首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Although urea transport across the human red cell membrane has been studied extensively, there is disagreement as to whether urea and water permeate the red cell by the same channel. We have suggested that the red cell anion transport protein, band 3, is responsible for both water and urea transport. Thiourea inhibits urea transport and also modulates the normal inhibition of water transport produced by the sulfhydryl reagent,pCMBS. In view of these interactions, we have looked for independent evidence of interaction between thiourea and band 3. Since the fluorescent stilbene anion transport inhibitor, DBDS, increases its fluorescence by two orders of magnitude when bound to band 3 we have used this fluorescence enhancement to study thiourea/band 3 interactions. Our experiments have shown that there is a thiourea binding site on band 3 and we have determined the kinetic and equilibrium constants describing this interaction. Furthermore,pCMBS has been found to modulate the thiourea/band 3 interaction and we have determined the kinetic and equilibrium constants of the interaction in the presence ofpCMBS. These experiments indicate that there is an operational complex which transmits conformational signals among the thiourea,pCMBS and DBDS sites. This finding is consistent with the view that a single protein or protein complex is responsible for all the red cell transport functions in which urea is involved.  相似文献   

2.
In order to elucidate the mechanism by which acidic lipids enhance the stereospecific high-affinity binding of opiates to neural membranes, chemical synthesis and testing of modified lipid derivatives were undertaken. Phosphatidyl serine ethyl glycolate ester was synthesized from phosphatidyl serine (PS) and ethyl diazoacetate and purified by preparative TLC on silica gel. The PS ester enhanced the specific binding of [3H]dihydromorphine to synaptic membranes from rat brain by 26%, while the enhancement with PS was 35% over control without added lipid. In contrast to PS, there was no complex formation between the PS ester and opiates or Ca2+, ruling out these possible mechanisms. It is suggested that acidic lipids enhance opiate binding by a direct interaction with the receptor.  相似文献   

3.
The cytoplasmic form of protein kinase C (PKC) is inactive, probably because the pseudosubstrate region in its regulatory domain blocks the substrate-binding site in its kinase domain. Calcium ions cause a translocation to the membrane: maximum activation requires a negative lipid such as phosphatidylserine (PS) and the neutral lipid diacylglycerol (DAG) but the mechanism by which PS and DAG activate PKC is unknown. Pseudosubstrate region 19-36 of PKC-beta has six basic and one acidic amino acids and region 19-29 has five basic and no acidic amino acids. Since any binding of basic residues in the pseudosubstrate region to acidic lipids in the membrane should stabilize the active form of PKC, we studied how peptides with amino acids equivalent to residues 19-36 and 19-29 of PKC-beta bound to phospholipid vesicles. We made equilibrium dialysis, filtration, and electrophoretic mobility measurements. The fraction of bound peptide is a steep sigmoidal function of the mol fraction of negative lipid in the membrane, as predicted from a simple theoretical model that assumes the basic residues provide identical independent binding sites. The proportionality constant between the number of bound peptides/area and the concentration of peptide in the bulk aqueous phase is 1 micron for a membrane with 25% negative lipid formed in 0.1 M KCl. Equivalently, the association constant of the peptide with the membrane is 10(4) M-1, or the net binding energy is 6 kcal/mol. Thus the interaction of basic residues in the pseudosubstrate region with acidic lipids in the membrane could provide 6 kcal/mol free energy towards stabilizing the active form of PKC.  相似文献   

4.
It is still unclear how frameshift mutations arise at cyclobutane pyrimidine dimers. The polymerase model is commonly used to explain the mechanisms of various mutations. An alternative polymerase-tautomer model was developed for UV-induced mutagenesis. A mechanism was proposed for targeted insertions caused by cis-syn cyclobutane thymine dimers. Targeted insertions are frameshift mutations due to addition of one or more nucleotides in a DNA sequence opposite to a lesion capable of stopping DNA synthesis. Among other factors, cyclobutane pyrimidine dimers can cause targeted insertions. UV irradiation can change the tautomeric form of DNA bases. Five rare tautomeric forms are possible for thymine, and they are stable when the thymine is a component of a cyclobutane dimer. A structural analysis showed that none of the canonical nucleotides can be added opposite to a specific rare thymine tautomer so that hydrogen bonds form between the two bases. A single nucleotide gap is consequently left in the corresponding site of the nascent strand when a specialized or modified DNA polymerase drives SOS or error-prone DNA synthesis on a template containing cis-syn cyclobutane thymine dimers with a base occurring in the rare tautomeric form. If the DNA composition is homogenous within the region, the end of the growing DNA strand may slip to form a complementary pair with the nucleotide adjacent to the dimer according to the Streisinger model, thus producing a loop. A targeted insertion is thereby generated to make the daughter strand longer. Targeted insertions were for the first time assumed to result from the cis-syn cyclobutane thymine dimers wherein one or both of the bases occur in the specific tautomeric form that does not allow the addition and hydrogen bonding of any canonical nucleotide in the opposite position. A model was developed to explain how targeted insertions of one or more nucleotides are caused by cis-syn cyclobutane thymine dimers. Thus, the polymerase-tautomer model can explain the nature and formation of targeted frameshift mutations in addition to hot and cold spots or targeted or untargeted nucleotide substitutions.  相似文献   

5.
Growth arrest induced by serum depletion and/or treatment with mevinolin (an inhibitor of mevalonate synthesis) in the human breast cancer cell line Hs578T was overcome by exogenous mevalonate, indicating that some product or metabolite of mevalonate may be involved in the mediation of serum-regulated growth of these cells. In the search for such compounds we first tested a variety of known end products of mevalonate with respect to their ability to counteract the inhibition of DNA synthesis caused by serum-free medium and mevinolin. Thereby high doses (10 μg/ml) of dolichol-20 were found to cause a partial counteraction. After straight-phase HPLC purification of endogenous lipids, isolated from 3H- or 14C-mevalonate-labelled Hs578T cultures, we found that non-sterol lipids co-eluting with dolichols efficiently induced DNA synthesis. After further purification with reverse-phase HPLC it was confirmed that virtually all of this effect was achieved by compound(s) (seen as a single UV and radioactive peak) co-eluting with dolichol-20. Nanogram doses, at most, of this (these) compound(s) elicited a substantial stimulation of DNA synthesis. The lipid(s) also counteracted the inhibition by mevinolin of N-linked glycosylation, indicating that it (they) also interfere(s) with this processing. Since treatment with tunicamycin (an inhibitor of N-linked glycosylation) abolished this growth-stimulative effect, N-linked glycosylation seems to be a necessary event in the processes leading to lipid-induced initiation of DNA synthesis.  相似文献   

6.
Cationic lipids form nanoscale complexes (lipoplexes) with polyanionic DNA and can be utilized to deliver DNA to cells for transfection. Here we report the correlation between delivery efficiency of these DNA carriers and the mesomorphic phases they form when interacting with anionic membrane lipids. Specifically, formulations that are particularly effective DNA carriers form phases of highest negative interfacial curvature when mixed with anionic lipids, whereas less effective formulations form phases of lower curvature. Structural evolution of the carrier lipid/DNA complexes upon interaction with cellular lipids is hence suggested as a controlling factor in lipid-mediated DNA delivery. A strategy for optimizing lipofection is deduced. The behavior of a highly effective lipoplex formulation, DOTAP/DOPE, is found to conform to this "efficiency formula".  相似文献   

7.
Synthetic vectors represent an alternative to recombinant viruses for gene transfer. We have recently explored the transfection potential of a class of noncationic lipids bearing thiourea moieties as DNA-associating headgroups. The encouraging results obtained with lipopolythioureas derived from serinol prompted us to further investigate this family of vectors. In the present study, we considered the transfection properties of a series of derivatives based on a different thiourea polar headgroup bearing a lysine scaffold. The synthesis of these compounds could be readily achieved in three steps with good yields. We found that these lipopolythioureas (LPT) might be considered as alternative systems for gene transfection since their activity reached the same magnitude range as that of cationic vectors in the presence of serum. LPT with 14-carbon length chains appeared to be more efficient as a transfecting agent than the ones with shorter chains. Toxicity studies proved that the hydration film method led to particles well tolerated both by the cells in vitro and by the mice in vivo. The ability to induce gene expression in vivo was demonstrated by intratumoral injection. Finally, biodistribution studies showed that the quantity recovered in blood circulation, 2 h after systemic injection, was improved as compared to that in cationic lipids.  相似文献   

8.
《Biophysical journal》2020,118(11):2694-2702
Calcium ions bind to lipid membranes containing anionic lipids; however, characterizing the specific ion-lipid interactions in multicomponent membranes has remained challenging because it requires nonperturbative lipid-specific probes. Here, using a combination of isotope-edited infrared spectroscopy and molecular dynamics simulations, we characterize the effects of a physiologically relevant (2 mM) Ca2+ concentration on zwitterionic phosphatidylcholine and anionic phosphatidylserine lipids in mixed lipid membranes. We show that Ca2+ alters hydrogen bonding between water and lipid headgroups by forming a coordination complex involving the lipid headgroups and water. These interactions distort interfacial water orientations and prevent hydrogen bonding with lipid ester carbonyls. We demonstrate, experimentally, that these effects are more pronounced for the anionic phosphatidylserine lipids than for zwitterionic phosphatidylcholine lipids in the same membrane.  相似文献   

9.
Emodin is one of the most abundant anthraquinone derivatives found in nature. It is the active principle of some traditional herbal medicines with known biological activities. In this work, we combined experimental and theoretical studies to reveal information about location, orientation, interaction and perturbing effects of Emodin on lipid bilayers, where we have taken into account the neutral form of the Emodin (EMH) and its anionic/deprotonated form (EM?). Using both UV/Visible spectrophotometric techniques and molecular dynamics (MD) simulations, we showed that both EMH and EM? are located in a lipid membrane. Additionally, using MD simulations, we revealed that both forms of Emodin are very close to glycerol groups of the lipid molecules, with the EMH inserted more deeply into the bilayer and more disoriented relative to the normal of the membrane when compared with the EM?, which is more exposed to interfacial water. Analysis of several structural properties of acyl chains of the lipids in a hydrated pure DMPC bilayer and in the presence of Emodin revealed that both EMH and EM? affect the lipid bilayer, resulting in a remarkable disorder of the bilayer in the vicinity of the Emodin. However, the disorder caused by EMH is weaker than that caused by EM?. Our results suggest that these disorders caused by Emodin might lead to distinct effects on lipid bilayers including its disruption which are reported in the literature.  相似文献   

10.
In this paper we demonstrate that ascorbic acid specifically prevents NADPH-initiated cytochrome P450 (P450)-mediated microsomal lipid peroxidation in the absence of free iron. Lipid peroxidation has been evidenced by the formations of conjugated dienes, lipid hydroperoxide and malondialdehyde. Other scavengers of reactive oxygen species including superoxide dismutase, catalase, glutathione, -tocopherol, uric acid, thiourea, mannitol, histidine, -carotene and probucol are ineffective to prevent the NADPH-initiated P450-mediated free iron-independent microsomal lipid peroxidation. Using a reconstituted system comprised of purified NADPH-P450 reductase, P450 and isolated microsomal lipid or pure L--phosphatidylcholine diarachidoyl, a mechanism has been proposed for the iron-independent microsomal lipid peroxidation and its prevention by ascorbic acid. It is proposed that the perferryl moiety P450 Fe3+. O2 initiates lipid peroxidation by abstracting methylene hydrogen from polyunsaturated lipid to form lipid radical, which then combines with oxygen to produce the chain propagating peroxyl radical for subsequent formation of lipid peroxides. Apparently, ascorbic acid prevents initiation of lipid peroxidation by interacting with P450 Fe3+. O2. (Mol Cell Biochem 166: 35-44, 1997)  相似文献   

11.
The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane. Additional lipid protein complexes can be identified using proteomics analysis of lipid binding protein co-purified with the lipid vesicles.Download video file.(48M, mov)  相似文献   

12.
Cationic lipids are efficient tools to introduce nucleic acids and proteins into cells. Elucidation of the mechanism and cellular pathways associated with such transport has been relatively tedious, even though significant progress has been made in the characterization of the intracellular trafficking of lipid/DNA complexes. Surprisingly little is known about the effects of these delivery vectors on cell functioning. In this report, we show that both cationic lipids and cationic lipid/DNA complexes mobilize the intracellular calcium. Removal of extracellular calcium did not significantly abolish this effect and preincubating cells with thapsigargin led to a decrease in [Ca2+]i, indicating that calcium was released mainly from internal calcium stores sensitive to thapsigargin. Pretreatment of the cells with the phospholipase C inhibitor U73122, blocked the [Ca2+]i rise, suggesting an inositol dependent mechanism.  相似文献   

13.
The Ca2+-regulated lipid-binding properties of the H- and L-forms of calelectrin present in the electric organ ofTorpedo marmorata have been compared. Binding of H-calelectrin required Ca2+ in millimolar concentrations, whereas that of L-calelectrin occurred in the micromolar range. Dissociation of H-calelectrin previously bound to lipids in the presence of 2 mM Ca2+ took place only when the Ca2+ concentration was reduced to micromolar concentrations. Binding was most effective to acidic phospholipids such as phosphatidylserine. Both forms of calelectrin promoted the aggregation of membrane vesicles in the presence of Ca2+, Mg2+, Na+ and K+ inhibited the Ca2+-induced binding to phospholipid, decreasing in effectiveness in that order. Binding was also inhibited by high pH. The surface activity and hdyrophobicity index showed that H-calelectrin is a hydrophilic molecule. It may represent a less active, more highly phosphorylated ‘down-regulated’ form of L-calelectrin. The role of calcium in H-calelectrin binding to lipid appeared to be consistent with the formation of a ternary complex of the protein, an acidic lipid and Ca2+, rather than with a direct interaction of lipid with hydrophobic sequences in H-calelectrin whose accessibility is Ca2+-regulated.  相似文献   

14.
We suggest a novel approach for direct optical microscopy observation of DNA interaction with the bilayers of giant cationic liposomes. Giant unilamellar vesicles, about 100 μm in diameter, made of phosphatidylcholines and up to 33 mol% of the natural bioactive cationic amphiphile sphingosine, were obtained by electroformation. “Short” DNAs (oligonucleotide 21b and calf thymus 250 bp) were locally injected by micropipette to a part of the giant unilamellar vesicle (GUV) membrane. DNAs were injected native, as well as marked with a fluorescent dye. The resulting membrane topology transformations were monitored in phase contrast, while DNA distribution was followed in fluorescence. We observed DNA-induced endocytosis due to the DNA/lipid membrane local interactions and complex formation. A characteristic minimum concentration (C endo) of d-erythro-sphingosine (Sph+) in the GUV membrane was necessary for the endocytic phenomenon to occur. Below C endo, only lateral adhesions between neighboring vesicles were observed upon DNA local addition. C endo depends on the type of zwitterionic (phosphocholine) lipid used, being about 10 mol% for DPhPC/Sph+ GUVs and about 20 mol% for SOPC/Sph+ or eggPC/Sph+ GUVs. The characteristic sizes and shapes of the resulting endosomes depend on the kind of DNA, and initial GUV membrane tension. When the fluorescent DNA marker dye was injected after the DNA/lipid local interaction and complex formation, no fluorescence was detected. This observation could be explained if one assumes that the DNA is protected by lipids in the DNA/lipid complex, thereby inaccessible for the dye molecules. We suggest a possible mechanism for DNA/lipid membrane interaction involving DNA encapsulation within an inverted micelle included in the lipid membrane. Our model observations could help in understanding events associated with the interaction of DNA with biological membranes, as well as cationic liposomes/DNA complex formation in gene transfer processes. Received: 18 April 1998 / Revised version: 6 August 1998 / Accepted: 7 August 1998  相似文献   

15.
Slices of rabbit cerebral cortex, from the foetal stage to the adult have been used to compare lipid synthesis from fatty acids synthesized de novo from [U-14C]glucose and [1-14C]acetate, with lipid synthesis from exogenous albumin-bound [1-14C]palmitate. Incorporation into cellular lipid has been determined in terms of DNA, protein, wet wt. of tissue and wet weight of whole brain. On a wet wt. basis, maximum incorporation of glucose carbon into lipid occurred in the foetal brain while lipid synthesis from acetate and palmitate was maximum at 4–14 days after birth. Glucose and acetate were incorporated into a diversity of lipids (with increasing amounts of phosphatidylcholine synthesized during maturation), while palmitate was incorporated into the free fatty acid and triglyceride fractions. A greater proportion of acetate was incorporated into fatty acids of chain-length longer than C16 compared with the incorporation of palmitate. However, on a molar basis de novo synthesized and exogenous palmitate were elongated, desaturated and incorporated into phospholipids at a similar rate, while exogenous palmitate was incorporated to a greater extent than de nova synthesized fatty acid into the triglyceride fraction. This difference in metabolism may be due to the different size of the non-esterified fatty acid pool in the two situations. At the period of their most active formation, the very long-chain fatty acids may be synthesized from a pool of the C18 series of fatty acids (saturated and monoenoic) not in equilibrium with the bulk of C18 acids in cerebral lipids. This could be a pool of acyl groups derived from ethanolamine phospholipids.  相似文献   

16.
The thiourea based receptor containing naphthalene groups (1), has been successfully designed and synthesized for application as an oxalate receptor. A density functional theory at B3LYP/6-31G(d,p) level of theory has been applied to predict the binding ability between 1 and selected anions, i.e., oxalate, malonate, succinate, glutarate, dihydrogen phosphate, and hydrogen sulphate. Calculation results point out that receptor 1 shows the strongest interaction to oxalate ion with the binding free energy of 172.48 kcal mol−1. The recognition ability of 1 to the selected anions has been also investigated by means of the absorption and emission techniques. Experimental results are in excellent agreement with the calculation data in which receptor 1 shows highly selective for oxalate ion over the other anions with logβ of 3.82 (0.02) M−1 by means of the size of binding cavity.   相似文献   

17.
Nonviral gene delivery is limited to a large extent by the cationic nature of most of the chemical vector. We have shown that lipopolythioureas interact with DNA. However, lipopolythioureas were not very efficient at transfecting cells, probably due to reduced interaction between the noncationic synthetic lipid and the cell membrane. Here, we report that liposomes made from a new thiourea lipid, DPPC, and a lipid bearing an RGD ligand allowed very efficient entry of the lipopolythioureas into integrin alpha(v)beta(3) expressing cells. In addition, we show that a stable interaction between DNA and lipopolythiourea could be obtain with two thiourea groups. Moreover, the addition of a hydrophilic terminus improves the formulation of these new DNA binding agents.  相似文献   

18.
We demonstrated previously that acetylated tubulin inhibits plasma membrane Ca2 +-ATPase (PMCA) activity in plasma membrane vesicles (PMVs) of rat brain through a reversible interaction. Dissociation of the PMCA/tubulin complex leads to restoration of ATPase activity. We now report that, when the enzyme is reconstituted in phosphatidylcholine vesicles containing acidic or neutral lipids, tubulin not only loses its inhibitory effect but is also capable of activating PMCA. This alteration of the PMCA-inhibitory effect of tubulin was dependent on concentrations of both lipids and tubulin. Tubulin (300 μg/ml) in combination with acidic lipids at concentrations > 10%, increased PMCA activity up to 27-fold. The neutral lipid diacylglycerol (DAG), in combination with 50 μg/ml tubulin, increased PMCA activity > 12-fold, whereas tubulin alone at high concentration (≥ 300 μg/ml) produced only 80% increase. When DAG was generated in situ by phospholipase C incubation of PMVs pre-treated with exogenous tubulin, the inhibitory effect of tubulin on PMCA activity (ATP hydrolysis, and Ca2 + transport within vesicles) was reversed. These findings indicate that PMCA is activated independently of surrounding lipid composition at low tubulin concentrations (< 50 μg/ml), whereas PMCA is activated mainly by reconstitution in acidic lipids at high tubulin concentrations. Regulation of PMCA activity by tubulin is thus dependent on both membrane lipid composition and tubulin concentration.  相似文献   

19.
The protective effect of melatonin against phenobarbital-induced oxidative stress in the rat liver was measured based on lipid peroxidation levels (malondialedyde and 4-hydroxyalkenals). Cellular proliferation, DNA synthesis and cell cycle duration were quantitated by the incorporation of 3H-thymidine, detected by autoradiography, into newly synthesized DNA. Two experiments were carried out in this study, each on four equal-sized groups of male rats (control, melatonin [10 mg/kg], phenobabital [20 mg/kg] and phenobarbital plus melatonin). Experiment I was designed to study the proliferative activity and rate of DNA synthesis, and measure the levels of lipid peroxidation, while experiment II was for cell cycle time determination. Relative to the controls, the phenobarbital-treated rats showed a significant increase (P < 0.01) in the lipid peroxidation levels (30.7%), labelling index (69.4%) and rate of DNA synthesis (37.8%), and a decrease in the cell cycle time. Administering melatonin to the phenobarbital-treated rats significantly reduced (P < 0.01) the lipid peroxidation levels (23.5%), labelling index (38.2%) and rate of DNA synthesis (29.0%), and increased the cell cycle time. These results seem to indicate that the stimulatory effect of phenobarbital on the oxidized lipids, proliferative activity, kinetics of DNA synthesis and cell cycle time alteration in the liver may be one of the mechanisms by which the non-genotoxic mitogen induces its carcinogenic action. Furthermore, melatonin displayed powerful protection against the toxic effect of phenobarbital.  相似文献   

20.
Diacylglycerol pyrophosphate (DGPP), a phosphorylated form of phosphatidic acid (PA), gained attention recently due to its role as signaling lipid. However, little is known about its surface organization and potential impact on membrane-mediated function. In this work we investigated the interfacial behavior of Langmuir monolayers formed with pure DGPP and of its mixtures with PA. We found that changes of the subphase pH affect the surface behavior of DGPP. At pH 8, DGPP forms liquid expanded monolayers with a compressibility modulus of about 60 mN m?1 at collapse. On acidic solutions, the compressibility modulus increases to 90 mN m?1 and the average molecular area is smaller. At pH 8, DGPP and its precursor PA form thermodynamically favored topographically homogeneous non-ideal mixtures. The interaction among these lipids leads to a non-ideal diminution of the mean molecular area and consequently, to an increase of the compressibility modulus, with variations of the surface electrostatics. The favorable interaction of PA and DGPP, leading to changes of the film packing suggest that DGPP may act as a structural signal transducer in membrane-mediated cellular processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号