首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glandular chemical defence relying on the action of salicylaldehyde is characteristic for Chrysomela leaf beetle larvae. The salicylaldehyde precursor salicin, sequestered from salicaceous host plants, is deglucosylated and the aglycon further oxidized by a salicyl alcohol oxidase (SAO) to the respective aldehyde. SAOs, key enzymes in salicin-based glandular chemical defence, were previously identified and shown to be of a single evolutionary origin in Chrysomela species. We here identified and characterized SAO of Phratora vitellinae, the only species outside the genus Chrysomela that produce salicylaldehyde as a defensive compound. Although Chrysomela and Phratora are not closest relatives, their SAOs share glucose-methanol-choline oxidoreductase (GMC) affiliation, a specific GMCi subfamily ancestor, glandular tissue-specific expression and almost identical gene architectures. Together, this strongly supports a single origin of SAOs of both Chrysomela and Phratora. Closely related species of Chrysomela and P. vitellinae use iridoids as defensive compounds, which are like salicylaldehyde synthesized by the consecutive action of glucosidase and oxidase. However, we elucidated SAO-like sequences but no SAO proteins in the glandular secretion of iridoid producers. These findings support a different evolutionary history of SAO, related genes and other oxidases involved in chemical defence in the glandular system of salicylaldehyde and iridoid-producing leaf beetle larvae.  相似文献   

2.
Allomones are widely used by insects to impede predation. Frequently these chemical stimuli are released from specialized glands. The larvae of Chrysomelina leaf beetles produce allomones in gland reservoirs into which the required precursors and also the enzymes are secreted from attached gland cells. Hence, the reservoirs can be considered as closed bio-reactors for producing defensive secretions. We used RNA interference (RNAi) to analyse in vivo functions of proteins in biosynthetic pathways occurring in insect secretions. After a salicyl alcohol oxidase was silenced in juveniles of the poplar leaf beetles, Chrysomela populi, the precursor salicyl alcohol increased to 98 per cent, while salicyl aldehyde was reduced to 2 per cent within 5 days. By analogy, we have silenced a novel protein annotated as a member of the juvenile hormone-binding protein superfamily in the juvenile defensive glands of the related mustard leaf beetle, Phaedon cochleariae. The protein is associated with the cyclization of 8-oxogeranial to iridoids (methylcyclopentanoid monoterpenes) in the larval exudates made clear by the accumulation of the acylic precursor 5 days after RNAi triggering. A similar cyclization reaction produces the secologanin part of indole alkaloids in plants.  相似文献   

3.
Larvae of a number of chrysomelid leaf beetles sequester phenol glucosides such as salicin from their food plants, i.e. Salix and Populus spp. Salicin is hydrolyzed in the glandular reservoir of the defensive glands. The resulting salicyl alcohol (saligenin) is oxidized by an extracellular oxidase. The product salicylaldehyde accumulates as major defensive compound. The secretions from Chrysomela populi and Phratora vitellinae were preserved in saturated ammonium sulfate solution and subjected to micro-purification of the oxidase by means of electrophoretic methods. The enzyme from P. vitellinae has a native M(r) of 334,000 and a subunit M(r) of 79,000 indicating a tetrameric enzyme. The isoelectric points of the enzymes from C. populi and P. vitellinae are at pH 5.4 and 5.2, respectively. In the oxidation of salicyl alcohol oxygen functions as electron acceptor yielding hydrogen peroxide as product. Hydrogen peroxide does not accumulate in native secretions but appears to be degraded most likely by a catalase. The oxidases from the two species show broad pH optima in the range 5.5 to 6.5, they oxidize salicyl alcohol as main substrate. Minor substrates are several ortho-substituted and to a lesser extent meta- but not para-substituted benzyl alcohols. In the presence of 8-hydroxygeraniol only trace amounts of the respective aldehyde are formed. The Km values of salicyl alcohol are 132 mM (C. populi) and 63 mM (P. vitellinae). The extracellular enzyme, which is functionally related to fungal aryl alcohol oxidase (EC 1.1.3.7) and vanillyl alcohol oxidase (EC 1.1.3.38) was named salicyl alcohol oxidase. The continuous formation of salicylaldehyde in the glandular reservoir can be compared to the operation of an enzyme reactor. Due to its low aqueous solubility the produced aldehyde steadily leaves the aqueous reaction fluid and builds up an organic phase which may account for 15% of the total liquid volume of the secretion.  相似文献   

4.
Glucansucrases from Leuconostoc mesenteroides catalyze the transfer of glucosyl units from sucrose to other carbohydrates by acceptor reaction. We modified salicyl alcohol, phenol and salicin by using various glucansucrases and with sucrose as a donor of glucosyl residues. Salicin, phenyl glucose, isosalicin, isomaltosyl salicyl alcohol, and a homologous series of oligosaccharides, connected to the acceptors and differing from one another by one or more glucose residues, were produced as major reaction products. By using salicin and salicyl alcohol as acceptors, B-1355C2 and B-1299CB-BF563 dextransucrases synthesized most widely diverse products, producing more than 12 and 9 different kinds of saccharides, respectively. With phenol, two acceptor products and oligosaccharides were synthesized by using the B-1299CB-BF563 dextransucrase. Salicyl derivatives, as acceptor products, showed higher anti-coagulation activity compared with that of salicin or salicyl alcohol that were used as acceptors.  相似文献   

5.
Chemical defence in chrysomelid eggs and neonate larvae   总被引:2,自引:0,他引:2  
ABSTRACT. Eggs and neonate larvae of chrysomelid beetles (sub-tribes Chrysomelina and Phyllodectina) were investigated for the presence of defensive substances.
The two isoxazolinone glucosides (compounds 1 and 2), characteristic of the adult defence secretion, were detected in the eggs of all studied species. Compound 2, containing a nitropropionate, is always present in concentrations (above 10-2 M), which are highly deterrent to the ant Myrmica rubra. This compound is not at all or only slightly toxic to ants at 10-2 M. Compound 1, devoid of nitropropionate, is a minor constituent, and is neither deterrent nor toxic to ants.
The five Chrysomela species studied and Phratora vitellinae also sequester salicin in their eggs in amounts highly deterrent and toxic to ants. A single Chrysomela egg often contains enough salicin to kill an ant. While the isoxazolinones are discarded with the egg shells, salicin is used by neonate larvae as a precursor for the production of salicylaldehyde in the thoracic defence glands, already functional at hatching. No salicin could be detected in the eggs of those species whose larvae produce cyclopentanoid monoterpenes, even if they feed on Salicaceae. No larva of any species seems to be able to produce detectable amounts of monoterpenes at birth. A very early defence, possible only in those species using salicin as the precursor for their defensive secretion, could be highly advantageous in protecting the clustered larvae during the long process of hatching and in avoiding cannibalism between siblings.
Only trace amounts of oleic acid were found in the eggs of Gastrophysa viridula , in contrast to previous reports on its presence in large quantities in the American G. cyanea.  相似文献   

6.
Larvae of the leaf beetle subtribe Chrysomelina sensu stricto repel their enemies by displaying glandular secretions that contain defensive compounds. These repellents can be produced either de novo (iridoids) or by using plant-derived precursors (e.g. salicylaldehyde). The autonomous production of iridoids, as in Phaedon cochleariae, is the ancestral chrysomeline chemical defence and predates the evolution of salicylaldehyde-based defence. Both biosynthesis strategies include an oxidative step of an alcohol intermediate. In salicylaldehyde-producing species, this step is catalysed by salicyl alcohol oxidases (SAOs) of the glucose-methanol-choline (GMC) oxidoreductase superfamily, but the enzyme oxidizing the iridoid precursor is unknown. Here, we show by in vitro as well as in vivo experiments that P. cochleariae also uses an oxidase from the GMC superfamily for defensive purposes. However, our phylogenetic analysis of chrysomeline GMC oxidoreductases revealed that the oxidase of the iridoid pathway originated from a GMC clade different from that of the SAOs. Thus, the evolution of a host-independent chemical defence followed by a shift to a host-dependent chemical defence in chrysomeline beetles coincided with the utilization of genes from different GMC subfamilies. These findings illustrate the importance of the GMC multi-gene family for adaptive processes in plant–insect interactions.  相似文献   

7.
Zvereva EL  Rank NE 《Oecologia》2003,135(2):258-267
Larvae of the leaf beetle Chrysomela lapponica obtain salicyl glucosides (SGs) from the host plant to produce a defensive secretion with salicylaldehyde. In northern Russia, larvae and pupae experience high parasitism by the phorid fly Megaselia opacicornis and tachinid fly Cleonice nitidiuscula. We compared the suitability of the SG-rich Salix borealis and SG-poor S. caprea and S. phylicifolia to Ch. lapponica and tested whether enemy pressure on Ch. lapponica varies among host species that differ in SG content. In the laboratory, survival of Ch. lapponica larvae was higher on S. borealis than on S. caprea and S. phylicifolia, while adult body mass was higher on S. borealis and S. caprea than on S. phylicifolia. In the field, parasitism by both M. opacicornis and Cl. nitidiuscula was greater on beetles from S. borealis than from the SG-poor S. caprea or S. phylicifolia. In a laboratory choice test, the pupal parasitoid M. opacicornis laid similar numbers of eggs on beetles reared on SG-rich and SG-poor willows, suggesting that the host plant-derived defence is not effective against this parasitoid. In a field enemy-exclusion experiment, beetle survival was greatly enhanced by the exclusion of enemies, but survival rates did not differ between S. borealis and S. caprea, although larvae developed faster on S. borealis. On the other hand, parasitism and predation were observed more often on S. borealis than on S. caprea. Thus, beetle larvae perform better but also suffer higher predation and parasitism on S. borealis than on SG-poor willows. Ch. lapponica does not appear to obtain enemy-free space by feeding on SG-rich willow species.  相似文献   

8.
《Journal of Asia》2014,17(4):871-877
Scarab beetles are agriculturally important worldwide, and as adults or larvae they may cause damage to the leaves, flowers, fruit, and roots of crops. Previous international studies showed that Japanese beetle (Popillia japonica, Newman) lures, and structurally related chemicals, can attract numerous scarabs. Based on those studies, season-long trials in grape, cabbage, corn and soybean fields were conducted in 2012–2013 in NE China. Tests determined the attractiveness of the Japanese beetle floral lure (phenethyl propionate:eugenol:geraniol, 3:7:3) and sex attractant (Japonilure), alone, combined, or in a mixture with either (Z)-3-hexen-1-ol, anethole = 1-methoxy-4-propenyl benzene or benzyl alcohol, to local Coleoptera. Furthermore, control efficacies based on leaf, ear, and silk damage, as well as reductions of adults on plants, and overwintering larvae, were also determined. Eleven scarab species, and four non-scarab species, were captured. The addition of other chemicals increased the attractiveness of the two Japanese beetle lures to scarabs such as Potosia brevitarsis (Lewis), Oxycetonia jecunda Faldermann, Holotrichia diomphalia Bates et al., Popillia quadriguttata (Fabricius), Maladera verticalis (Fairmaire), and Metabolus impressifrons Fairmaire, and the chrysomelid beetle Chrysomela populi L. The floral lure, and floral lure plus Japonilure baited traps resulted in > 80% overwintering larvae and adult reductions in corn and cabbage fields, whereas the Japonilure traps gave similar results in the soybean fields. This indicates that the commercial Japanese beetle lure combination can be recommended for use by the Chinese farmers in the corn or soybean fields, and that the related chemicals can be used to increase the attractiveness of the Japanese beetle lures.  相似文献   

9.
Zvereva EL  Rank NE 《Oecologia》2004,140(3):516-522
Larvae of the leaf beetle Chrysomela lapponica derive a defensive secretion from salicyl glucosides found in the host plant Salix borealis. This secretion protects beetle larvae from some natural enemies, but does not appear to repel parasitoids. We tested the hypothesis that the fly parasitoid Megaselia opacicornis (Diptera, Phoridae) uses the larval defensive secretion of Ch. lapponica in its search for prey. In the field, nearly 30 times more M. opacicornis individuals were caught on leaves coated with sticky resin next to a source of secretion than on control leaves. In the laboratory, M. opacicornis females laid six times more eggs next to a cotton ball soaked in secretion than next to one soaked in water. Fly females also lay more eggs on prey rich in larval secretion than on secretion-poor prey. In the field, removal of defensive secretion from beetle prepupae resulted in a 7.5-fold reduction of oviposition by fly females. Parasitoids were nearly twice as likely to lay eggs on prepupae, rich in secretion, as on pupae, which contain little secretion. Fly offspring reared from beetle prepupae reached a 21% larger body mass than those reared from pupae. Finally, M. opacicornis females avoided host prepupae already parasitized by the tachinid fly Cleonice nitidiuscula, which possess little secretion. These experiments indicate that host plant-derived defensive secretions are used by this parasitoid for host location. Adaptation of parasitoids to use defensive secretions of hosts may selectively favor an increase in diet breadth in specialist herbivores.  相似文献   

10.
Beta-Salicin is a naturally occurring glycoside found in the bark of poplar and willow trees. Ancient man used it as an analgesic and antipyretic. It has a D-glucopyranose unit attached by a beta-linkage to the phenolic hydroxyl of salicyl alcohol. Two new salicin analogues have been enzymatically synthesized by transglycosylation reactions: (a) by the reaction of Bacillus macerans cyclomaltodextrin glucanyltransferase with cyclomaltohexaose and salicyl alcohol, followed by reactions with alpha amylase and glucoamylase to give D-glucopyranose attached by an alpha-linkage to the phenolic hydroxyl of salicyl alcohol as the major product, alpha-salicin; and (b) by the reaction of Leuconostoc mesenteroides B-742CB dextransucrase with sucrose and salicyl alcohol, followed by reactions with dextranase and glucoamylase to give alpha-d-glucopyranose attached to the primary alcohol hydroxyl of salicyl alcohol as the major product, alpha-isosalicin.  相似文献   

11.
ABSTRACT. Phratora vitellinae L. and Chrysomela tremulae F. (Chrysomelinae, Coleoptera) feed on Salix or Populus spp. (Salicaceae). Their larvae, as well as the larvae of other chrysomelines feeding on Salicaceae, secrete salicylaldehyde. In this study, we demonstrate that salicylaldehyde is derived from salicin, a phenylglucoside present in the leaves of the host plant. The concentration of salicylaldehyde in the secretion is positively correlated with the amount of salicin in the food of the larvae. The transformation of salicin into salicylaldehyde occurs in the defence glands since the β-glucosidase activity is 4 times higher in their glands than in the gut. The larvae recover most of the glucose that results from the hydrolysis of salicin. For generalist predators, such as ants, salicylaldehyde is a more potent deterrent than saligenin or salicin.  相似文献   

12.
1. The leaf beetle, Chrysomela lapponica, originally uses the salicyl glucosides (SGs) of its host plants to sequester salicylaldehyde, which serves as a defence against generalist enemies but attracts specialist enemies. However, some populations of C. lapponica have shifted to SG‐poor hosts, and their secretions do not contain salicylaldehyde. 2. In was suggested that beetles shift to SG‐poor hosts to escape from specialist enemies. To test this hypothesis, we compared field mortality between two populations of C. lapponica that were associated with SG‐rich willow, Salix myrsinifolia (Kola Peninsula and Finland) and two populations that fed on SG‐poor willows, S. glauca (Ural) and S. caprea (Belarus). 3. Mortality from generalist enemies was significantly higher in Belarus than in three other populations, whereas mortality from specialists did not differ among populations. A specialist predator (syrphid fly larvae, Parasyrphus nigritarsis) and specialist parasitoids (phorid flies, Megaselia spp.) were attracted to the secretions of larvae reared on both SG‐rich and SG‐poor hosts. 4. Feeding on leaves of S. caprea and S. myrsinifolia both previously damaged by leaf puncturing and by the larvae of potentially competing species Chrysomela vigintipunctata, decreased the weight and prolonged the development of C. lapponica. 5. Thus, populations of C. lapponica that have shifted to SG‐poor willow species did not obtain enemy‐free space because specialist enemies have developed adaptations to herbivores that switched to a novel host plant. We suggest that in some populations host plant shift was favoured by interspecific competition with the early season SG‐using specialist, C. vigintipunctata.  相似文献   

13.
Abstract.
  • 1 Generalist predators are repelled by chrysomelid (Chrysomela spp., Phratora vitellinue L.) larval defensive secretions that are obtained from salicin in their host plants. But little is known about the effect of these secretions on specialist predators.
  • 2 In this study, we describe the feeding behaviour of a fly, Parasyrphus melanderi Curran (Diptera: Syrphidae), which feeds on Chrysomela aeneicollis Schaeffer (Coleoptera: Chrysomelidae). Parasyrphus melanderi lays its eggs on C.aeneicollis egg clutches, and its larvae consume C.aeneicollis eggs and larvae.
  • 3 Chrysomela aeneicollis hatching rates were significantly lower (20%) on clutches with fly eggs than on clutches without them (40%). Half of the clutches with one fly egg had survival rates below 5%, and when two fly eggs were present (four clutches), the entire clutch was consumed.
  • 4 In nature, P.melanderi eggs were 3 times more abundant on a salicylaterich willow species S.orestera Schneider, than on the medium-salicylate S.geyeriana Anderss. (1.8 v 0.6 eggs per clutch). On 18% of the S.orestera clones, all the beetle clutches contained fly eggs. In laboratory-choice tests, P.melanderi larvae fed equally rapidly on C.aeneicollis larvae that were chemically defended (feeding on S.orestera) as on larvae that produced no secretion (feeding on the salicylate-poor S.lutea Nutt.). This predator does not appear to be deterred by C.aeneicollis's defensive secretion. We discuss the implications of specialist predators on determining host suitability to herbivorous insects.
  相似文献   

14.
A maltose phosphorylase (EC 2.4.1.8; MPase) showed novel acceptor specificity and transferred the glucosyl moiety of maltose not only to sugars but also to various acceptors having alcoholic OH groups. Salicyl alcohol acted as acceptor for MPase from Enterococcus hirae, and the product, salicyl-O-alpha-D-glucopyranoside (alpha-SalGlc) was identified. The yield based on supplied salicyl alcohol was 86% (mol/mol).  相似文献   

15.
Summary Chrysomela aeneicollis (Coleoptera: Chrysomelidae) uses salicin from its host plant (Salix spp.) to produce a defensive secretion, salicylaldehyde. Because it requires salicin for this secretion, I predicted that C. aeneicollis should be attracted to willows which possess salicin and other salicylates. To test this prediction, I determined the host-plant preferences of C. aeneicollis among four potential hosts which occur in the Sierra Nevada range of eastern California. These species have very different salicylate chemistries but do not differ in nutritional quality for C. aeneicollis. In oviposition-preference tests, gravid females showed no preference between a salicylate-poor species, S. lutea, and a salicylate-rich species, S. orestera. However in feeding-choice tests, both larvae and adults preferred S. orestera over S. lutea. This preference was not affected by the species on which the larvae were reared. In other feeding tests, adults preferred S. orestera over two medium-salicylate species, S. boothi and S. geyeriana, regardless of which host species they had been feeding on in nature. In a final feeding test, adults were stimulated to feed by salicin itself. In nature, the relative abundances of C. aeneicollis adults and egg clutches among these species correspond to the adult feeding preference in the laboratory. Additionally, multiple regression analyses showed that adult abundance was not related to among-clone differences in leaf toughness or nutritional quality, but rather to salicin content and plant size. Thus for C. aeneicollis, both laboratory and field results demonstrate a preference for salicylate-rich willows which is partly responsible for the increased level of attack on them.  相似文献   

16.
17.
Transgenic white poplar (Populus alba L.) plants expressing a novel Arabidopsis thaliana cysteine proteinase inhibitor (Atcys) gene have been produced using Agrobacterium tumefaciens-mediated gene transfer. Internodal stem segments of cv. Villafranca were co-cultivated with the EHA105 pBI-Atcys A. tumefaciens strain. Sixteen putative transgenic plant lines were regenerated from different calli with a transformation efficiency of 11%. The integration and expression of the cysteine proteinase inhibitor (Atcys) gene into the plant genome was confirmed by Southern and northern blot analyses. Papain inhibitory activity was detected in poplar transgenic tissues by means of a specific in vitro assay. Such activity was sufficient to inhibit most of the digestive proteinase activity of chrysomelid beetle (Chrysomela populi L.) and confer resistance to C. populi larvae on selected transgenic plants. A close correspondence between the inhibition of papain and resistance to poplar leaf beetle was observed in all tested transgenic lines. Our results indicate that Atcys could be succesfully employed in breeding programmes aimed at the selection of new poplar genotypes resistant to major insect pests.  相似文献   

18.
1. Noxious larval secretions of leaf beetles, which repel generalist predators, do not deter specialist syrphid fly predators (genus Parasyrphus ). These flies cause considerable mortality to the beetles, but little is known about their foraging behaviour.
2. Larvae of Parasyrphus nigritarsis were attracted to the volatile larval secretions produced by two prey species Phratora vitellinae and Linaeidea aenea. Parasyrphus nigritarsis feeds on both beetles in nature. Phratora vitellinae feeds on willows and utilizes host plant compounds for secretion production, while the alder-feeding L. aenea produces an autogenous secretion.
3. Fly larvae were strongly attracted to pieces of filter paper treated with larval secretion of the beetles. They attempted to feed on them for up to 7 min, and were equally attracted to the secretions of Ph. vitellinae and L. aenea . Fly larvae were also attracted to pure salicyl aldehyde, the main component of the secretion of Ph. vitellinae .
4. Fly larvae searched extensively for prey on leaves that had been damaged by beetle larvae. They also followed trails made with solutions containing faecal matter of prey larvae. They showed no differential preference for Ph. vitellinae or L. aenea , but always rejected larvae of the non-prey leaf beetle Agelastica alni .
5. Beetle secretions thus play an important, but unexpected, role in the feeding behaviour of P. nigritarsis . This predator uses the beetle secretion to locate its prey. The implications of these results for three trophic level interactions are discussed.  相似文献   

19.
1 Selection can favour herbivores that choose host plants benefitting their offspring either by enhancing growth rates or by increasing larval defences against native predators. For exotic predator species that feed on herbivores, their success with invading new habitats may depend upon overcoming defences used by native prey. Whether exotic predators can alter herbivore host choice has remained unexamined. Therefore, we compared the efficacy of larval defence by Chrysomela knabi (a native beetle species) that had fed on two native willow hosts: Salix sericea (a phenolic glycoside (PG)-rich species) and Salix eriocephala (a PG-poor species), when attacked by exotic generalist predators. In addition, the preference and performance of C. knabi on S. sericea and S. eriocephala was examined.
2  Chrysomela knabi preferred and performed better on S. sericea. In a common garden, adult C. knabi were nine-fold more common and oviposited five-fold more frequently on S. sericea than on S. eriocephala . In the laboratory, adult feeding preference on leaf discs and survival rates of larvae were both greater on S. sericea , and time to pupation was shorter.
3  Chrysomela knabi larvae produced significantly more salicylaldehyde when fed S. sericea leaves than when fed S. eriocephala leaves. Additionally, those larvae with greater salicylaldehyde had reduced predation by two exotic generalist predators, Harmonia axyridis larvae and juvenile Tenodera aridifolia sinensis .
4 The results obtained in the present study suggest that selection favoured the preference of C. knabi for PG-rich willow plants because larvae grew and survived better and that selection by common exotic generalist predators would reinforce this preference.  相似文献   

20.
We compared the general activity and heavy metal resistance of non-specific esterases in two populations of the leaf beetle Chrysomela lapponica from habitats severely contaminated by heavy metals (mostly Ni and Cu) and two populations from unpolluted habitats. Concentrations of Ni and Cu in adult beetles from the most polluted site were 7.7 and 3.6 times higher that in beetles from unpolluted habitats. Larval esterases showed higher activity and lower susceptibility to heavy metals than esterases of adults. Larval esterase activity did not differ between populations from polluted and unpolluted sites, but adult beetles from polluted localities had lower esterase activity than beetles from unpolluted habitats. Both Cu and Ni sulfates in millimolar concentrations in vitro suppressed esterase activity of larvae from unpolluted habitats, but caused no negative effect on esterases of larvae from polluted sites. Similarly, inhibition of adult esterase activity by Ni was stronger in beetles from unpolluted localities than in beetles from polluted localities. This indicates that resistance of non-specific esterases to heavy metals is higher in leaf beetle populations from contaminated environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号