首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glutamate transport is coupled to the co-transport of 3 Na(+) and 1 H(+) followed by the counter-transport of 1 K(+). In addition, glutamate and Na(+) binding to glutamate transporters generates an uncoupled anion conductance. The human glial glutamate transporter EAAT1 (excitatory amino acid transporter 1) also allows significant passive and active water transport, which suggests that water permeation through glutamate transporters may play an important role in glial cell homoeostasis. Urea also permeates EAAT1 and has been used to characterize the permeation properties of the transporter. We have previously identified a series of mutations that differentially affect either the glutamate transport process or the substrate-activated channel function of EAAT1. The water and urea permeation properties of wild-type EAAT1 and two mutant transporters were measured to identify which permeation pathway facilitates the movement of these molecules. We demonstrate that there is a significant rate of L-glutamate-stimulated passive and active water transport. Both the passive and active L-glutamate-stimulated water transport is most closely associated with the glutamate transport process. In contrast, L-glutamate-stimulated [(14)C]urea permeation is associated with the anion channel of the transporter. However, there is also likely to be a transporter-specific, but glutamate independent, flux of water via the anion channel.  相似文献   

2.
Surface expression of the glial glutamate transporter EAAT1 is stimulated by insulin-like growth factor 1 through activation of phosphatidylinositol-3-kinase. Downstream targets include serum and glucocorticoid-sensitive kinase isoforms SGK1, SGK2 and SGK3, and protein kinase B. SGK1 regulates Nedd4-2, a ubiquitin ligase that prepares cell membrane proteins for degradation. To test whether Nedd4-2, SGK1, SGK3 and protein kinase B regulate EAAT1, cRNA encoding EAAT1 was injected into Xenopus oocytes with or without additional injection of wild-type Nedd4-2, constitutively active S422DSGK1, inactive K127NSGK1, wild-type SGK3 and/or constitutively active T308D,S473DPKB. Glutamate induces a current in Xenopus oocytes expressing EAAT1, but not in water-injected oocytes, which is decreased by co-expression of Nedd4-2, an effect reversed by additional co-expression of S422DSGK1, SGK3 and T308D,S473DPKB, but not K127NSGK1. Site-directed mutagenesis of the SGK1 phosphorylation sites in the Nedd4-2 protein (S382A,S468ANedd4-2) and in the EAAT1 protein (T482AEAAT1, T482DEAAT1) significantly blunts the effect of S422DSGK1. Moreover, the current is significantly larger in T482DEAAT1- than in T482AEAAT1-expressing oocytes, indicating that a negative charge mimicking phosphorylation at T482 increases transport. The experiments reveal a powerful novel mechanism that regulates the activity of EAAT1. This mechanism might participate in the regulation of neuronal excitability and glutamate transport in other tissues.  相似文献   

3.
The human Na(+)-dependent neutral amino acid transporter type 2 (hASCT2/SLC1A5) plays an important role in the transport of neutral amino acids in epithelial cells. The serine and threonine kinases SGK1-3 and protein kinase B have been implicated in the regulation of several members of the SLC1 transporter family by enhancing their plasma membrane abundance. The present study explored whether those kinases modulate hASCT2. In Xenopus oocytes heterologously expressing hASCT2, coexpression of constitutively active (S422D)SGK1, (S419D)SGK3 or (T308DS473D)PKB upregulated the transporter activity. The stimulation requires the catalytical activity of the kinases since the inactive mutants (K127N)SGK1, (K191N)SGK3, and (T308AS473A)PKB failed to modulate the transporter. According to kinetic analysis and chemiluminescence assays, SGK1 and SGK3 modulate hASCT2 by enhancing the transporter abundance in the plasma membrane. As SGK1, 3 and PKB are activated by insulin and IGF1, the described mechanisms presumably participate in the hormonal stimulation of cellular amino acid uptake.  相似文献   

4.
Creatine binds phosphate thus serving energy storage. Cellular creatine uptake is accomplished by the Na+,Cl-, creatine transporter CreaT (SLC6A8). The present study explored the regulation of SLC6A8 by the serum and glucocorticoid inducible kinase SGK1, a kinase upregulated during ischemia. In Xenopus oocytes expressing SLC6A8 but not in water injected oocytes creatine induced a current which was significantly enhanced by coexpression of wild type SGK1 and constitutively active (S422D)SGK1, but not inactive (K127N)SGK1. Kinetic analysis revealed that (S422D)SGK1 enhanced maximal current without significantly altering affinity. The effect of SGK1 was mimicked by the constitutively active isoform (S419D)SGK3 but not by inactive (K119N)SGK3, wild type isoform SGK2 or constitutively active related kinase (T308D,S473D)PKB. In conclusion, the kinases SGK1 and SGK3 increase SLC6A8 activity by increasing the maximal transport rate of the carrier. Deranged SGK1 and/or SGK3 dependent regulation of SLC6A8 may affect energy storage particularly in skeletal muscle, heart, and neurons.  相似文献   

5.
Excitatory amino acid transporters (EAATs) terminate glutamatergic synaptic transmission by removing glutamate from the synaptic cleft into neuronal and glial cells. EAATs are not only secondary active glutamate transporters but also function as anion channels. Gating of EAAT anion channels is tightly coupled to transitions within the glutamate uptake cycle, resulting in Na(+)- and glutamate-dependent anion currents. A point mutation neutralizing a conserved aspartic acid within the intracellular loop close to the end of transmembrane domain 2 was recently shown to modify the substrate dependence of EAAT anion currents. To distinguish whether this mutation affects transitions within the uptake cycle or directly modifies the opening/closing of the anion channel, we used voltage clamp fluorometry. Using three different sites for fluorophore attachment, V120C, M205C, and A430C, we observed time-, voltage-, and substrate-dependent alterations of EAAT3 fluorescence intensities. The voltage and substrate dependence of fluorescence intensities can be described by a 15-state model of the transport cycle in which several states are connected to branching anion channel states. D83A-mediated changes of fluorescence intensities, anion currents, and secondary active transport can be explained by exclusive modifications of substrate translocation rates. In contrast, sole modification of anion channel opening and closing is insufficient to account for all experimental data. We conclude that D83A has direct effects on the glutamate transport cycle and that these effects result in changed anion channel function.  相似文献   

6.
The serum and glucocorticoid inducible kinase (SGK) 1 is expressed in brain tissue and upregulated by ischemia, neuronal excitation, and dehydration. The present study has been performed to elucidate the expression of SGK1 in cerebellar Purkinje cells and to explore whether it influences the colocalized glutamate transporter EAAT4. Intense SGK1 staining was observed in Purkinje cells following 48h of water deprivation. The kinase activates glutamate induced current (I(GLU)) in Xenopus oocytes heterologously expressing EAAT4, an effect mimicked by its isoforms SGK2, 3 and PKB. I(GLU) was decreased by the ubiquitin ligase Nedd4-2, an effect partially but not completely reversed by additional coexpression of the SGK kinase isoforms or PKB. According to immunohistochemistry EAAT4 protein abundance in the cell membrane was enhanced by SGK1 and decreased by Nedd4-2. In conclusion, SGK1 expression is upregulated by ischemia, excitation, and dehydration in cerebellar Purkinje cells. The upregulation of SGK1 may serve to stimulate EAAT4 and thus to reduce neuroexcitotoxicity.  相似文献   

7.
D,L-threo-beta-Benzyloxyaspartate (D,L-TBOA), an analog of threo-beta-hydroxyaspartate (THA) possessing a bulky substituent, is a potent non-transportable blocker for the excitatory amino acid transporters, EAAT1, 2 and 3, while L-threo-beta-methoxyaspartate (L-TMOA) is a blocker for EAAT2, but a substrate for EAAT1 and EAAT3. To characterize the actions of these THA analogs and the function of EAAT4 and EAAT5, we performed electrophysiological analyses in EAAT4 or EAAT5 expressed on Xenopus oocytes. In EAAT4-expressing oocytes, D,L-TBOA acted as a non-transportable blocker, while L-TMOA like D,L-THA was a competitive substrate. In contrast, D,L-THA, D,L-TBOA and L-TMOA all strongly attenuated the glutamate-induced currents generated by EAAT5. Among them, L-TMOA showed the most potent inhibitory action. Moreover, D,L-THA, D,L-TBOA and L-TMOA themselves elicited outward currents at negative potentials and remained inward at positive potentials suggesting that D,L-TBOA and L-TMOA, as well as D,L-THA, not only act as non-transportable blockers, but also block the EAAT5 leak currents. These results indicate that EAATs 4 and 5 show different sensitivities to THA analogs although they share properties of a glutamate-gated chloride channel.  相似文献   

8.
Mechanisms for the removal of glutamate are vital for maintaining normal function of the retina. Five excitatory amino acid transporters have been characterized to date from neuronal tissue, all of which are expressed within the retina except excitatory amino acid transporter 4 (EAAT4). In this study we examined the expression and localization of the glutamate transporter EAAT4 in the rat retina using RT-PCR and immunocytochemistry. RT-PCR using rat EAAT4 specific primers revealed a prominent 296-bp product in the retina, cortex and cerebellum. The identity of the EAAT4 fragment was confirmed by DNA sequencing. We examined the tissue expression levels of EAAT4 in cortex, retina and cerebellum using real-time PCR. The highest expression level was found in the cerebellum. Expression in the cortex was approximately 3.1% that of the cerebellum and the retina was found to have approximately 0.8% the total cerebellar EAAT4 content. In order to examine the specific cell types within the retina that express EAAT4, we performed immunocytochemistry using a rat EAAT4 specific antiserum. Cellular processes within the nerve fibre layer of the retina were intensely labelled for EAAT4. Double labelling EAAT4 with glial fibrillary acidic protein (GFAP) revealed extensive colocalization indicating that EAAT4 is localized within astrocytes within the retina. Double labelling of EAAT4 and the glutamate transporter EAAT1 (GLAST) revealed extensive colocalization suggesting that astrocytes in the retina express at least two types of glutamate transporters. These results suggest that astrocytes within the retina are well placed to provide mechanisms for glutamate removal as well as controlling cellular excitability.This work was supported by grants from the National Health and Medical Research Council (Grant #208950) and Retina Australia.  相似文献   

9.
10.
11.
The Na(+), glucose cotransporter SGLT1 (SLC5A1) accomplishes Na(+)-dependent concentrative cellular glucose uptake. SGLT1 activity is enhanced by the serum and glucocorticoid inducible kinase SGK1. As shown recently, the stimulating effect of protein kinase B on the glucose carrier GLUT4 involves the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). The present experiments thus explored whether PIKfyve is similarly involved in the SGK1-dependent regulation of SLC5A1. In Xenopus oocytes expressing SLC5A1 but not in water injected oocytes glucose induced a current which was significantly enhanced by coexpression of PIKfyve. The effect of PIKfyve on SLC5A1 was blunted by additional coexpression of the inactive mutant of the serum and glucocorticoid inducible kinase (K119N)SGK1 and mimicked by coexpression of constitutively active (S422D)SGK1. The stimulating effect of PIKfyve was abrogated by replacement of the serine in the SGK consensus sequence by alanine ((S138A)PIKfyve). Moreover, coexpression of (S138A)PIKfyve significantly blunted the effect of SGK1 on SLC5A1 activity. The observations disclose that PIKfyve participates in the SGK1-dependent regulation of SLC5A1.  相似文献   

12.
1. Previous studies have shown that phorbol esters induce protein kinase C (PKC) mediated phosphorylation of the vesicular acetylcholine transporter (VAChT) and change its interaction with vesamicol. However, it is not clear whether physiological activation of receptors coupled to PKC activation can alter VAChT behavior.2. Here we tested whether activation of kaianate (KA) receptors alters VAChT. Several studies suggest that the cholinergic amacrine cells display KA/AMPA receptors that mediate excitatory input to these neurons. In addition, KA in the chicken retina can generate intracellular messengers with the potential to regulate cellular functions.3. In cultured chicken retina (E8C11) KA reduced vesamicol binding to VAChT by 53%. This effect was potentiated by okadaic acid, a protein phosphatase inhibitor, and was totally prevented by BIM, a PKC inhibitor.4. Phorbol myristate acetate (PMA), but not -PMA, reduced in more than 85% the number of L-[3H]-vesamicol-specific binding sites in chicken retina, confirming that activation of PKC can influence vesamicol binding to chicken VAChT.5. The data show that activation of glutamatergic receptors reduces [3H]-vesamicol binding sites (VAChT) likely by activating PKC and increasing the phosphorylation of the ACh carrier.  相似文献   

13.
The amino acid transporter SN1 with substrate specificity identical to the amino acid transport system N is expressed mainly in astrocytes and hepatocytes where it accomplishes Na(+)-coupled glutamine uptake and efflux. To characterize properties and regulation of SN1, substrate-induced currents and/or radioactive glutamine uptake were determined in Xenopus oocytes injected with cRNA encoding SN1, the ubiquitin ligase Nedd4-2, and/or the constitutively active serum and glucocorticoid inducible kinase S422DSGK1, its isoform SGK3, and the constitutively active protein kinase B T308D,S473DPKB. The substrate-induced currents were enhanced by increasing glutamine and/or Na(+) concentrations, hyperpolarization, and alkalinization (pH 8.0). They were inhibited by acidification (pH 6.0). Coexpression of Nedd4-2 downregulated SN1-mediated transport, an effect reversed by coexpression of S422DSGK1, SGK3, and T308D,S473DPKB. It is concluded that SN1 is a target for the ubiquitin ligase Nedd4-2, which is inactivated by the serum and glucocorticoid inducible kinase SGK1, its isoform SGK3, and protein kinase B.  相似文献   

14.
Epithelial calcium (re)absorption is mediated by TRPV5 and TRPV6 channels. TRPV5 is modulated by the SGK1 kinase, a process requiring the PDZ-domain containing scaffold protein NHERF2. The present study explored whether TRPV6 is similarly regulated by SGKs and the scaffold proteins NHERF1/2. In Xenopus oocytes, SGKs activate TRPV6 by increasing its plasma membrane abundance. Deletion of the putative PDZ binding motif on TRPV6 did not abolish channel activation by SGKs. Furthermore, coexpression of neither NHERF1 nor NHERF2 affected TRPV6 or potentiated the SGKs stimulating effect. The present observations disclose a novel TRPV6 regulatory mechanism which presumably participates in calcium homeostasis.  相似文献   

15.
16.
Fibroblast growth factors (FGFs) exert basic functions both during embryonic development and in the adult. The expression of FGFs and their receptors has been reported in mammalian retinas, although information on the organization of the FGF system is still incomplete. Here, we report a detailed double-label immunohistochemical investigation of the localization patterns of FGF1 and its receptors FGFR1 and FGFR2 in adult and early postnatal mouse retinas. In adult retinas, FGF1 is localized to ganglion cells, horizontal cells, and photoreceptor inner and outer segments. FGFR1 is found in ganglion cells and Müller cells, whereas FGFR2 is primarily located in ganglion cells, the nuclei of Müller cells, and glycine-containing amacrine cells. During postnatal development, the patterns of FGF1, FGFR1, and FGFR2 immunostaining are similar to those in the adult, although transient FGF1-expressing cells have been detected in the proximal inner nuclear layer before eye opening. These patterns are consistent with a major involvement of FGF1, FGFR1, and FGFR2 in ganglion cell maturation (during development) and survival (in the adult). Moreover, FGF1 may affect amacrine cell development, whereas Müller cells appear to be regulated via both FGFR1 and FGFR2 throughout postnatal life. In immature retinas, large numbers of amacrine cells, including those containing calbindin and glycine, display both FGF1 and FGFR2 immunoreactivities in their nuclei, suggesting an action of FGF1 on FGFR2 leading to the maturation of these amacrine cells during a restricted period of postnatal development. This work was supported by funding from the Italian Ministry of Education.  相似文献   

17.
Human ether-a-go-go (HERG) channels participate in the repolarization of the cardiac action potential. Loss of function mutations of HERG lead to delayed cardiac repolarization reflected by prolonged QT interval. HERG channels are regulated through a signaling cascade involving phosphatidylinositol 3 (PI3) kinase. Downstream targets of PI3 kinase include the serum and glucocorticoid inducible kinase (SGK) and protein kinase B (PKB) isoforms. The present study has been performed to explore whether SGK1 and SGK3 participate in the regulation of HERG channel activity. HERG was expressed in Xenopus oocytes with or without additional expression of SGK1 or SGK3. Chemiluminescence was employed to determine HERG plasma membrane protein abundance. Coexpression of SGK3 but not of SGK1 in Xenopus oocytes resulted in an increase of steady state current (I(HERG)) and enhanced cell membrane protein abundance without affecting gating kinetics of the channel. Replacement of serine by alanine at the two SGK consensus sites decreased I(HERG) but neither mutation abolished the stimulating effect of SGK3. In conclusion, SGK3 participates in the regulation of HERG by increasing HERG protein abundance in the plasma membrane and may thus modify the duration of the cardiac action potential.  相似文献   

18.
The neuronal glutamate transporter, excitatory amino acid carrier 1 (EAAC1), has a diverse array of physiologic and metabolic functions. There is evidence that there is a relatively large intracellular pool of EAAC1 both in vivo and in vitro, that EAAC1 cycles on and off the plasma membrane, and that EAAC1 cell surface expression can be rapidly regulated by intracellular signals. Despite the possible relevance of EAAC1 trafficking to both physiologic and pathologic processes, the cellular machinery involved has not been defined. In the present study, we found that agents that disrupt clathrin-dependent endocytosis or plasma membrane cholesterol increased steady-state levels of biotinylated EAAC1 in C6 glioma cells and primary neuronal cultures. Acute depletion of cholesterol increased the V(max) for EAAC1-mediated activity and had no effect on Na(+)-dependent glycine transport in the same system. These agents also impaired endocytosis as measured using a reversible biotinylating reagent. Co-expression with dominant-negative variants of dynamin or the clathrin adaptor, epidermal growth factor receptor pathway substrate clone 15, increased the steady-state levels of biotinylated myc-EAAC1. EAAC1 immunoreactivity was found in a subcellular fraction enriched in early endosome antigen 1 (EEA1) isolated by differential centrifugation and partially co-localized with EEA1. Co-expression of a dominant-negative variant of Rab11 (Rab11 S25N) reduced steady-state levels of biotinylated myc-EAAC1 and slowed constitutive delivery of myc-EAAC1 to the plasma membrane. Together, these observations suggest that EAAC1 is constitutively internalized via a clathrin- and dynamin-dependent pathway into early endosomes and that EAAC1 is trafficked back to the cell surface via the endocytic recycling compartment in a Rab11-dependent mechanism. As one defines the machinery required for constitutive trafficking of EAAC1, it may be possible to determine how intracellular signals regulate EAAC1 cell surface expression.  相似文献   

19.
Huang S  Vandenberg RJ 《Biochemistry》2007,46(34):9685-9692
L-Glutamate is the predominant excitatory neurotransmitter in the brain, and its extracellular concentration is tightly controlled by the excitatory amino acid transporters (EAATs). The transport of 1 glutamate molecule is coupled to the cotransport of 3 Na+ and 1 H+ and the countertransport of 1 K+. In addition to substrate transport, the binding of glutamate and Na+ activates an anion current which is thermodynamically uncoupled from the transport process. We have identified three amino acid residues in EAAT1 (D272 in TM5, K384 and R385 in TM7) that influence the amplitude of the anion channel current relative to the transport current. Transporters containing the mutations R268A, D272A, D272K, K384A, K384D, R385A, and R385D were expressed in Xenopus laevis oocytes and their transport and anion channel functions measured using the two-electrode voltage clamp techniques. The D272, K384, and R385 mutant transporters showed no change in transport properties but have increased levels of anion channel activity compared to wild-type transporters. These results identify additional residues of the EAAT1 transporter that may contribute to the gating mechanism of the anion channel of glutamate transporters and also provide hints as to how substrate binding leads to channel activation.  相似文献   

20.
The sodium-dependent glutamate transporter, excitatory amino acid carrier 1 (EAAC1), has been implicated in the regulation of excitatory signaling and prevention of cell death in the nervous system. There is evidence that EAAC1 constitutively cycles on and off the plasma membrane and that under steady state conditions up to 80% of the transporter is intracellular. As is observed with other neurotransmitter transporters, the activity of EAAC1 is regulated by a variety of molecules, and some of these effects are associated with redistribution of EAAC1 on and off the plasma membrane. In the present study we tested the hypothesis that a structural component of lipid rafts, caveolin-1 (Cav-1), may participate in EAAC1 trafficking. Using C6 glioma cells as a model system, co-expression of Cav-1 S80E (a dominant-negative variant) or small interfering RNA-mediated knock-down of caveolin-1 reduced cell surface expression of myc epitope-tagged EAAC1 or endogenous EAAC1, respectively. Cav-1 S80E slowed the constitutive delivery and endocytosis of myc-EAAC1. In primary cultures derived from caveolin-1 knock-out mice, a similar reduction in delivery and internalization of endogenous EAAC1 was observed. We also found that caveolin-1, caveolin-2, or Cav-1 S80E formed immunoprecipitable complexes with EAAC1 in C6 glioma and/or transfected HEK cells. Together, these data provide strong evidence that caveolin-1 contributes to the trafficking of EAAC1 on and off the plasma membrane and that these effects are associated with formation of EAAC1-caveolin complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号