首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Hydrogen will become a significant fuel in the near future. Photofermentative production of hydrogen is a promising and sustainable process. The design, construction and successful operation of the photobioreactors are of critical importance for photofermentative hydrogen production and became a major field of research where novel technologies are developed and adapted frequently. This paper gives an overview of the design aspects related to photobioreactors giving particular attention to design limitations, construction material, type, operating mode and scale-up. Sub-components of the overall system setup such as mixing, temperature control and hydrogen collection are also discussed. Recent achievements in the photobioreactor technologies are described.  相似文献   

2.
Enclosed outdoor photobioreactors need to be developed and designed for large-scale production of phototrophic microorganisms. Both light regime and photosynthetic efficiency were analyzed in characteristic examples of state-of-the-art pilot-scale photobioreactors. In this study it is shown that productivity of photobioreactors is determined by the light regime inside the bioreactors. In addition to light regime, oxygen accumulation and shear stress limit productivity in certain designs. In short light-path systems, high efficiencies, 10% to 20% based on photosynthetic active radiation (PAR 400 to 700 nm), can be reached at high biomass concentrations (>5 kg [dry weight] m(-3)). It is demonstrated, however, that these and other photobioreactor designs are poorly scalable (maximal unit size 0.1 to 10 m(3)), and/or not applicable for cultivation of monocultures. This is why a new photobioreactor design is proposed in which light capture is physically separated from photoautotrophic cultivation. This system can possibly be scaled to larger unit sizes, 10 to >100 m(3), and the reactor liquid as a whole is mixed and aerated. It is deduced that high photosynthetic efficiencies, 15% on a PAR-basis, can be achieved. Future designs from optical engineers should be used to collect, concentrate, and transport sunlight, followed by redistribution in a large-scale photobioreactor.  相似文献   

3.
Photobioreactor engineering: Design and performance   总被引:1,自引:0,他引:1  
This review summarizes the recent advances in high-density algal cultures in the field of algal biotechnology. Photobioreactor engineering for economical and effective utilization of algae and its products has made impressive and promising progress. Bioprocess engineers have expedited the design and the operation of algal cultivation systems. Many of them in use today are open systems due to cost considerations, and closed photobioreactors have recently attracted a considerable attention for the production of valuable biochemicals or for special applications. For high-density cultures, the optimization of environmental factors in the photobioreactors have been explored, including light delivery, CO2 and O2 gas transfer, medium supply, mixing and temperature. It is expected that further advanced photobioreactor engineering will enable the commercialization of noble algal products within the next decade.  相似文献   

4.
以缺刻缘绿藻(Parietochloris incisa)为实验材料, 采用BG-11培养基, 分别在2种氮浓度和3种不同光径(LP)的柱状和平板光生物反应器中进行培养, 并探究其生长、油脂和花生四烯酸(AA)的积累规律。结果显示: 在两种光生物反应器中, 光径越小, 越有利于缺刻缘绿藻的生长。其中, 最大生物量均在17.6 mmol/L氮浓度时获得, 分别为5.09 g/L(2.5 cm-柱状)和2.98 g/L(3.0 cm-平板); 而最高油脂和AA绝对含量则均在1.0 mmol/L氮浓度和最大光径处获得, 分别为39.23%、13.21%(6.0 cm-柱状)和40.74%、11.33%(5.0 cm-平板); 另外, 两种光生物反应器中的最大油脂单位体积产率分别可以达到216.39 mg/(L·d)(17.6 mmol/L; 2.5 cm-柱状)和135.93 mg/(L·d)(1.0 mmol/L; 1.5 cm-平板); 而最高的AA单位体积产率均在1.0 mmol/L低氮条件, 最大光径处达到最大, 分别为21.65 mg/(L·d)(6.0 cm-柱状)和19.42 mg/(L·d)(5.0 cm-平板)。因此, 根据实际生产需要, 在1.0 mmol/L低氮条件下, 选择6.0 cm光径的柱状光生物反应器或5.0 cm光径的平板光生物反应器, 培养缺刻缘绿藻生产AA, 能有效降低生产成本。  相似文献   

5.

Background

Microalgae are a potential source of sustainable commodities of fuels, chemicals and food and feed additives. The current high production costs, as a result of the low areal productivities, limit the application of microalgae in industry. A first step is determining how the different production system designs relate to each other under identical climate conditions. The productivity and photosynthetic efficiency of Nannochloropsis sp. CCAP 211/78 cultivated in four different outdoor continuously operated pilot-scale photobioreactors under the same climatological conditions were compared. The optimal dilution rate was determined for each photobioreactor by operation of the different photobioreactors at different dilution rates.

Results

In vertical photobioreactors, higher areal productivities and photosynthetic efficiencies, 19–24 g m?2 day?1 and 2.4–4.2 %, respectively, were found in comparison to the horizontal systems; 12–15 g m?2 day?1 and 1.5–1.8 %. The higher ground areal productivity in the vertical systems could be explained by light dilution in combination with a higher light capture. In the raceway pond low productivities were obtained, due to the long optical path in this system. Areal productivities in all systems increased with increasing photon flux densities up to a photon flux density of 30 mol m?2 day?1. Photosynthetic efficiencies remained constant in all systems with increasing photon flux densities. The highest photosynthetic efficiencies obtained were; 4.2 % for the vertical tubular photobioreactor, 3.8 % for the flat panel reactor, 1.8 % for the horizontal tubular reactor, and 1.5 % for the open raceway pond.

Conclusions

Vertical photobioreactors resulted in higher areal productivities than horizontal photobioreactors because of the lower incident photon flux densities on the reactor surface. The flat panel photobioreactor resulted, among the vertical photobioreactors studied, in the highest average photosynthetic efficiency, areal and volumetric productivities due to the short optical path. Photobioreactor light interception should be further optimized to maximize ground areal productivity and photosynthetic efficiency.
  相似文献   

6.
Widespread cultivation of phototrophic microalgae for sustainable production of a variety of renewable products, for wastewater treatment, and for atmospheric carbon mitigation requires not only improved microorganisms but also significant improvements to process design and scaleup. The development of simulation tools capable of providing quantitative predictions for photobioreactor performance could contribute to improved reactor designs and it could also support process scaleup, as it has in the traditional petro-chemical industries. However, the complicated dependence of cell function on conditions in the microenvironment, such as light availability, temperature, nutrient concentration, and shear strain rate render simulation of photobioreactors much more difficult than chemical reactors. Although photobioreactor models with sufficient predictive ability suitable for reactor design and scaleup do not currently exist, progress towards this goal has occurred in recent years. The current status of algal photobioreactor simulations is reviewed here, with an emphasis on the integration of and interplay between sub-models describing hydrodynamics, radiation transport, and microalgal growth kinetics. Some limitations of widely used models and computational methods are identified, as well as current challenges and opportunities for the advancement of algal photobioreactor simulation.  相似文献   

7.
This paper investigates the scaling‐up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo‐heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low‐chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold. Biotechnol. Bioeng. 2015;112: 2429–2438. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Peiodicals, Inc.  相似文献   

8.
Longer mixing times and higher power consumption are common problems in the design of photobioreactors. In this study, a vertical triangular external airlift loop photobioreactor was designed, constructed and operated for microalgae production studies. Gas feeding was performed by two spargers: one at the bottom of the hypotenuse (downcomer) and another at the bottom of the vertical side (riser). This configuration provided more effective countercurrent liquid–gas flow in the hypotenuse. The mass transfer coefficient, gas hold-up, mixing time, circulation time, dimensionless mixing time, bubble size, and volumetric power consumption were measured and optimized using response surface methodology. Investigations were carried out on the performance of the riser (the vertical side), downcomer (the hypotenuse), and separator. The countercurrent flow in the hypotenuse provided sufficient contact between gas and liquid phases, and increased mixing and mass transfer rates, in contrast to the results of previous studies. The promising results of this geometry were shorter mixing time and a significant decrease in volumetric power consumption in comparison with other configurations for photobioreactors.  相似文献   

9.
This study investigates the scaling of photobioreactor productivity based on the growth of Nannochloropsis salina incorporating the effects of direct and diffuse light. The scaling and optimization of photobioreactor geometry was analyzed by determining the growth response of a small-scale system designed to represent a core sample of a large-scale photobioreactor. The small-scale test apparatus was operated at a variety of light intensities on a batch time scale to generate a photosynthetic irradiance (PI) growth dataset, ultimately used to inform a PI growth model. The validation of the scalability of the PI growth model to predict productivity in large-scale systems was done by comparison with experimental growth data collected from two geometrically different large-scale photobioreactors operated at a variety of light intensities. For direct comparison, the small-scale and large-scale experimental systems presented were operated similarly and in such a way to incorporate cultivation relevant time scales, light intensities, mixing, and nutrient loads. Validation of the scalability of the PI growth model enables the critical evaluation of different photobioreactor geometries and design optimization incorporating growth effects from diffuse and direct light. Discussion focuses on the application of the PI growth model to assess the effect of diffuse light growth compared to direct light growth for the evaluation of photobioreactors followed by the use of the model for photobioreactor geometry optimization on the metric of areal productivity.  相似文献   

10.
Photobioreactors using algae, plant cells, or photosynthetic bacteria have received considerable attention from biochemical engineers. Industry is presently engaged in developing new products and testing a new generation of algal-derived natural products such as natural dyes, polyunsaturated fatty acids and polysaccharides. The present paper is a review of some of the recent findings of the authors in the field. A mathematical representation of the growth of a photosynthetic system in an alternating light-dark regime is presented. This model integrates fluid dynamics and maintenance into the three-state "Photosynthetic Factories" model by Eilers and Peeters. The model was solved analytically and the constants were fitted to experimental data obtained in a thin film tubular reactor. The theoretical prediction that the introduction of light-dark cycles may enhance the growth was confirmed by the experimental results. The model allows predicting the collapse of cultures in photobioreactors either under light-deficit or light-excess conditions, as well as the influence of mixing on these critical phenomena. This paper presents an approach to modeling the kinetics of photosynthetic systems for photobioreactor design. Under conditions of simultaneous occurrence of photoinhibition in one region of the reactor, and photo-limitation in another, it takes into account the movement of the cells from one region to the other. The model was applied to the mathematical modeling of a 13-liter bubble column photobioreactor. Experimental data were satisfactorily fit, using the kinetic data obtained independently in the thin-film experiments. The model was extended to simulate a "farm" of photobioreactors and the results presented defining Ground Productivity, which expresses the rate of biomass production of a farm of relatively small photobioreactors per area of ground required for the installation.  相似文献   

11.
The need to develop new concepts in reactor design and the growing interest inSpirulina prompted our group to abandon open ponds in the seventies and to focus interest mainly on closed systems. Two substantially different closed photobioreactors have been developed and are at present under investigation in our Research Centre: the tubular photobioreactor (made of rigid or collapsible tubes) and the recently devised vertical alveolar panel (VAP) made of 1.6-cm-thick Plexiglas alveolar sheets.The technical characteristics of the two systems are described and discussed in relation to the main factors which regulate the growth of oxygenic photosynthetic microorganisms in closed reactors.This paper was presented at the Symposium on Applied Phycology at the Fourth International Phycological Congress, Duke University.  相似文献   

12.
Photobioreactors: production systems for phototrophic microorganisms   总被引:11,自引:0,他引:11  
Microalgae have a large biotechnological potential for producing valuable substances for the feed, food, cosmetics and pharmacy industries as well as for biotechnological processes. The design of the technical and technological basis for photobioreactors is the most important issue for economic success in the field of phototrophic biotechnology. For future applications, open pond systems for large-scale production seem to have a lower innovative potential than closed systems. For high-value products in particular, closed systems of photobioreactors seem to be the more promising field for technical developments despite very different approaches in design.  相似文献   

13.
The feasibility of growth, calcium carbonate and lipid production of the coccolithophorid algae (Prymnesiophyceae), Pleurochrysis carterae, Emiliania huxleyi, and Gephyrocapsa oceanica, was investigated in plate, carboy, airlift, and tubular photobioreactors. The plate photobioreactor was the most promising closed cultivation system. All species could be grown in the carboy photobioreactor. However, P. carterae was the only species which grew in an airlift photobioreactor. Despite several attempts to grow these coccolithophorid species in the tubular photobioreactor (Biocoil), including modification of the airlift and sparger design, no net growth could be achieved. The shear produced by turbulence and bubble effects are the most likely reasons for this failure to grow in the Biocoil. The highest total dry weight, lipid and calcium carbonate productivities achieved by P. carterae in the plate photobioreactors were 0.54, 0.12, and 0.06 g L−1 day−1 respectively. Irrespective of the type of photobioreactor, the productivities were P. carterae > E. huxleyi > G. oceanica. Pleurochrysis carterae lipid (20–25% of dry weight) and calcium carbonate (11–12% of dry weight) contents were also the highest of all species tested. Biotechnol. Bioeng. 2011;108:2078–2087. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
Worldwide, microalgal biofuel production is being investigated. It is strongly debated which type of production technology is the most adequate. Microalgal biomass production costs were calculated for 3 different micro algal production systems operating at commercial scale today: open ponds, horizontal tubular photobioreactors and flat panel photobioreactors. For the 3 systems, resulting biomass production costs including dewatering, were 4.95, 4.15 and 5.96 € per kg, respectively. The important cost factors are irradiation conditions, mixing, photosynthetic efficiency of systems, medium- and carbon dioxide costs. Optimizing production with respect to these factors, a price of € 0.68 per kg resulted. At this cost level microalgae become a promising feedstock for biodiesel and bulk chemicals.

Summary

Photobioreactors may become attractive for microalgal biofuel production.  相似文献   

15.
A new type of preparative photobioreactor for high quality production of microalgae is developed for hatchery-nursery of marine animals, as well as for fine chemicals extraction. Of modular conception, two artificial light photobioreactors in plastic and stainless steel are designed so as to provide strictly controlled conditions in an attempt to increase quality and diminish cost prices. They are assessed for production of Porphyridum cruentum and compared to conventional transparent tanks and solar photobioreactors. The concentration and productivity obtained are ten-fold higher than with hatchery tanks, which leads to a significant drop in cost price of biomass. Comparison is also made with a 10 m2 solar photobioreactor operated in the south of France, for which biomass cost price is half that of 1.5 m2 artificial light photobioreactor. Extrapolations erasing size discrepancy show that the cost price of the two technologies are not very different. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Closed photobioreactors have to be optimized in terms of light utilization and overall photosynthesis rate. A simple model coupling the hydrodynamics and the photosynthesis kinetics has been proposed to analyze the photosynthesis dynamics due to the continuous shuttle of microalgae between dark and lighted zones of the photobioreactor. Microalgal motion has been described according to a stochastic Lagrangian approach adopting the turbulence model suitable for the photobioreactor configuration (single vs. two‐phase flows). Effects of light path, biomass concentration, turbulence level and irradiance have been reported in terms of overall photosynthesis rate. Different irradiation strategies (internal, lateral and rounding) and several photobioreactor configurations (flat, tubular, bubble column, airlift) have been investigated. Photobioreactor configurations and the operating conditions to maximize the photosynthesis rate have been pointed out. Results confirmed and explained the common experimental observation that high concentrated cultures are not photoinhibited at high irradiance level. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1259–1272, 2015  相似文献   

17.
Until recently, most large commercial scale microalgal production systems employed open systems. However, several large-scale closed systems have now been built and, for the first time, actual comparisons can be made. There are major operational differences between open and closed photobioreactors and, consequently, the growth physiology of the microalgae is different between the two systems. Several of the factors governing growth can, within certain boundaries, be manipulated while others are specific to the cultivation system. Crucial factors are the optical depth, turbulence, light acclimated state of the organism, nutrient availability and metabolite accumulation. In the final analyses, systems are used for specific purposes and each will determine which system is the most suitable, since there is no universal all-purpose photobioreactor.  相似文献   

18.
Until recently, most large commercial scale microalgal production systems employed open systems. However, several large-scale closed systems have now been built and, for the first time, actual comparisons can be made. There are major operational differences between open and closed photobioreactors and, consequently, the growth physiology of the microalgae is different between the two systems. Several of the factors governing growth can, within certain boundaries, be manipulated while others are specific to the cultivation system. Crucial factors are the optical depth, turbulence, light acclimated state of the organism, nutrient availability and metabolite accumulation. In the final analyses, systems are used for specific purposes and each will determine which system is the most suitable, since there is no universal all-purpose photobioreactor.  相似文献   

19.
A flat inclined modular photobioreactor (FIMP) for mass cultivation of photoautotrophic microorganisms is described. It consists of flat glass reactors connected in cascade facing the sun with the proper tilt angles to assure maximal exposure to direct beam radiation. The optimal cell density in reference to the length of the reactor light path was evaluated, and the effect of the tilt angle on utilization of both direct beam as well as diffuse sunlight was quantitatively assessed. The mixing mode and extent were also optimized in reference to productivity of biomass. The FIMP proved very successful in supporting continuous cultures of the tested species of photoautotrophs, addressing the major criteria involved in design optimization of photobioreactors: Made of fully transparent glass, inclined toward the sun and endowed with a high surface-to-volume ratio, it combines an optimal light path with a vigorous agitation system. The maximal exposure to the culture to solar irradiance as well as the substantial control of temperature facilitate, under these conditions, a particularly high, extremely light-limited optimal cell density. The integrated effects of these growth conditions resulted in record volumetric and areal output rates of Monodus subterraneus, Anabana siamensis, and Spirulina platensis. (c) 1996 John Wiley & Sons, Inc.  相似文献   

20.
The technology of microalgal culturing   总被引:5,自引:0,他引:5  
This review outlines the current status and recent developments in the technology of microalgal culturing in enclosed photobioreactors. Light distribution and mixing are the primary variables that affect productivities of photoautotrophic cultures and have strong impacts on photobioreactor designs. Process monitoring and control, physiological engineering, and heterotrophic microalgae are additional aspects of microalgal culturing, which have gained considerable attention in recent years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号