹 《微生物学报》2011,51(10):1291-1296
ε-聚赖氨酸(ε-PL)是一种可食用对人和环境无毒害可生物降解的天然生物材料。本文以聚赖氨酸的研究历史为主线,对ε-PL的合成与降解进行了综述并预测了ε-PL可能的代谢途径,最后展望了我国聚赖氨酸研究的发展前景。  相似文献   

15.
李双  颜鹏  曾晨  张宏建  毛忠贵  唐蕾 《微生物学通报》2016,43(12):2568-2577
【目的】从代谢流量分配的角度,探讨Genome shuffling导致链霉菌ε-聚赖氨酸合成量提升的原因。【方法】从葡萄糖耐受型的亲本菌株Streptomyces sp.AS32和ε-聚赖氨酸耐受型的亲本菌株Streptomyces albulus F15出发,进行三轮Genome shuffling,筛选得到ε-聚赖氨酸产量提高的链霉菌株Streptomyces sp.AF3-44,采用通量分析方法构建链霉菌ε-聚赖氨酸合成代谢网络,并对上述3株菌的代谢通量进行比较。【结果】AF3-44的ε-聚赖氨酸摇瓶产量为3.1 g/L,较AS32和F15分别提高了34%和29%。3株菌株中AS32三羧酸循环(TCA)的代谢通量最高;F15磷酸戊糖途径(PPP)代谢通量最高;AF3-44流向赖氨酸合成前体天冬氨酸以及ε-聚赖氨酸的通量最高,TCA和PPP通量位于两亲本菌株的中间水平,其中TCA中流向异柠檬酸的通量分别为AS32和F15的77%和116%,PPP中流向5-磷酸核酮糖的通量分别为AS32和F15的149%和92%。【结论】Genome shuffling导致了代谢流的重新分布,流向前体赖氨酸和ε-聚赖氨酸通量的增加,以及PPP和TCA通量配比的改变是链霉菌ε-聚赖氨酸合成量增加的重要因素。  相似文献   

16.
以白色链霉菌Z-18为出发菌株,经大剂量紫外诱变处理,用S-2-氨基乙基-L-半胱氨酸(AEC)氨基酸结构类似物平板定向育种方法,获得1株ε-聚赖氨酸高产菌C-18,其发酵液中ε-聚赖氨酸产量较出发菌株提高42.9%。在含有50g/L葡萄糖的培养基中,ε-聚赖氨酸积累可达1.23g/L。  相似文献   

17.
以北里孢菌(Kitasatospora sp.)MY 5-36为供试菌株,对ε-聚赖氨酸分批补料发酵动力学模型进行研究。建立了该菌株发酵合成ε-聚赖氨酸的菌体生长、产物合成和总糖消耗的动力学模型,并通过Origin 8.1软件对模型参数进行非线性拟合。结果表明:菌体量和聚赖氨酸的产量分别为16.25和13.15 g/L,产物合成与菌体生长的关系为部分耦联型。经验证,预测值与实验值有良好的拟合性,拟合度分别为0.999、0.995和0.992,说明所构建模型能够较好地反映ε-聚赖氨酸分批补料发酵过程。  相似文献   

18.
为了有效改善发酵体系中的溶氧水平,提高小白链霉菌Streptomyces albulus PD-1发酵生产ε-聚赖氨酸的能力,文中通过对氧载体的种类、最佳添加浓度以及添加时间进行筛选,最终确定在0 h添加0.5%(V/V)的正十二烷促进ε-聚赖氨酸生产效果最佳。在5 L发酵罐0 h添加0.5%的正十二烷进行批次补料发酵,ε-聚赖氨酸的产量和菌体干重分别可以达到(30.8±0.46)g/L和(33.8±0.29)g/L,较之对照组分别提高了31.6%和20.7%。ε-聚赖氨酸的产量和菌体干重的提高归因于0.5%正十二烷的添加促进发酵液中溶氧水平从23.8%提高到32%,同时发酵液中的一种主要副产物(聚二氨基丙酸)的含量下降31%。实验结果表明,正十二烷的添加可以提高S.albulus PD-1发酵液中的溶氧水平,抑制副产物的生成,促进ε-聚赖氨酸的合成。  相似文献   

19.
目的:考察不同细胞培养方式对Streptomyces sp. M-Z18转化前体L-赖氨酸合成ε-聚赖氨酸过程的影响。方法:利用两阶段细胞培养和发酵过程流加方式,建立了两阶段细胞培养转化前体L-赖氨酸合成ε-聚赖氨酸以及转化前体L-赖氨酸耦合甘油发酵生产ε-聚赖氨酸的策略。结果:(1)两阶段细胞培养转化前体L-赖氨酸合成ε-聚赖氨酸策略实现ε-PL积累15 g/L, 转化L-赖氨酸3 g/L;(2)转化前体L-赖氨酸耦合甘油发酵生产ε-聚赖氨酸策略使得ε-PL产量达到33.76 g/L,单位菌体的合成能力提高37.8%,转化L-赖氨酸4 g/L。这表明,上述两种方式下前体L-赖氨酸都能够被Streptomyces sp. M-Z18转化合成ε-聚赖氨酸,但转化效率还有待进一步提高。意义:揭示了Streptomyces sp. M-Z18合成ε-聚赖氨酸的限速步骤在于初级代谢产物L-赖氨酸的合成,这为后续利用代谢工程手段改造菌株提供了方向。  相似文献   

20.
为了更好地研究ε-聚赖氨酸(ε-PL)生物合成的分子机制以及构建ε-PL高产基因工程菌株,拟建立一株ε-PL产生菌株Streptomyces albulus PD-1的遗传转化体系。通过对培养基类型、孢子预萌发处理、培养基中Mg2+浓度等条件进行考察,以Escherichia coli ET12567(p UZ8002)为供体菌,成功地将p IB139质粒导入S.albulus PD-1中。结果表明:质粒转化效率达到(3±0.4)×10-6个接合转化子/受体。接合子传代实验和PCR结果发现,p IB139质粒能够稳定整合在S.albulus PD-1染色体的att B位点上。本研究建立了一株ε-PL生产菌株的遗传转化体系,为从分子水平上研究ε-PL的合成及ε-PL高产菌株的构建奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号