首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gastric cancer (GC) cell line, AGS, has high-level expression of CD40, a tumor necrosis factor receptor (TNFR) family member. CD40 is present on the surfaces of a large variety of cells, including B cells, endothelial cells, dendritic cells and some carcinoma cells, and delivers signals regulating diverse cellular responses, such as proliferation, differentiation, growth suppression, and cell death. In this research, we studied the effects of different forms of CD40 stimulation on AGS cells by flow cytometry, Western blotting and siRNA transfection. We found that different forms of CD40 stimulation, either recombinant soluble CD40L (sCD40L, ligation) or agonist anti-CD40 antibody (cross-linking), induced different effects in AGS gastric cancer cells, proliferation or apoptosis. We also showed that VEGF provided a significant contribution to sCD40L-induced proliferation, while agonist anti-CD40 antibody induced GADD45 upregulation and promoted apoptosis.  相似文献   

2.
Gap junctions and their structural proteins, connexins (Cxs), have been implicated in carcinogenesis. To explore the involvement of Cx32 in gastric carcinogenesis, immunochemical analysis of Cx32 and proliferation marker Ki67 using tissue-microarrayed human gastric cancer and normal tissues was performed. In addition, after Cx32 overexpression in the human gastric cancer cell line AGS, cell proliferation, cell cycle analyses, and p21Cip1 and p27Kip1 expression levels were examined by bromodeoxyuridine assay,flow cytometry, real-time RT-PCR, and western blotting. Immunohistochemical study noted a strong inverse correlation between Cx32 and Ki67 expression pattern as well as theirlocation. In vitro, overexpression of Cx32 in AGS cells inhibited cell proliferation significantly. G1 arrest, up-regulation of cell cycle-regulatory proteins p21Cip1 and p27Kip1 was also found at both mRNA and protein levels. Taken together, Cx32 plays some roles in gastric cancer development by inhibiting gastric cancer cell proliferation through cell cycle arrest and cell cycle regulatory proteins. [BMB Reports 2013; 46(1): 25-30]  相似文献   

3.
Magnolol (Mag), an effective natural compound isolated from the stem bark of Magnolia officinalis, was found to have the potential for antitumor activity by inducing apoptosis in tumor cells. However, the effect of Mag on renal carcinoma cells and its molecular mechanism are unexplored. Our study provided evidence that Mag induced apoptosis in 786-O and OS-RC-2?cell lines via the mitochondrial pathway and cell cycle arrest. In this work, we found that Mag induced morphological changes and inhibited the proliferation of 786-O and OS-RC-2?cells in a dose- and time-dependent manner but exerted no notable inhibitory effects on normal human renal proximal tubular (HK-2) cells. Treatment with Mag suppressed the migration and invasion ability of renal carcinoma cells. Moreover, Mag caused the openness of mPTP, the accumulation of intracellular ROS and decreased △Ψm, leading to mitochondrial dysfunction. However, pretreatment with the antioxidant N-acetyl cysteine (NAC) reversed the apoptosis induced by Mag and decreased the generation of ROS. In addition, the increased proportion of the G1/G0 phase indicated that Mag caused cell cycle arrest. Further analyses suggested that magnolol-induced apoptosis was related to the abnormal expression of p53, Bax, Bcl-2, cytochrome c and caspase activation. Together, the results above revealed that Mag had antitumor effects in renal carcinoma cells via ROS production as well as cell cycle arrest and the apoptotic mitochondrial pathway was suppressed in part by NAC.  相似文献   

4.
目的通过观察大豆低聚糖对胃癌癌细胞株BGC-823细胞的细胞周期和细胞凋亡的影响,探索乳酸杆菌发酵滤液对胃癌细胞作用的可能机制。方法用光镜和流式细胞仪分析不同浓度大豆低聚糖对BGC-823细胞的凋亡诱导效果;用流式细胞仪分析不同浓度大豆低聚糖对BGC-823细胞细胞周期的影响。结果大豆低聚糖可以诱导BGC-823细胞的凋亡。形态学观察处理后的BGC-823细胞,可见细胞变形,细胞皱缩,体积变小,细胞间隙增大,细胞核固缩。流式细胞仪分析50 mg/ml和100 mg/ml大豆低聚糖作用48 h和72 h BGC-823细胞的凋亡比例,分别为6.76%和7.93%。50 mg/ml大豆低聚糖作用48 h,引起BGC-823细胞G1期阻滞,100 mg/ml大豆低聚糖作用48 h,引起BGC-823细胞出现S期阻滞。结论大豆低聚糖可诱导部分BGC-823细胞凋亡。大豆低聚糖对BGC-823细胞的生长抑制作用在低浓度时可能通过G1期阻滞实现,在高浓度时可能通过S期阻滞实现。  相似文献   

5.
Magnolol, a major bioactive component found in Magnolia officinalis with anti-inflammation and anti-oxidation activities as well as minimized cytotoxic effects. Although magnolol has a wide range of clinical applications, the anti-tumor activity of magnolol is not efficient. Herein, we reported the synthesis and anti-cancer activities of three novel magnolol analogues CT2-1, CT2-2, CT2-3, among which CT2-3 revealed more efficient anti-non-small cell lung cancer (NSCLC) activity than magnolol. Our data showed that CT2-3 could significantly inhibit the proliferation of human NSCLC cells in a dose-dependent manner. In addition, we revealed CT2-3 could induce cell cycle arrest through down-regulating mRNA expression of CDK4, CDK6 and cyclin D1. Moreover, we verified that CT2-3 could cause ROS generation, leading to apoptosis of human NSCLC cells. Further more, we also provided strong evidences that CT2-3 down-regulates the expression of c-Myc and topoisomerases, and contributes to the apoptosis of human NSCLC cells. Taken together, the current study is the first to report a promising new chemotherapeutic drug candidate CT2-3 that can efficiently eliminate human NSCLC cells through triggering cell cycle arrest as well as ROS-mediated and c-Myc/topoisomerases-mediated apoptosis.  相似文献   

6.
Xue Z  Yan H  Li J  Liang S  Cai X  Chen X  Wu Q  Gao L  Wu K  Nie Y  Fan D 《Journal of cellular biochemistry》2012,113(1):302-312
Cancer stem cells (CSCs), or tumor initiating cells, are a subpopulation of cancer cells with self-renewal and differentiation properties. However, there has been no direct observation of the properties of gastric CSCs in vitro. Here we describe a vincristine (VCR)-preconditioning approach to obtain cancer stem-like cells (CSLCs) from the gastric cancer cell line SGC7901. The CSLCs displayed mesenchymal characteristics, including the up-regulated mesenchymal markers Snail, Twist, and vimentin, and the down-regulated epithelial marker E-cadherin. Using a Matrigel-based differentiation assay, CSLCs formed 2D tube-like and 3D complex lumen-like structures, which resembled differentiated gastric crypts. The characteristic of cellular differentiation was also found by transmission electron microscopy and up-regulation of gastrointestinal genes CDX2 and SOX2. We further showed that CSLCs could self-renew through significant asymmetric division compared with parent cells by tracing PKH-26, BrdU, and EDU label-retaining cells. In addition, these CSLCs also increased expression of CD44, CD90, and CXCR4 at the mRNA level, which was identified as novel targets. Furthermore, drug sensitivity assays and xenograft experiments demonstrated that the cells developed multi-drug resistance (MDR) and significant tumorigenicity in vivo. In summary, gastric CSCs were identified from VCR-preconditioned SGC7901 cell line, characterized by high tumorigenicity and the capacity for self-renewal and differentiation.  相似文献   

7.
The distal wall of the groove between the rat forestomach and glandular stomach is lined with a special type of columnar cells (CCGG) and with fibrillovesicular cells (FVC). The cardiac glands contain cardiac mucosa (CMC) and serous cells (CSC). The CCGG contain small mucous granules and special vesicles and tubules. The CMC are filled with large mucous granules and resemble mucous neck cells. The CSC are filled with large proteinaceous granules. The FVC are characterized by long microvilli, apical bundles of microfilaments and a complex "tubulovesicular system". The pattern of 3H-thymidine incorporation and the presence of immature and transitional forms indicate a possible origin of all the cell types concerned from a common undifferentiated precursor. The membranes of the tubulovesicular system of FVC as well as the apical cell membrane were reactive to Thiéry's carbohydrate stain. However, lanthanum tracing of the extracellular space and ultrastructural stereoscopy did not reveal a permanent continuity between both membrane systems. The absence of 3H-thymidine label showed that FVC were not proliferative. The structural characteristics of FVC do not account for a secretory, resorptive or receptive function. The special arrangement of microfilaments and the tubulovesicular system suggests an ability to fast changes in surface area.  相似文献   

8.
Non-steroidal anti-inflammatory drugs (NSAIDs) activated gene (NAG-1) is a newly identified member of the transforming growth factor-β (TGF-β) superfamily. Members of the TGF-β family are multifunctional growth factors, and the nature of their effects depends on the cellular context and cell type. NAG-1 has antitumorigenic and proapoptotic activities in colon and gastric cancer cells lacking endogenous cyclooxgenase-2 (COX-2) expression. In contrast, COX-2 overexpression is related to antiapoptotic activity. The purpose of this study is to evaluate the proapoptotic activity of NAG-1 according to COX-2 expression and cell type. NAG-1 cDNA was transfected in SNU668 cells with endogenous COX-2 expression, SNU601 cells with forced COX-2 expression and Hep3B hepatocellular carcinoma cells. SNU668 cells with ectopic expression of NAG-1 showed markedly elevated subG1 population, induced death receptor-4 (DR-4) and DR-5, and revealed smaller active fragments of caspase-3. Forced COX-2 expression in SNU601 cells did not inhibit apoptosis caused by NAG-1 expression. Sulindac sulfide caused apoptosis, and induced expression of DR-5 and NAG-1 in Hep3B cells. However, Hep3B cells ectopically expressing NAG-1 did not cause apoptosis, and smaller active fragments of caspase-3 and an 85 kDa band of poly ADP-ribose polymerase (PARP) did not appear in the transfected cells, either. This study suggests that proapoptotic activity of NAG-1 is cell type specific and not related to COX-2 expression.  相似文献   

9.
To limit or stop cancer spreading, one of the most prevalent strategies is to induce cancer cell death. Differentiation therapy and apoptosis induction are two ways to achieve this goal. Sedimentation field-flow fractionation (SdFFF) has been described as an effective tool for cell separation, respecting integrity and viability. Because SdFFF takes advantage of intrinsic properties of eluted cells (size, density, shape), we studied the capacity of SdFFF to monitor specific biophysical modifications that occurred during cellular apoptosis or differentiation induction. Then, we used, as an in vitro cellular model of apoptosis and differentiation, diosgenin dose-dependent induction in the polyvalent human erythroleukemia cell line. Two other chemicals were used: phorbol myristate acetate (differentiation inducer) and staurosporine (apoptosis inducer). Our results demonstrated a correlation between SdFFF elution profile changes and induction of effective biological processes. Thus, after acquisition of a reference profile, SdFFF could be used alone to follow chemically induced biological events, suggesting many different applications such as testing series of molecules, evaluation of new cellular/biological models used in different life science fields, or sorting purified populations with the aim of better understanding mechanisms of induced cellular events.  相似文献   

10.
11.
Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (P < 0.01) down-regulated, while SLC19A1 was up-regulated (P < 0.01) in FD group. FD cells exhibited significantly (P < 0.05) higher protein content of BHMT, MAT2b and DNMT3a, as well as increased SAM/SAH concentrations and global DNA hypermethylation. The expression of the total and all the 3 classes of IGF-1 mRNA variants was significantly (P < 0.01) down-regulated and IGF-1 concentration was decreased (P < 0.05) in the culture media. IGF-1 signaling pathway was also compromised with diminished activation (P < 0.05) of STAT3, AKT and mTOR. CpG hypermethylation was detected in the promoter regions of IGF-1 and FOLR1 genes, while higher SLC19A1 mRNA corresponded to hypomethylation of its promoter. IGF-1 supplementation in FD media significantly abolished FD-induced decrease in cell viability. However, IGF-1 had limited effect in rescuing the cell phenotype when added 24 h after FD. Taken together, down-regulation of IGF-1 expression and signaling is involved in FD-induced cell cycle arrest and apoptosis in HT-22 hippocampal neuron cells, which is associated with an abnormal activation of methyl transfer pathway and hypermethylation of IGF-1 gene promoter.  相似文献   

12.
The tumor suppressor gene p53 was shown to directly regulate the expression of microRNA-34a (miR-34a). miR-34a regulates a plethora of target proteins, which are involved in cell cycle, apoptosis, differentiation, and cellular development.miR-34a resides in the region of chromosome 1p36.23, which is commonly deleted in many tumor types, while it results in the loss expression of miR-34a. The promoters of the miR-34a gene subject to inactivation by CpG methylation also induce the loss expression of miR-34a. Ectopic miR-34a expression induces apoptosis, cell cycle arrest, and differentiation or reduces migration. This review summarizes the progress regarding the role of miR-34a in cell cycle, differentiation, and apoptosis.  相似文献   

13.
Trefoil factor 2 (TFF2) is mucin associated peptide that has a mucosal barrier function in addition to participating in repair and healing. We examined the localization of TFF2 and gastric mucins in gastric mucous cells, the surface mucous gel layer (SMGL) adherent to normal gastric mucosa, and in the mucoid cap covering gastric erosions. Carnoy’s solution, or formalin/picric acid-fixed paraffin embedded materials from resected stomachs and formalin-fixed paraffin embedded gastric biopsy materials were used. Sections were immunostained for the TFF2 and histochemically stained for gastric mucins. In addition, thick sectioned gastric mucosa fixed in Carnoy’s solution were stained with FITC-labeled GSA-II lectin specific for gland mucous cell mucin and examined for three-dimensional images of the SMGL using a confocal laser scanning microscope. The TFF2 and gland mucous cell mucin were found intermixed together in the gastric gland mucous cells, in the SMGL in laminated layers, and in the mucoid cap. A laminated arrangement of continuous sheets of gland mucous cell mucin in the SMGL was demonstrated in the three-dimensional images. Co-localization of the TFF2 with gland mucous cell mucin suggests a physical interaction between the TFF2 and gland mucous cell mucin. The TFF2 trapped in the adherent mucins may be responsible for mucosal defense, healing, and repair.  相似文献   

14.
Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells.  相似文献   

15.
Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent present in green tea, is a promising chemopreventive agent. We recently showed that green tea polyphenols exert remarkable preventive effects against prostate cancer in a mouse model and many of these effects are mediated by the ability of polyphenols to induce apoptosis in cancer cells [Proc. Natl. Acad. Sci. USA 98 (2001) 10350]. Earlier, we showed that EGCG causes a G0/G1 phase cell cycle arrest and apoptosis of both androgen-sensitive LNCaP and androgen-insensitive DU145 human prostate carcinoma cells, irrespective of p53 status [Toxicol. Appl. Pharmacol. 164 (2000) 82]. Here, we provide molecular understanding of this effect. We tested a hypothesis that EGCG-mediated cell cycle dysregulation and apoptosis is mediated via modulation of cyclin kinase inhibitor (cki)-cyclin-cyclin-dependent kinase (cdk) machinery. As shown by immunoblot analysis, EGCG treatment of LNCaP and DU145 cells resulted in significant dose- and time-dependent (i) upregulation of the protein expression of WAF1/p21, KIP1/p27, INK4a/p16, and INK4c/p18, (ii) down-modulation of the protein expression of cyclin D1, cyclin E, cdk2, cdk4, and cdk6, but not of cyclin D2, (iii) increase in the binding of cyclin D1 toward WAF1/p21 and KIP1/p27, and (iv) decrease in the binding of cyclin E toward cdk2. Taken together, our results suggest that EGCG causes an induction of G1 phase ckis, which inhibits the cyclin-cdk complexes operative in the G0/G1 phase of the cell cycle, thereby causing an arrest, which may be an irreversible process ultimately leading to apoptotic cell death. This is the first systematic study showing the involvement of each component of cdk inhibitor-cyclin-cdk machinery during cell cycle arrest and apoptosis of human prostate carcinoma cells by EGCG.  相似文献   

16.
Severe side effects and complications such as gastrointestinal and hematological toxicities because of current anticancer drugs are major problems in the clinical management of gastric cancer, which highlights the urgent need for novel effective and less toxic therapeutic approaches. Hispolon, an active polyphenol compound, is known to possess potent antineoplastic and antiviral properties. In this study, we investigated the efficacy of hispolon in human gastric cancer cells and explored the cell death mechanism. Hispolon induced ROS-mediated apoptosis in gastric cancer cells and was more toxic toward gastric cancer cells than toward normal gastric cells, suggesting greater susceptibility of the malignant cells. The mechanism of hispolon-induced apoptosis was that hispolon abrogated the glutathione antioxidant system and caused massive ROS accumulation in gastric cancer cells. Excessive ROS caused oxidative damage to the mitochondrial membranes and impaired the membrane integrity, leading to cytochrome c release, caspase activation, and apoptosis. Furthermore, hispolon potentiated the cytotoxicity of chemotherapeutic agents used in the clinical management of gastric cancer. These results suggest that hispolon could be useful for the treatment of gastric cancer either as a single agent or in combination with other anticancer agents.  相似文献   

17.
Abstract

Lysophosphatidic acid (LPA) is a simple biological lipid and mediates several biological functions with LPA receptors (LPA1 to LPA6). In the present study, to assess whether LPA receptors promote cell-invasive activity of pancreatic cancer cells, highly invasion PANC-R9 cells were established from PANC-1 cells, using Matrigel-coated Cell Culture Insert. The cell-invasive activity of PANC-R9 cells was shown to be approximately 15 times higher than that of PANC-1 cells. LPAR1 expression level was markedly elevated in PANC-R9 cells in comparison with PANC-1 cells, while LPAR3 expression level was reduced. The cell-invasive activity of PANC-R9 cells was enhanced by LPA, but LPA had no impact on PANC-1 cell invasion. Before initiation of the cell invasion assay, PANC-R9 cells were pretreated with dioctanoylglycerol pyrophosphate (DGPP), an antagonist of LPA1/LPA3. The invasive activity of PANC-R9 cells was markedly suppressed by DGPP. Autotaxin (ATX) is a key enzyme that catalyzes the conversion of lysophosphatidylcholine (LPC) to LPA. ATX expression level was elevated in PANC-R9 cells compared with PANC-1 cells. In the presence of LPC, the cell motile activity of PANC-R9 cells was markedly stimulated. In contrast, LPC did not affect the cell motile activity of PANC-1 cells. PANC-R9 cell motility was inhibited by an ATX inhibitor, PF-8380. These results suggest that LPA signaling via LPA1 is a potent molecular target for the regulation of tumor progression in PANC-1 cells.  相似文献   

18.
19.
The actin cytoskeleton has the unique capability of integrating signaling and structural elements to regulate cell function. We have examined the ability of actin stress fiber disassembly to induce lens cell differentiation and the role of actin filaments in promoting lens cell survival. Three-dimensional mapping of basal actin filaments in the intact lens revealed that stress fibers were disassembled just as lens epithelial cells initiated their differentiation in vivo. Experimental disassembly of actin stress fibers in cultured lens epithelial cells with either the ROCK inhibitor Y-27632, which destabilizes stress fibers, or the actin depolymerizing drug cytochalasin D induced expression of lens cell differentiation markers. Significantly, short-term disassembly of actin stress fibers in lens epithelial cells by cytochalasin D was sufficient to signal lens cell differentiation. As differentiation proceeds, lens fiber cells assemble actin into cortical filaments. Both the actin stress fibers in lens epithelial cells and the cortical actin filaments in lens fiber cells were found to be necessary for cell survival. Sustained cytochalasin D treatment of undifferentiated lens epithelial cells suppressed Bcl-2 expression and the cells ultimately succumbed to apoptotic cell death. Inhibition of Rac-dependent cortical actin organization induced apoptosis of differentiating lens fiber cells. Our results demonstrate that disassembly of actin stress fibers induced lens cell differentiation, and that actin filaments provide an essential survival signal to both lens epithelial cells and differentiating lens fiber cells.  相似文献   

20.
This study treated the isolation and passage of muscle-derived stem cells (MDSCs) from rat penile corpora cavernosa, detection of stem cell marker expression, observation of their self-renewal and continuous proliferation, and demonstration of their potential to differentiate into smooth muscle cells in co-culture. Muscle-derived stem cells from the rat penile corpora cavernosa were isolated and purified. The expression of stem cell markers Sca-1 and desmin was detected in PP6 cells, thus confirming that the main components of PP6 cells are MDSCs. The expression of Sca-1 and desmin occurred both in PP6 cells and cells at passages 3, 6, and 8, and there was no significant decrease in the expression level with increasing passage number. The growth curves indicated that the cell doubling time was approximately 48 h. The cells entered the stationary phase after approximately 7 days of culture. The proliferative activity of the cells at passage 8 remained unchanged. After 2 days of co-culture with smooth muscle cells, the DAPI-labeled MDSCs tended to exhibit smooth muscle cell morphology and expression of α-SMA was detected. MDSCs exist in the rat penile corpora cavernosa and possess the potential to differentiate into smooth muscle cells. This discovery serves as the basis in view of the potential use of endogenous stem cells for the treatment of erectile dysfunction (ED).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号