首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The Src family of nonreceptor tyrosine kinases plays an important role in modulating signals that affect growth cone extension, neuronal differentiation, and brain development. Recent reports indicate that the Src SH2/SH3 binding partner AFAP-110 has the capacity to modulate actin filament integrity as a cSrc activating protein and as an actin filament bundling protein. Both AFAP-110 and a brain specific isoform called AFAP-120 (collectively referred to as AFAP) exist at high levels in chick embryo brain. We sought to identify the localization of AFAP in mouse brain in order to identify its expression pattern and potential role as a cellular modulator of Src family kinase activity and actin filament integrity in the brain. In E16 mouse embryos, AFAP expression levels were very high and concentrated in the olfactory bulb, cortex, forebrain, cerebellum, and various peripheral sensory structures. In P3 mouse pups, overall expression was reduced compared to E16 embryos, and AFAP was found primarily in olfactory bulb, cortex, and cerebellum. AFAP expression levels were significantly reduced in adult mice, with high expression levels only detected in the olfactory bulb. Western blot analysis indicated that concentrated expression of AFAP correlates well with the AFAP-120 isoform, which appears to be a splice variant of AFAP-110. As the expression pattern of AFAP overlaps with the reported expression patterns of cSrc and Fyn, we hypothesize that AFAP is positioned to modulate signal transduction cascades that direct activation of these nonreceptor tyrosine kinases and concomitant cellular changes that occur in actin filaments during brain development.  相似文献   

2.
Protein kinase C delta (PKC delta) is tyrosine-phosphorylated and catalytically inactive in mouse keratinocytes transformed by a ras oncogene. In several other model systems, Src kinases are upstream regulators of PKC delta. To examine this relationship in epidermal carcinogenesis, v-ras transformed mouse keratinocytes were treated with a selective Src kinase inhibitor (PD 173958). PD 173958 decreased autophosphorylation of Src, Fyn, and Lyn kinases and prevented tyrosine phosphorylation of the Src kinase substrate p120. PD 173958 also prevented PKC delta tyrosine phosphorylation and activated PKC delta as detected by membrane translocation. Expression of keratinocyte differentiation markers increased in PD 173958-treated v-ras-keratinocytes, and fluid-filled domes emerged, indicative of tight junction formation. Antisense PKC delta or bryostatin 1 inhibited dome formation, while overexpression of PKC delta in the presence of PD 173958 enhanced the formation of domes. Plasmids encoding phenylalanine mutants of PKC delta tyrosine residues 64 and 565 induced domes in the absence of PD 173958, while phenylalanine mutants of tyrosine residues 52, 155, and 187 were inactive. Thus, Src kinase mediated post-translational modification of PKC delta on specific tyrosine residues in ras-transformed mouse keratinocytes inactivates PKC delta and contributes to alterations in the differentiated phenotype and tight junction formation associated with neoplasia.  相似文献   

3.
The WAVE/Scar proteins regulate actin polymerisation at the leading edge of motile cells via activation of the Arp2/3 complex in response to extracellular cues. Within cells they form part of a pentameric complex that is thought to regulate their ability to interact and activate the Arp2/3 complex. However, the exact mechanism for this is not known. We set out to assess whether phosphorylation of Scar1 by the non-receptor tyrosine kinase Src may influence the function of Scar1 and its ability to regulate Arp2/3-mediated actin polymerisation. We show that Scar1 is phosphorylated by Src in vitro and in vivo and identify tyrosine 125 as the major site in Scar1 to be phosphorylated in cells. Src-dependent phosphorylation of Scar1 on tyrosine 125 enhances its ability to bind to the Arp2/3 complex and regulates its ability to control actin polymerisation in cells. Thus, Src may act as an intermediary to regulate the activity of the Arp2/3 complex in response to external stimuli, via modulation of its interaction with WAVE/Scar proteins.  相似文献   

4.
Previously we have shown that protein kinase C (PKC)-mediated reorganization of the actin cytoskeleton in smooth muscle cells is transmitted by the non-receptor tyrosine kinase, Src. Several authors have described how 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation of cells results in an increase of Src activity, but the mechanism of the PKC-mediated Src activation is unknown. Using PKC isozymes purified from Spodoptera frugiperda insect cells, we show here that PKC is not able to activate Src directly. Our data reveal that the PKC-dependent Src activation occurs via the activation of the protein tyrosine phosphatase (PTP) PTP alpha. PTP alpha becomes activated in vivo after TPA stimulation. Further, we show that PKC delta phosphorylates and activates only PTP alpha in vitro but not any other of the TPA-responsive PKC isozymes that are expressed in A7r5 rat aortic smooth muscle cells. To further substantiate our data, we show that cells lacking PKC delta have a markedly reduced PTP alpha and Src activity after 12-O-tetradecanoylphorbol-13-acetate stimulation. These data support a model in which the main mechanism of 12-O-tetradecanoylphorbol-13-acetate-induced Src activation is the direct phosphorylation and activation of PTP alpha by PKC delta, which in turn dephosphorylates and activates Src.  相似文献   

5.
6.
Trophoblast giant-cell differentiation is well-characterized at the molecular level, yet very little is known about how molecular changes affect the cellular functions of trophoblast in embryo implantation. We have found, using both explanted E7.5 mouse embryo ectoplacental cone and the rat choriocarcinoma (Rcho-1) cell line, that trophoblast differentiation is distinguished by dramatic changes in cytoarchitecture and cell behavior. Undifferentiated trophoblast cells contain little organized actin and few small, peripheral focal complexes and exhibit high membrane protrusive activity, while differentiated trophoblast giant cells contain prominent stress fibers, large internal as well as peripheral focal adhesions, and become immotile. The dramatic changes in cell behavior and cytoskeletal organization of giant cells correlate with changes in the activities of the Rho family of small GTPases and a decrease in tyrosine phosphorylation of focal adhesion kinase. Together, these data provide detailed insight into the cellular properties of trophoblast giant cells and suggest that giant-cell differentiation is characterized by a transition from a motile to a specialized epithelial phenotype. Furthermore, our data support a phagocytic erosion, rather than a migratory infiltration, mechanism for trophoblast giant-cell invasion of the uterine stroma.  相似文献   

7.
The ubiquitously expressed Src tyrosine kinases (c-Src, c-Yes, and c-Fyn) regulate intestinal cell growth and differentiation. Src activity is also elevated in the majority of malignant and premalignant tumors of the colon. The development of fibroblasts with the three ubiquitously expressed kinases deleted (SYF cells) has identified the role of Src proteins in the regulation of actin dynamics associated with increased cell migration and invasion. Despite this, unexpectedly nothing is known about the role of the individual Src kinases on intestinal cell cytoskeleton and/or cell migration. We have previously reported that villin, an epithelial cell-specific actin-modifying protein that regulates actin reorganization, cell morphology, cell migration, cell invasion, and apoptosis, is tyrosine-phosphorylated. In this report using the SYF cells reconstituted individually with c-Src, c-Yes, c-Fyn, and wild type or phosphorylation site mutants of villin, we demonstrate for the first time the absolute requirement for c-Src in villin-induced regulation of cell migration. The other major finding of our study is that contrary to previous reports, the nonreceptor tyrosine kinase, Jak3 (Janus kinase 3), does not regulate phosphorylation of villin or villin-induced cell migration and is, in fact, not expressed in intestinal epithelial cells. Further, we identify SHP-2 and PTP-PEST (protein-tyrosine phosphatase proline-, glutamate-, serine-, and threonine-rich sequence) as negative regulators of c-Src kinase and demonstrate a new function for these phosphatases in intestinal cell migration. Together, these data suggest that in colorectal carcinogenesis, elevation of c-Src or down-regulation of SHP-2 and/or PTP-PEST may promote cancer metastases and invasion by regulating villin-induced cell migration and cell invasion.  相似文献   

8.
Protein tyrosine kinases play fundamental roles in the transduction of signals that regulate cell growth, differentiation, and functional responses to a diversity of external stimuli. It is therefore likely that understanding protein tyrosine kinase activity in NK cells will be crucial in further defining the intracellular regulation of their unique and specialized functions. We investigated the role of protein tyrosine phosphorylation in receptor-mediated signal transduction using stimuli known to play major roles in regulating NK cell activation. Immunoblot analyses with antiphosphotyrosine antibodies demonstrated that IL-2, a potent stimulus for NK cell proliferation and an agent that enhances NK cytotoxic function, induced the tyrosine phosphorylation of at least eight proteins in clonal CD16+/CD3-human NK cells. In contrast, IL-4, which modulates NK cell function without inducing proliferation, had no apparent effect on protein tyrosine phosphorylation. Because protein kinase C (PKC) activation plays a prominent, yet distinct role in NK cell-mediated cytolytic reactions, we next investigated whether PKC activation affects NK cell protein tyrosine phosphorylation. Surprisingly, PKC-activating agents, including the phorbol esters 12-O-tetradecanoylphorbol-13-acetate and 4 beta-phorbol 12, 13-didecanoate, as well as the synthetic diacylglycerol,1-oleoyl-2-acetylglycerol, also induced the tyrosine phosphorylation of a distinct set of proteins. The 4 beta-phorbol 12,13-didecanoate homolog, 4 alpha-phorbol 12,13-didecanoate, which does not activate PKC, also failed to induce protein tyrosine phosphorylation. Further, the PKC inhibitor, 1-O-hexadecyl-2-O-methylglycerol blocked tyrosine phosphorylation induced by 1-oleoyl-2-acetylglycerol. In subsequent studies, both CD8+ and CD8- NK clones were found to express the src-family tyrosine kinase, p56lck, which was detected by immunoblot analysis with anti-p56lck antiserum. In both types of clonal NK cell lines, IL-2 and 12-O-tetradecanoyl-phorbol appeared to stimulate the differential phosphorylation of p56lck as evidenced by the appearance of higher molecular mass isoforms on SDS-polyacrylamide gels. Thus, our results identify and characterize a potential role for tyrosine phosphorylation and for the lymphocyte-specific tyrosine kinase p56lck in the signaling events that regulate NK cell activation.  相似文献   

9.
Protein kinase C (PKC) isoforms play key roles in the regulation of cardiac contraction, ischemic preconditioning, and hypertrophy/failure. Models of PKC activation generally focus on lipid cofactor-induced PKC translocation to membranes. This study identifies tyrosine phosphorylation as an additional mechanism that regulates PKC delta actions in cardiomyocytes. Using immunoblot analysis with antibodies to total PKC delta and PKC delta-pY(311), we demonstrate that PKC delta partitions between soluble and particulate fractions (with little Tyr(311) phosphorylation) in resting cardiomyocytes. Phorbol 12-myristate 13-acetate (PMA) promotes PKC delta translocation to membranes and phosphorylation at Tyr(311). H(2)O(2) also increases PKC delta-pY(311) in association with its release from membranes. Both PMA- and H(2)O(2)-dependent increases in PKC delta-pY(311) are mediated by Src family kinases, but they occur via different mechanisms. The H(2)O(2)-dependent increase in PKC delta-pY(311) results from Src activation and increased Src-PKC delta complex formation. The PMA-dependent increase in PKC delta-pY(311) results from a lipid cofactor-induced conformational change that renders PKC delta a better substrate for phosphorylation by precomplexed Src kinases (without Src activation). PKC delta-Y(311) phosphorylation does not grossly alter the kinetics of PMA-dependent PKC delta down-regulation. Rather, tyrosine phosphorylation regulates PKC delta kinase activity. PKC delta is recovered from the soluble fraction of H(2)O(2)-treated cardiomyocytes as a tyrosine-phosphorylated, lipid-independent enzyme with altered substrate specificity. In vitro PKC delta phosphorylation by Src also increases lipid-independent kinase activity. The magnitude of this effect varies, depending upon the substrate, suggesting that tyrosine phosphorylation fine-tunes PKC delta substrate specificity. The stimulus-specific modes for PKC delta signaling identified in this study allow for distinct PKC delta-mediated phosphorylation events and responses during growth factor stimulation and oxidant stress in cardiomyocytes.  相似文献   

10.
Conversion of mechanical force into biochemical signaling   总被引:7,自引:0,他引:7  
Physical forces play important roles in regulating cell proliferation, differentiation, and death by activating intracellular signal transduction pathways. How cells sense mechanical stimulation, however, is largely unknown. Most studies focus on cellular membrane proteins such as ion channels, integrins, and receptors for growth factors as mechanosensory units. Here we show that mechanical stretch-induced c-Src protein tyrosine kinase activation is mediated through the actin filament-associated protein (AFAP). Distributed along the actin filaments, AFAP can directly active c-Src through binding to its Src homology 3 and/or 2 domains. Mutations at these specific binding sites on AFAP blocked mechanical stretch-induced c-Src activation. Therefore, mechanical force can be transmitted along the cytoskeleton, and interaction between cytoskeletal associated proteins and enzymes related to signal transduction may convert physical forces into biochemical reactions. Cytoskeleton deformation-induced protein-protein interaction via specific binding sites may represent a novel intracellular mechanism for cells to sense mechanical stimulation.  相似文献   

11.
P Lock  C L Abram  T Gibson    S A Courtneidge 《The EMBO journal》1998,17(15):4346-4357
We describe a method for identifying tyrosine kinase substrates using anti-phosphotyrosine antibodies to screen tyrosine-phosphorylated cDNA expression libraries. Several potential Src substrates were identified including Fish, which has five SH3 domains and a recently discovered phox homology (PX) domain. Fish is tyrosine-phosphorylated in Src-transformed fibroblasts (suggesting that it is a target of Src in vivo) and in normal cells following treatment with several growth factors. Treatment of cells with cytochalasin D also resulted in rapid tyrosine phosphorylation of Fish, concomitant with activation of Src. These data suggest that Fish is involved in signalling by tyrosine kinases, and imply a specialized role in the actin cytoskeleton.  相似文献   

12.
Diperoxovanadate (DPV), a potent inhibitor of protein tyrosine phosphatases and activator of tyrosine kinases, alters endothelial barrier function via signaling pathways that are incompletely understood. One potential pathway is Src kinase-mediated tyrosine phosphorylation of proteins such as cortactin that regulate endothelial cell (EC) cytoskeleton assembly. As DPV modulates endothelial cell signaling via protein tyrosine phosphorylation, we determined the role of DPV-induced intracellular free calcium concentration ([Ca2+]i) in activation of Src kinase, cytoskeletal remodeling, and barrier function in bovine pulmonary artery endothelial cells (BPAECs). DPV in a dose- and time-dependent fashion increased [Ca2+]i, which was partially blocked by the calcium channel blockers nifedipine and Gd3+. Treatment of cells with thapsigargin released Ca2+ from the endoplasmic reticulum, and subsequent addition of DPV caused no further change in [Ca2+]i. These data suggest that DPV-induced [Ca2+]i includes Ca release from the endoplasmic reticulum and Ca influx through store-operated calcium entry. Furthermore, DPV induced an increase in protein tyrosine phosphorylation, phosphorylation of Src and cortactin, actin remodeling, and altered transendothelial electrical resistance in BPAECs. These DPV-mediated effects were significantly attenuated by BAPTA (25 microM), a chelator of [Ca2+]i. Immunofluorescence studies reveal that the DPV-mediated colocalization of cortactin with peripheral actin was also prevented by BAPTA. Chelation of extracellular Ca2+ by EGTA had marginal effects on DPV-induced phosphorylation of Src and cortactin; actin stress fibers formation, however, affected EC barrier function. These data suggest that DPV-induced changes in [Ca2+]i regulate endothelial barrier function using signaling pathways that involve Src and cytoskeleton remodeling.  相似文献   

13.
Muscarinic receptor-mediated changes in protein tyrosine phosphorylation were examined in differentiated human neuroblastoma SH-SY5Y cells. Treatment of differentiated cells with 1 mM carbachol caused rapid increases in the tyrosine phosphorylation of focal adhesion kinase (FAK), Cas, and paxillin. The src family kinase-selective inhibitor PP1 reduced carbachol-stimulated tyrosine phosphorylation of FAK, Cas, and paxillin by 50 to 75%. In contrast, carbachol-stimulated activation of ERK1/2 was unaffected by PP1. Src family kinase activation by carbachol was further demonstrated by increased carbachol-induced tyrosine phosphorylation of the src-substrate, p120, and tyrosine phosphorylation of the src family kinase activation-associated autophosphorylation site. Site-specific FAK phosphotyrosine antibodies were used to determine that the carbachol-stimulated increase in the autophosphorylation of FAK was unaffected by pretreatment with PP1, whereas the carbachol-stimulated increase in the src family kinase-mediated phosphotyrosine of FAK was completely blocked by pretreatment with PP1. In SH-SY5Y cell lines stably overexpressing Fyn, the phosphotyrosine immunoreactivity of FAK was 625% that of control cells. Thus, muscarinic receptors activate protein tyrosine phosphorylation in differentiated cells, and the tyrosine phosphorylation of FAK, Cas, and paxillin, but not ERK1/2, is mediated by a src family tyrosine kinase activated in response to stimulation of muscarinic receptors.  相似文献   

14.
We have investigated the mechanism of PKC-induced actin reorganization in A7r5 vascular smooth muscle cells. PKC activation by 12-O-tetradecanoylphorbol-13-acetate induces the disassembly of actin stress fibers concomitant with the appearance of membrane ruffles. PKC also induces rapid tyrosine phosphorylation in these cells. As we could show, utilizing the Src-specific inhibitor PP2 and a kinase-deficient c-Src mutant, actin reorganization is dependent on PKC-induced Src activation. Subsequently, the activity of the small G-protein RhoA is decreased, whereas Rac and Cdc42 activities remain unchanged. Disassembly of actin stress fibers could also be observed using the Rho kinase-specific inhibitor Y-27632, indicating that the decrease in RhoA activity on its own is responsible for actin reorganization. In addition, we show that tyrosine phosphorylation of p190RhoGAP is increased upon 12-O-tetradecanoylphorbol-13-acetate stimulation, directly linking Src activation to a decrease in RhoA activity. Our data provide substantial evidence for a model elucidating the molecular mechanisms of PKC-induced actin rearrangements.  相似文献   

15.
Oleic acid (OA) affects assembly of gap junctions in neonatal cardiomyocytes. Adherens junction (AJ) regulates the stability of gap junction integrity; however, the effect of OA on AJ remains largely unexplored. The distribution of N-cadherin and catenins at cell–cell junction was decreased by OA. OA induced activation of protein kinase C(PKC)-α and -? and Src family kinase, and all three kinases were involved in the oleic acid-induced disassembly of the adherens junction, since it was blocked by pretreatment with Gö6976 (a PKCα inhibitor), ?V1–2 (a PKC? inhibitor), or PP2 (a Src family kinase inhibitor). Src family kinase appeared to be the downstream of PKC-α and -?, as blockade of either PKC-α or -? activity prevented the OA-induced activation of Src family kinase. Immunoprecipitation analyses showed that OA activated Fyn and Fer. OA promoted the association of p120 catenin/β-catenin with Fyn and Fer and caused increased tyrosine phosphorylation of p120 catenin and β-catenin, resulting in decreased binding of the former to N-cadherin and of the latter to α-catenin. Pretreatment with PP2 abrogated this OA-induced tyrosine phosphorylation of p120 catenin and β-catenin and restored the association of N-cadherin with p120 catenin and that of β-catenin with α-catenin. In conclusion, these results show that OA activates the PKC-Fyn signaling pathway, leading to the disassembly of the AJ. Therefore, inhibitors of PKC-α/-? and Src family kinase are potential candidates as cardioprotection agents against OA-induced heart injury during ischemia-reperfusion.  相似文献   

16.
K252a, a protein kinase inhibitor, acts as a neurotrophic factor in several neuronal cells. In this study we show that K252a enhanced the differentiation of C2C12 myoblasts as well as tyrosine phosphorylation of several focal adhesion-associated proteins including p130(Cas), focal adhesion kinase, and paxillin. The tyrosine phosphorylation of these proteins, reaching a maximum at 30 min after K252a treatment, closely correlated with the colocalization of these proteins in focal adhesion complexes and the coimmunoprecipitation of these proteins with p130(Cas). In addition, K252a stimulated longitudinal development of stress fiber-like structures and cell-matrix interaction in postmitotic myoblasts and eventually formation of well-developed myofibrils in multinucleated myotubes. Herbimycin A, a potent inhibitor of Src family kinases, and cytochalasin D, a selective disrupting-agent of actin filament, completely inhibited K252a-induced tyrosine phosphorylation as well as myoblast differentiation. Similar inhibitory effect was observed in the cells scrape loaded with a Rho inhibitor, C3 transferase, and the treatment of K252a induced a rapid translocation of Rho. These results are consistent with the model that Rho-dependent tyrosine phosphorylation of focal adhesion-associated proteins plays an important role in skeletal muscle differentiation.  相似文献   

17.
Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that gamma-tubulin (gamma-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, gamma-tubulin, and with anti-phosphotyrosine antibody revealed that gamma-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in gamma-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated gamma-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing gamma-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of gamma-tubulin interaction with tubulin dimers or other proteins during neurogenesis.  相似文献   

18.
The product of the c-kit proto-oncogene, denoted Kit/SCF-R, encodes a tyrosine kinase receptor for stem cell factor (SCF). Kit/SCF-R induces proliferation, differentiation or migration of cells within the hematopoietic, gametogenic and melanogenic lineages at different developmental stages. We report here that protein kinase C (PKC) mediates phosphorylation of Kit/SCF-R on serine residues in response to SCF or PMA in intact cells. The phosphorylation inhibits SCF-induced tyrosine autophosphorylation of Kit/SCF-R. In vitro studies showed that PKC phosphorylated the Kit/SCF-R directly on serine residues and inhibited autophosphorylation of Kit/SCF-R, as well as its kinase activity towards an exogenous substrate. The PKC-induced phosphorylation did not affect Kit/SCF-R ligand binding affinity. Inhibition of PKC led to increased SCF-induced tyrosine autophosphorylation, as well as increased SCF-induced mitogenicity. In contrast, PKC was necessary for SCF-induced motility responses, including actin reorganization and chemotaxis. Our data suggest that PKC is involved in a negative feedback loop which regulates the Kit/SCF-R and that the activity of PKC determines whether the effect of SCF will be preferentially mitogenic or motogenic.  相似文献   

19.
Previous reports suggest that PKC plays an important role in regulating myogenesis. However, the regulatory signaling pathways are not fully understood. We examined the effects of PKC downregulation on signaling events during skeletal muscle differentiation. We found that downregulation of PKC results in increased myogenesis in C2C12 cells as measured by creatine kinase activity and myogenin expression. We showed that, during differentiation, downregulation of PKC expression results in increased tyrosine phosphorylation of FAK, Cas, and paxillin, concomitant with enhanced Cas-CrkII complex formation, which leads to activation of JNK2. But in proliferated muscle cells, PKC inhibition results in FAK and Cas tyrosine dephosphorylation. Further, disruption of actin cytoskeleton by cytochalasin D prevents the activation of FAK and Cas as well as the formation of Cas-CrkII complex stimulated by PKC downregulation during muscle cell differentiation. Finally, we observed that PKC downregulation increases the tyrosine phosphorylation of focal adhesion associated proteins. Based on the above data, we propose that PKC downregulation results in enhanced tyrosine phosphorylation of FAK, Cas, and paxillin, thus promoting the establishment of Cas-CrkII complex, leading to activation of JNK and that these interactions are dependent upon the integrity of actin cytoskeleton during muscle cell differentiation. Data presented here significantly contribute to elucidating the regulatory role of PKC in myogenesis possibly through integrin signaling pathway.  相似文献   

20.
Mechanical stretch-induced activation of c-Src is an important step for signal transduction of stretch-induced fetal rat lung cell proliferation. This process appears to be mediated through actin filament-associated protein (AFAP), encoded by a gene originally cloned from the chicken. In the present study, we cloned the rat AFAP gene from fetal rat lungs. Its mRNA and protein are differentially expressed among various tissues. The protein is colocalized with actin filaments in fetal rat lung epithelial cells and fibroblasts. Mechanical stretch increased tyrosine phosphorylation of rat AFAP and its binding to c-Src within the initial several minutes. Src SH2 and SH3 binding motifs are highly conserved in the AFAP proteins (from chicken, rat to human). On the basis of the molecular structure of AFAP protein, we speculate that it is an adaptor in mechanical stretch-induced activation of c-Src. A novel model of mechanoreception is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号