首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cytochrome P450 (P450 or CYP) 46A1 is expressed in brain and has been characterized by its ability to oxidize cholesterol to 24S-hydroxycholesterol. In addition, the same enzyme is known to further oxidize 24S-hydroxycholesterol to the 24,25- and 24,27-dihydroxy products, as well as to catalyze side-chain oxidations of 7α-hydroxycholesterol and cholestanol. As precursors in the biosynthesis of cholesterol, 7-dehydrocholesterol has not been found to be a substrate of P450 46A1 and desmosterol has not been previously tested. However, 24-hydroxy-7-dehydrocholesterol was recently identified in brain tissues, which prompted us to reexamine this enzyme and its potential substrates. Here we report that P450 46A1 oxidizes 7-dehydrocholesterol to 24-hydroxy-7-dehydrocholesterol and 25-hydroxy-7-dehydrocholesterol, as confirmed by LC-MS and GC-MS. Overall, the catalytic rates of formation increased in the order of 24-hydroxy-7-dehydrocholesterol < 24-hydroxycholesterol < 25-hydroxy-7-dehydrocholesterol from their respective precursors, with a ratio of 1:2.5:5. In the case of desmosterol, epoxidation to 24S,25-epoxycholesterol and 27-hydroxylation was observed, at roughly equal rates. The formation of these oxysterols in the brain may be of relevance in Smith-Lemli-Opitz syndrome, desmosterolosis, and other relevant diseases, as well as in signal transduction by lipids.  相似文献   

3.
Cholesterol is an essential component of the CNS and its metabolism in the brain has been implicated in various neurodegenerative diseases. The oxysterol produced from cholesterol, 24( S )-hydroxycholesterol, is known to be an important regulator of brain cholesterol homeostasis. In this study, we focussed on another oxysterol, 24( S ),25-epoxycholesterol (24,25EC), which has not been studied before in a neurological context. 24,25EC is unique in that it is synthesized in a shunt in the mevalonate pathway, parallel to cholesterol and utilizing the same enzymes. Considering that all the cholesterol present in the brain is derived from de novo synthesis, we investigated whether or not primary human neurons and astrocytes can produce 24,25EC. We found that astrocytes produced more 24,25EC than neurons under basal conditions, but both cell types had the capacity to synthesize this oxysterol when the enzyme 2,3-oxidosqualene cyclase was partially inhibited. Furthermore, both added 24,25EC and stimulated cellular production of 24,25EC (by partial inhibition of 2,3-oxidosqualene cyclase) modulated expression of key cholesterol-homeostatic genes regulated by the liver X receptor and the sterol regulatory element-binding protein-2. Moreover, we found that 24,25EC synthesized in astrocytes can be taken up by neurons and exert downstream effects on gene regulation. In summary, we have identified 24,25EC as a novel neurosterol which plays a likely role in brain cholesterol homeostasis.  相似文献   

4.
5.
Certain oxysterols, when added to cultured cells, are potent regulators of cholesterol homeostasis, decreasing cholesterol synthesis and uptake and increasing cholesterol efflux. However, very little is known about whether or not endogenous oxysterol(s) plays a significant role in cholesterol homeostasis. 24(S),25-Epoxycholesterol (24,25EC) is unique among oxysterols in that it is produced in a shunt of the mevalonate pathway which also produces cholesterol. We investigated the role of endogenously produced 24,25EC using a novel strategy of overexpressing the enzyme 2,3-oxidosqualene cyclase in Chinese hamster ovary cells to selectively inhibit the synthesis of this oxysterol. First, loss of 24,25EC decreased expression of the LXR target gene, ABCA1, substantiating its role as an endogenous ligand for LXR. Second, loss of 24,25EC increased acute cholesterol synthesis, which was rationalized by a concomitant increase in HMG-CoA reductase gene expression at the level of SREBP-2 processing. Therefore, in the absence of 24,25EC, fine-tuning of the acute regulation of cholesterol homeostasis is lost, supporting the hypothesis that 24,25EC functions to protect the cell against the accumulation of newly synthesized cholesterol.  相似文献   

6.
Pedretti A  Bocci E  Maggi R  Vistoli G 《Steroids》2008,73(7):708-719
Recent biochemical and clinical evidences unveiled that DHCR24 enzyme (3-beta-hydoxysterol-Delta(24)-reductase, also named seladin-1), which catalyzes the last step of the cholesterol biosynthesis, is implicated in relevant neuroprotective processes by modulating the level of cholesterol in membrane. The present study was undertaken with a view to model the DHCR24 enzyme and its catalytic site, analyzing the substrate recognition at an atomic level. A homology model of the enzyme was obtained based on plant Cytokinin Dehydrogenase, and its active site was found to bind the desmosterol plus a set of post-squalenic intermediates of the cholesterol biosynthesis in a binding mode conducive to catalysis, even if the docking results suggested that the enzyme has a clear preference for the last intermediates of such biosynthetic pathway. Since DHCR24 possesses a putative transmembrane segment, the enzyme was, then, inserted in a suitable membrane model and the membrane-anchored structure in complex with desmosterol and cholesterol underwent 10ns MD simulations. Such simulations evidenced a clearly different behavior between substrate and product since the product only completely leaves the catalytic cavity whereas desmosterol firmly conserves its pivotal interactions during all simulation time. This is one of the first reports documenting the enzymatic product egress using simple MD simulations in which all atoms are free to move.  相似文献   

7.
Cholesterol is essential to human health, and its levels are tightly regulated by a balance of synthesis, uptake, and efflux. Cholesterol synthesis requires the actions of more than twenty enzymes to reach the final product, through two alternate pathways. Here we describe a physical and functional interaction between the two terminal enzymes. 24-Dehydrocholesterol reductase (DHCR24) and 7-dehydrocholesterol reductase (DHCR7) coimmunoprecipitate, and when the DHCR24 gene is knocked down by siRNA, DHCR7 activity is also ablated. Conversely, overexpression of DHCR24 enhances DHCR7 activity, but only when a functional form of DHCR24 is used. DHCR7 is important for both cholesterol and vitamin D synthesis, and we have identified a novel layer of regulation, whereby its activity is controlled by DHCR24. This suggests the existence of a cholesterol “metabolon”, where enzymes from the same metabolic pathway interact with each other to provide a substrate channeling benefit. We predict that other enzymes in cholesterol synthesis may similarly interact, and this should be explored in future studies.  相似文献   

8.
The syntheses of (24S)-24,25-epoxycholesterol, (24S)-hydroxycholesterol, and 24-ketocholesterol are described. The compounds belong to oxysterols, which can be considered to be the modulators of cholesterol metabolism. The asymmetric hydroxylation of desmosterol acetate according to Sharpless was used as the key reaction in the stereoselective introduction of functionality in position 24.  相似文献   

9.
10.
Desmosterolosis is a rare autosomal recessive disorder characterized by multiple congenital anomalies. Patients with desmosterolosis have elevated levels of the cholesterol precursor desmosterol, in plasma, tissue, and cultured cells; this abnormality suggests a deficiency of the enzyme 3beta-hydroxysterol Delta24-reductase (DHCR24), which, in cholesterol biosynthesis, catalyzes the reduction of the Delta24 double bond of sterol intermediates. We identified the human DHCR24 cDNA, by the similarity between the encoded protein and a recently characterized plant enzyme--DWF1/DIM, from Arabidopsis thaliana--catalyzing a different but partially similar reaction in steroid/sterol biosynthesis in plants. Heterologous expression, in the yeast Saccharomyces cerevisiae, of the DHCR24 cDNA, followed by enzyme-activity measurements, confirmed that it encodes DHCR24. The encoded DHCR24 protein has a calculated molecular weight of 60.1 kD, contains a potential N-terminal secretory-signal sequence as well as at least one putative transmembrane helix, and is a member of a recently defined family of flavin adenine dinucleotide (FAD)-dependent oxidoreductases. Conversion of desmosterol to cholesterol by DHCR24 in vitro is strictly dependent on reduced nicotinamide adenine dinucleotide phosphate and is increased twofold by the addition of FAD to the assay. The corresponding gene, DHCR24, was identified by database searching, spans approximately 46.4 kb, is localized to chromosome 1p31.1-p33, and comprises nine exons and eight introns. Sequence analysis of DHCR24 in two patients with desmosterolosis revealed four different missense mutations, which were shown, by functional expression, in yeast, of the patient alleles, to be disease causing. Our data demonstrate that desmosterolosis is a cholesterol-biosynthesis disorder caused by mutations in DHCR24.  相似文献   

11.
Cholesterol is a unique molecule in terms of high level of in-built stringency, fine tuned by natural evolution for its ability to optimize physical properties of higher eukaryotic cell membranes in relation to biological functions. We previously demonstrated the requirement of membrane cholesterol in maintaining the ligand binding activity of the hippocampal serotonin1A receptor. In order to test the molecular stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with desmosterol. Desmosterol is an immediate biosynthetic precursor of cholesterol in the Bloch pathway differing only in a double bond at the 24th position in the alkyl side chain. Our results show that replenishment with desmosterol does not restore ligand binding activity of the serotonin1A receptor although replenishment with cholesterol led to significant recovery of ligand binding. This is in spite of similar membrane organization (order) in these membranes, as monitored by fluorescence anisotropy measurements. The requirement for restoration of ligand binding activity therefore appears to be more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor in diseases such as desmosterolosis.  相似文献   

12.
DHCR24 encodes 3β-hydroxysterol-Δ24-reductase (DHCR24) catalyzing the cholesterol synthesis from desmosterol using the flavin adenine dinucleotide (FAD) as a co-factor. It is generally accepted that U18666a inhibits the reductase activity of DHCR24, but the detailed mechanism remains elusive. To explore the mechanism of the inhibitory effect of U18666a on DHCR24, we performed molecular dynamics (MD) simulations of two complexes including complexes of DHCR24-FAD-desmosterol enzymatic reactive components with and without the inhibitor U18666a. We found that the U18666a bound into the hydrophobic package near the FAD package of DHCR24. Furthermore, binding free energy of DHCR24 and desmosterol without U18666a is ?54.86 kcal/mol, while the system with U18666a is ?62.23 kcal/mol, suggesting that the affinity of the substrate desmosterol to DHCR24 was increased in response to the U18666a. In addition, U18666a interacts with FAD by newly forming three hydrogen bonds with Lys292, Lys367, and Gly438 of DHCR24. Finally, secondary structural analysis data obtained from the surrounding hot spots showed that U18666a induced dramatic secondary structural changes around the key residues in the interaction of DHCR24, FAD, and desmosterol. Taken together, these results for the first time demonstrate at the molecular structure level that U18666a blocks DHCR24 activity through an allosteric inhibiting mechanism, which may provide new insight into the development of a new type of cholesterol-lowering drug targeting to block the activity of DHCR24.  相似文献   

13.
3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes the conversion of desmosterol to cholesterol. This ultimate step of cholesterol biosynthesis appears to be remarkable in its diverse functions and the number of diseases it is implicated in from vascular disease to Hepatitis C virus (HCV) infection to cancer to Alzheimer’s disease. This review summarizes the present knowledge on the DHCR24 gene, sterol Δ24-reductase protein and the regulation of both. In addition, the functions of desmosterol, DHCR24 and their roles in human diseases are discussed. It is apparent that DHCR24 exerts more complex effects than what would be expected based on the enzymatic activity of sterol Δ24-reduction alone, such as its influence in modulating oxidative stress. Increasing information about DHCR24 membrane association, processing, enzymatic regulation and interaction partners will provide further fundamental insights into DHCR24 and its many and varied biological roles.  相似文献   

14.
Larvae of Manduca sexta were used to obtain a cell-free sterol 24,25-reductase. From the midgut of fifth instar larvae fed a mixture of sitosterol and campesterol a microsome-bound 24,25-sterol reductase was prepared that transformed desmosterol (Km, 3 μM), lanosterol (Km, 18 μM), and cycloartenol (Km, 33 μM), to cholesterol, 24,25-dihydrolanosterol, and cycloartanol, respectively. With desmosterol as substrate, the microsome-bound enzyme was found to incorporate tritium into cholesterol from 4S-tritium labelled NADPH. [24-2H]lanosterol was transformed by larvae to [24-2H]24,25-dihydrolanosterol (structure confirmed by mass spectroscopy (MS) and 1H-nuclear magnetic resonance spectroscopy. A rationally designed inhibitor of 24,25-reductase activity, 24(R,S),25-epimino-lanosterol (IL), was assayed and found to be inhibitory with an I50 of 2 μM. IL was supplemented in the diet of M. sexta with either sitosterol or stigmasterol and found to inhibit development (I50 60 ppm). The major sterol which accumulated in the IL-treated larvae was desmosterol, confirming the site of inhibition was reduction of the 24,25-bond. IL was converted to [2-3H]IL when fed to the larvae. [2-3H]lanosterol was recovered from fifth instar larvae and its structure confirmed by MS and radiochemical techniques. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Cholesterol is a prominent modulator of the integrity and functional activity of physiological membranes and the most abundant sterol in the mammalian brain. DHCR24-knock-out mice lack cholesterol and accumulate desmosterol with age. Here we demonstrate that brain cholesterol deficiency in 3-week-old DHCR24−/− mice was associated with altered membrane composition including disrupted detergent-resistant membrane domain (DRM) structure. Furthermore, membrane-related functions differed extensively in the brains of these mice, resulting in lower plasmin activity, decreased β-secretase activity and diminished Aβ generation. Age-dependent accumulation and integration of desmosterol in brain membranes of 16-week-old DHCR24−/− mice led to the formation of desmosterol-containing DRMs and rescued the observed membrane-related functional deficits. Our data provide evidence that an alternate sterol, desmosterol, can facilitate processes that are normally cholesterol-dependent including formation of DRMs from mouse brain extracts, membrane receptor ligand binding and activation, and regulation of membrane protein proteolytic activity. These data indicate that desmosterol can replace cholesterol in membrane-related functions in the DHCR24−/− mouse. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

16.
17.
Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25.  相似文献   

18.
Vitamin D-24-hydroxylase (CYP24) is one of the enzymes responsible for vitamin D metabolism. CYP24 catalyzes the conversion of 25-hydroxyvitamin D(3) [25(OH)D(3)] to 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)] in the kidney. CYP24 is also involved in the breakdown of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], the active form of vitamin D(3). In this study, we generated transgenic (Tg) rats constitutively expressing CYP24 gene to investigate the biological role of CYP24 in vivo. Surprisingly, the Tg rats showed a significantly low level of plasma 24,25(OH)(2)D(3). Furthermore, the Tg rats developed albuminuria and hyperlipidemia shortly after weaning. The plasma lipid profile revealed that all lipoprotein fractions were elevated in the Tg rats. Also, the Tg rats showed atherosclerotic lesions in the aorta, which greatly progressed with high-fat and high-cholesterol feeding. These unexpected results suggest that CYP24 is involved in functions other than the regulation of vitamin D metabolism.  相似文献   

19.
Cholesterol synthesis occurs in the ER (endoplasmic reticulum), where most of the cholesterogenic machinery resides. As membrane-bound proteins, their topology is difficult to determine, and thus their structures are largely unknown. To help resolve this, we focused on the final enzyme in cholesterol synthesis, DHCR24 (3β-hydroxysterol Δ24-reductase). Prediction programmes and previous studies have shown conflicting results regarding which regions of DHCR24 are associated with the membrane, although there was general agreement that this was limited to only the N-terminal portion. Here, we present biochemical evidence that in fact the majority of the enzyme is associated with the ER membrane. This has important consequences for the many functions attributed to DHCR24. In particular, those that suggest DHCR24 alters its localization within the cell should be reassessed in light of this new information. Moreover, we propose that the expanding database of post-translational modifications will be a valuable resource for mapping the topology of membrane-associated proteins, such as DHCR24, that is, flagging cytosolic residues accessible to modifying enzymes such as kinases and ubiquitin ligases.  相似文献   

20.
The first committed step in the formation of 24-alkylsterols in the ascomycetous fungus Paracoccidiodes brasiliensis (Pb) has been shown to involve C24-methylation of lanosterol to eburicol (24(28)-methylene-24,25-dihydro-lanosterol) on the basis of metabolite co-occurrence. A similarity-based cloning strategy was employed to obtain the cDNA clone corresponding to the sterol C24-methyltransferase (SMT) implicated in the C24-methylation reaction. The resulting catalyst, prepared as a recombinant fusion protein (His/Trx/S), was expressed in Escherichia coli BL21(C43) and shown to possess a substrate specificity for lanosterol and to generate a single exocyclic methylene product. The full-length cDNA has an open reading frame of 1131 base pairs and encodes a protein of 377 residues with a calculated molecular mass of 42,502 Da. The enzymatic C24-methylation gave a Kmapp of 38 μM and kcatapp of 0.14 min−1. Quite unexpectedly, “plant” cycloartenol was catalyzed in high yield to 24(28)-methylene cycloartanol consistent with conformational arguments that favor that both cycloartenol and lanosterol are bound pseudoplanar in the ternary complex. Incubation of [27-13C]- or [24-2H]cycloartenol with PbSMT and analysis of the enzyme-generated product by a combination of 1H and 13CNMR and mass spectroscopy established the regiospecific conversion of the pro-Z methyl group of the Δ24(25)-substrate to the pro-R isopropyl methyl group of the product and the migration of H24 to C25 on the Re-face of the original substrate double bond undergoing C24-methylation. Inhibition kinetics and products formed from the substrate analogs 25-azalanosterol (Ki 14 nM) and 26,27-dehydrolanosterol (Ki 54 μM and kinact of 0.24 min−1) provide direct evidence for distinct reaction channeling capitalized by structural differences in the C24- and C26-sterol acceptors. 25-Azalanosterol was a potent inhibitor of cell growth (IC50, 30 nM) promoting lanosterol accumulation and 24-alkyl sterol depletion. Phylogenetic analysis of PbSMT with related SMTs of diverse origin together with the results of the present study indicate that the enzyme may have a similar complement of active-site amino acid residues compared to related yeast SMTs affording monofunctional C1-transfer behavior, yet there are sufficient differences in its overall amino acid composition and substrate-dependent partitioning pathways to group PbSMT into a fourth and new class of SMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号