首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary WhenNecturus gallbladder epithelium is treated with ouabain the cells swell rapidly for 20–30 minutes then stabilize at a cell volume 30% greater than control. The cells then begin to shrink slowly to below control size. During the initial rapid swelling phase cell Na activity, measured with microelectrodes, rises rapidly. Calculations of the quantity of intracellular Na suggest that the volume increase is due to NaCl entry. Once the peak cell volume is achieved, the quantity of Na in the cell does not increase, suggesting that NaCl entry has been inhibited. We tested for inhibition of apical NaCl entry during ouabain treatment either by suddenly reducing the NaCl concentration in the mucosal bath or by adding bumetanide to the perfusate. Both maneuvers caused rapid cell shrinkage during the initial phase of the ouabain experiment, but had no effect on cell volume if performed during the slow shrinkage period. The lack of sensitivity to the composition of the mucosal bath during the shrinkage period occurred because of apparent feedback inhibition of NaCl entry. Another maneuver, reduction of the Na in the serosal bath to 10mm, also resulted in inhibition of apical NaCl uptake. The slow shrinkage which occurred after one or more hours of ouabain treatment was sensitive to the transmembrane gradients for K and Cl across the basolateral membrane and could be inhibited by bumetanide. Thus during pump inhibition inNecturus gallbladder epithelium cell Na and volume first increase due to continuing NaCl entry and then cell volume slowly decreases due to inhibition of the apical NaCl entry and activation of basolateral KCl exit.  相似文献   

2.
The results of the present study that NaCl transport by in vitro rabbit gallbladder must be a consequence of a neutral coupled carrier-mediated mechanism that ultimately results in the active absorption of both ions; pure electrical coupling between the movements of Na and Cl can be excluded on the grounds of electrphysiologic considerations. Studies on the unidirectional influxes of Na and Cl have localized the site of this coupled mechanism to the mucosal membranes. Studies on the intracellular ion concentrations and the intracellular electrical potential are consistent with the notion that (a) the coupled NaCl influx process results in the movement of Cl from the mucosal solution into the cell against an apparent electrochemical potential difference; (b) the energy for the uphill movement of Cl is derived from the Na gradient across the mucosal membrane which is maintained by an active Na extrusion mechanism located at the basolateral membranes; and (c) Cl exit from the cell across the basolateral membranes is directed down an electrochemical potential gradient and may be diffusional. Finally, as for the case of rabbit ileum, the coupled NaCl influx process is inhibited by elevated intracellular levels of cyclic 3',5'-adenosine monophosphate. A working model for transcellular and paracellular NaCl transport by in vitro rabbit gallbladder is proposed.  相似文献   

3.
Summary Conventional and Cl-selective liquid ion-exchanger intracellular microelectrodes were employed to study the effects of extracellular ionic substitutions on intracellular Cl activity (aCl i ) inNecturus gallbladder epithelium. As shown previously (Reuss, L., Weinman, S.A., 1979;J. Membrane Biol. 49:345), when the tissue was exposed to NaCl-Ringer on both sidesaCl i was about 30mm, i.e., much higher than the activity predicted from equilibrium distribution (aCleq) across either membrane (5–9mm). Removal of Cl from the apical side caused a reversible decrease ofaCl i towards the equilibrium value across the basolateral membrane. A new steady-stateaCl i was reached in about 10 min. Removal of Na from the mucosal medium or from both media also caused reversible decreases ofaCl i when Li, choline, tetramethylammonium or N-methyl-d-glucamine (NMDG) were employed to replace Na. During bilateral Na substitutions with choline the cells depolarized significantly. However, no change of cell potential was observed when NMDG was employed as Na substitute. Na replacements with choline or NMDG on the serosal side only did not changeaCl i . When K substituted for mucosal Na, the cells depolarized andaCl i rose significantly. Combinations of K for Na and Cl for SO4 substitutions showed that net Cl entry during cell depolarization can take place across either membrane. The increase ofaCl i in depolarized cells exposed to K2SO4-Ringer on the mucosal side indicates that the basolateral membrane Cl permeability, (P Cl) increased. These results support the hypothesis that NaCl entry at the apical membrane occurs by an electroneutral mechanism, driven by the Na electrochemical gradient. In addition, we suggest that Cl entry during cell depolarization is downhill and involves an increase of basolateral membraneP Cl.  相似文献   

4.
The basolateral membrane of the jejunal enterocyte of the rat was separated by self-orienting Percoll-gradient centrifugation and further purified from brush border contamination. Pellets were analysed for Mg-, Na- and (Na, K)-ATPase activities. The uptake of 0·02 M NaCl was also followed by the rapid micro-filtration technique. Transintestinal transport of fluid and electrolytes, and cell water, Na and K were determined in the in vitro everted and incubated jejunum. There is ouabain-insensitive Na-ATPase in addition to the well-known (Na, K)-ATPase in the basolateral membrane. These are differently inhibited by furosemide and ethacrynate. Na uptake by osmotically active basolateral membrane vesicles is enhanced by ATP and a further enhancement is obtained if there is intravesicular K. The ATP effect is inhibited differently by strophanthidin, furosemide and ethacrynate. In the everted sac preparation, transintestinal transport of Na and fluid still occurs when the Na/K pump is totally inhibited by ouabain. These experimental results suggest that there is also a ouabain-insensitive Na pump, different from the Na/K pump, in the basolateral membrane.  相似文献   

5.
Bumetanide inhibition of NaCl transport byNecturus gallbladder   总被引:4,自引:0,他引:4  
Salt transport by the Necturus gallbladder epithelium is the result of the coupled entry of NaCl into the cells across the apical membrane and the active transport of Na out of the cells across the basolateral membrane. The NaCl entry step was studied by measuring the rate of cell volume increase accompanying ouabain inhibition of the Na--K-ATPase in the basolateral membrane. When bumetanide, a diuretic analog of furosemide, was added to the mucosal bathing solution it reversibly blocked the entry of NaCl into the cells and abolished fluid transport. A dose-response relationship showed half-maximal inhibition of NaCl entry at a bumetanide concentration of 10(-9) M; complete inhibition of coupled NaCl movement occurred with as little as 10(-7) M bumetanide. Partial substitution of Na or Cl in the mucosal solution failed to demonstrate competition between bumetanide and either of the ions. The drug was also effective in blocking NaCl entry in the absence of ouabain; addition of the diuretic to the mucosal bathing solution resulted in prompt cell shrinkage and a decrease in intracellular NaCl. Cell volume decrease followed bumetanide addition to the mucosal bath because NaCl entry was blocked but active Na transport continued for several minutes until the intracellular Na transport pool was depleted.  相似文献   

6.
Summary Intracellular K activities, (K) c , in rabbit gallbladder were determined using conventional and ion-selective microelectrodes. (K) c averaged 73mm and was 1.5 times that predicted for an equilibrium distribution of the ion across both apical and basolateral membranes. Thus, K must be actively transported into the cell, and the responsible mechanism is almost certainly the Na–K exchange pump in the basolateral membrane.Measurements of the bidirectional transepithelial fluxes of42K indicate that K is secreted into the mucosal solution at a rate of 0.8 eq/cm2 hr; this value is only 6% of the rate of transcellular Na absorption by this epithelium.Calculation of the conductance of the basolateral membrane,G s, reveals that it is too low to account for the maintenance of the steady-state (K) c by a 3 Na2 K pump mechanism at the basolateral membrane if K exit across that barrier is entirely electrodiffusional.Our results together with those of others strongly suggest that a significant fraction of downhill K exit from the cell across the basolateral membrane is nonconductive and coupled to the movement of some other ion, perhaps Cl.  相似文献   

7.
Summary The ionic permeability of the basolateral membrane ofNecturus gallbladder epithelium was studied with intracellular microelectrode techniques. After removal of most of the subepithelial tissue (to reduce unstirred layer thickness), impalements were performed from the serosal side, and ionic substitutions were made in the serosal solution while a microelectrode was kept in a cell. Thus, it was possible to obtain continuous (and reversible) records of transepithelial and cell membrane potentials and to measure intermittently the transepithelial resistance and the ratio of cell membrane resistances. From these data and the mean value of the equivalent resistance of the cell membranes in parallel (obtained from cable analysis in a different group of tissues), absolute cell membrane and shunt resistances and equivalent electromotive forces (emf's) were calculated. From the changes of basolateral membrane emf (E b ) produced by the substitutions, the conductance (G) and permeability (P) of the membrane for K, Cl and Na were estimated. Potassium-for-sodium substitutions produced large reductions of both cell membrane potentials, ofE b , and of the resistance of the basolateral membrane (R b ), indicating highG K andP K . Chloride substitution with isethionate or sulfate resulted in smaller changes of cell membrane potentials andE b and in no significant change ofR b , indicating small but measurable values ofG Cl andP Cl . Sodium substitutions with N-methyl-d-glucamine (NMDG) resulted in cell potential changes entirely attributable to the biionic potential produced in the shunt pathway (P Na >P NMDG ), and in no significant changes ofP b orE b , indicating thatG Na andP Na are undetectable. The question of the mechanism of Cl transport across the basolateral membrane was addressed by comparing the mean rate of transepithelial Cl transport (J Cl net ) and the predicted passive Cl flux across the basolateral membrane (from the membrane Cl conductance, potential, and Cl equilibrium potential). The conclusion is that only a very small fraction of the Cl flux across the basolateral membrane can be electrodiffusional. Since the paracellular Cl conductance is also too low to account forJ Cl net , these results suggest the presence of a neutral mechanism of Cl extrusion from the cells. This could be a NaCl pump, a downhill KCl transport mechanism, or a Cl–HCO3 exchange mechanism.  相似文献   

8.
The intestinal epithelium of the euryhaline teleost fish, Anguilla anguilla, absorbs Cl(-) transepithelially. This gives rise to a negative transepithelial potential at the basolateral side of the epithelium and to a measured short circuit current. Cl(-) absorption occurs via bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransport, localized on the luminal membrane. The cotransport operates in parallel with a luminal K(+) conductance that recycles the ion into the lumen. Cl(-) leaves the cell across the basolateral membrane by way of Cl(-) conductance and presumably via a KCl cotransport. The driving force for this process is provided by the electrochemical sodium gradient across the plasma membrane, generated and maintained by the basolateral Na(+)-K(+)-ATPase. The resulting NaCl absorption process is active and enables marine fish to take up water, thereby compensating for water that was lost passively from the body. Fresh water acclimatized eel also absorb Cl(-) actively, although in smaller quantities, utilizing the same ion transport mechanisms as marine eels. This mechanism is basically the same as the model proposed for the thick ascending limb (cTAL). Cl(-) absorption is regulated by a number of cellular factors, such as HCO(3) (-), pH, Ca(2+), cyclic nucleotides, and cytoskeletal elements. It is sensitive to osmotic stress, and therefore is a good physiological model to study ion transport mechanisms that are activated when osmotic stress induces cell volume regulation. The activation of these various ion transport pathways is dependent on cellular transduction mechanisms in which phosphorylation events (mainly by PKC and MLCK for the hypertonic response) and cytoskeletal elements, either microfilaments or microtubules, seem to play key roles.  相似文献   

9.
Summary Movement of Cl from the lumen ofNecturus proximal tubule into the cells is mediated and dependent on the presence of luminal Na. Intracellular Cl activity was monitored with ion selective microelectrodes. In Cl Ringer's perfused kidneys, cell Cl activity was 24.5±1.1mm, 2 to 3 times higher than that predicted for passive distribution. When luminal NaCl was partially replaced by mannitol (capillaries perfused with Cl Ringer's) cell Cl decreased showing a sigmoidal dependence on luminal NaCl. Peritubular membrane potential was unaltered. Sulfate Ringer's perfusion of the kidneys washed out all cell Cl but did not alter peritubular membrane potential. Chloride did not enter the cell when the tubule lumen was perfused with 100mm KCl, LiCl, or tetramethylammonium Cl. Luminal perfusion of NaCl caused cell Cl to rise rapidly to the same value as the controls in the Cl Ringer's experiments. Perfusion of the tubule lumen with mixtures of NaCl and Na2SO4, while the capillaries contained sulfate Ringer's yielded a sigmoidal dependence of cell Cl on luminal NaCl activity. Chloride movement from the lumen into the proximal tubule cells required approximately equal concentrations of Na and Cl. Current clamp experiments indicated that intracellular chloride activity was insensitive to alterations in liminal membrane potential, suggesting that chloride entry was electrically neutral. The transcellular chloride flux was calculated to constitute about one half of the normal chloride reabsorption rate. We conclude that the cell Cl activity is primarily determined by the NaCl concentration in the tubule lumen and that Cl entry across the luminal membrane is mediated.  相似文献   

10.
Summary The electrical responses induced by external applications of neutral amino acids were used to determine whether different carriers are expressed in the membrane of embryonic epithelial cells ofXenopus laevis. Competition experiments were performed under voltage-clamp conditions at constant membrane potential.Gly,l-Ala,l-Pro,l-Ser,l-Asn andl-Gln generate electrical responses with similar apparent kinetic constants and compete for the same carrier. They are [Na] o and voltage-dependent, insensitive to variations in [Cl] o and [HCO3] o , inhibited by pH o changes, by amiloride and, for a large fraction of the current, by MeAIB. The increase in [K] o at constant and negative membrane potential reduces the response, whereas lowering [K] o augments it. l-Leu,l-Phe andl-Pro appear to compete for another carrier. They generate electrogenic responses insensitive to amiloride and MeAIB, as well as to alterations of membrane potential, [Na] o and [K] o . Lowering [Cl] o decreases their size, whereas increasing [HCO3] o at neutral pH o increases it.It is concluded that at least two and possibly three transport systems (A, ASC and L) are expressed in the membrane of the embryonic cells studied. An unexpected electrogenic character of the L system is revealed by the present study and seems to be indirectly linked to the transport function. l-Pro seems to be transported by system A or ASC in the presence of Na and by system L in the absence of Na. MeAIB induces an inward current.  相似文献   

11.
Summary The intracellular electrolyte concentrations of the bullfrog corneal epithelium have been determined in thin freezedried cryosections using the technique of electron-microprobe analysis. Under control conditions, transepithelial potential short-circuited and either side of the cornea incubated in Conway's solution, the mean intracellular concentrations (in mmol/kg wet weight) were 8.0 for Na, 18.4 for Cl and 117.3 for K. These values are in good agreement with ion activities previously obtained by Reuss et al. (Am. J. Physiol. 244:C336–C347, 1983) under open-circuit conditions. From a comparison of the chemical concentrations and activities of Na and K a mean intracellular activity coefficient of 0.75 is calculated. For small ions no significant differences between nuclear and cytoplasmic concentration values were detectable. The Cl concentrations in the different epithelial layers were virtually identical and showed parallel changes at varying states of Cl secretion, suggesting that the epithelium represents a functional syncytium. For Na a concentration gradient between theouter and inner epithelial layer was observed, which can be accounted for by two different models of epithelial cooperation. The behavior of the intracellular Na and Cl concentrations after removal of Na, Cl or K from the outer or inner bathing medium provides support for a passive electrodiffusive Cl efflux across the apical membrane and a Na-coupled Cl uptake across the basolateral membrane. The results are inconclusive with regard to the exact mechanism of Cl uptake, indicating either a variable stoichiometry of the symporter or the presence of more than one transport system. Furthermore, a dependence of intracellular Cl on HCO3 and CO2 was observed. Extracellular measurements in corneal stroma demonstrated that ion concentrations in this space are in free equilibrium with the inner bath.  相似文献   

12.
5-Hydroxytryptamine (5-HT) can be released from mast cells and platelets through an IgE-dependent mechanism and may play a role in the pathogenesis of allergic bronchoconstriction. However, the effect of 5-HT on ion transport by the airway epithelium is still controversial. The objective of this study was to determine whether 5-hydroxytryptamine (5-HT) regulates NaCl transport by different mechanisms in the apical and basolateral membrane of tracheal epithelia. We studied the rat tracheal epithelium under short-circuit conditions in vitro. Short-circuit current (I(sc)) was measured in rat tracheal epithelial monolayers cultured on porous filters. 5-HT inhibited Na(+) absorption [measured via Na(+) short-circuit current (I(Na)(sc))] in the apical membrane and stimulated Cl(-) secretion [measured via Cl(-) short-circuit current (I(Cl)(sc))] in the basolateral membrane. Functional localization using selective 5-HT agonists and antagonists suggest that I(Cl)(sc)is stimulated by the basolateral membrane-resident 5-HT receptors, whereas I(Na)(sc) is inhibited by the apical membrane-resident 5-HT2 receptors. The basolateral addition of 5-HT increases intracellular cAMP content, but its apical addition does not. The addition of BAPTA/AM blocked the decrease of I(Na)(sc)which was induced by the apical addition of 5-HT, and 5-HT increased intracellular Ca concentrations. These results indicate that 5-HT differentially affects I(Na)(sc)and I(Cl)(sc)across rat tracheal monolayers through interactions with distinct receptors in the apical and the basolateral membrane. These effects may result in an increase of water movement towards the airway lumen.  相似文献   

13.
Electrolyte transport across the adult alveolar epithelium plays an important role in maintaining a thin fluid layer along the apical surface of the alveolus that facilitates gas exchange across the epithelium. Most of the work published on the transport properties of alveolar epithelial cells has focused on the mechanisms and regulation of Na(+) transport and, in particular, the role of amiloride-sensitive Na(+) channels in the apical membrane and the Na(+)-K(+)-ATPase located in the basolateral membrane. Less is known about the identity and role of Cl(-) and K(+) channels in alveolar epithelial cells, but studies are revealing important functions for these channels in regulation of alveolar fluid volume and ionic composition. The purpose of this review is to examine previous work published on Cl(-) and K(+) channels in alveolar epithelial cells and to discuss the conclusions and speculations regarding their role in alveolar cell transport function.  相似文献   

14.
A study of the mechanisms of the effects of amphotericin B and ouabain on cell membrane and transepithelial potentials and intracellular K activity (alpha Ki) of Necturus gallbladder epithelium was undertaken with conventional and K-selective intracellular microelectrode techniques. Amphotericin B produced a mucosa-negative change of transepithelial potential (Vms) and depolarization of both apical and basolateral membranes. Rapid fall of alpha Ki was also observed, with the consequent reduction of the K equilibrium potential (EK) across both the apical and the basolateral membrane. It was also shown that, unless the mucosal bathing medium is rapidly exchanged, K accumulates in the unstirred fluid layers near the luminal membrane generating a paracellular K diffusion potential, which contributes to the Vms change. Exposure to ouabain resulted in a slow decrease of alpha Ki and slow depolarization of both cell membranes. Cell membrane potentials and alpha Ki could be partially restored by a brief (3-4 min) mucosal substitution of K for Na. Under all experimental conditions (control, amphotericin B, and ouabain), EK at the basolateral membrane was larger than the basolateral membrane equivalent emf (Eb). Therefore, the K chemical potential difference appears to account for Eb and the magnitude of the cell membrane potentials, without the need to postulate an electrogenic Na pump. Comparison of the rate of Na transport across the tissue with the electrodiffusional K flux across the basolateral membrane indicates that maintenance of a steady-state alpha Ki cannot be explained by a simple Na,K pump-K leak model. It is suggested that either a NaCl pump operates in parallel with the Na,K pump, or that a KCl downhill neutral extrusion mechanism exists in addition to the electrodiffusional K pathway.  相似文献   

15.
Krogh introduced the concept of active ion uptake across surface epithelia of freshwater animals, and proved independent transports of Na(+) and Cl(-) in anuran skin and fish gill. He suggested that the fluxes of Na(+) and Cl(-) involve exchanges with ions of similar charge. In the so-called Krogh model, Cl(-)/HCO(3)(-) and Na(+)/H(+) antiporters are located in the apical membrane of the osmoregulatory epithelium. More recent studies have shown that H(+) excretion in anuran skin is due to a V-ATPase in mitochondria-rich (MR) cells. The pump has been localized by immunostaining and H(+) fluxes estimated by pH-stat titration and mathematical modelling of pH-profiles in the unstirred layer on the external side of the epithelium. H(+) secretion is voltage-dependent, sensitive to carbonic-anhydrase inhibitors, and rheogenic with a charge/ion-flux ratio of unity. Cl(-) uptake from freshwater is saturating, voltage independent, and sensitive to DIDS and carbonic-anhydrase inhibitors. Depending on anuran species and probably on acid/base balance of the animal, apical exit of protons is coupled to an exchange of Cl(-) with base (HCO(3)(-)) either in the apical membrane (gamma-type of MR cell) or in the basolateral membrane (alpha-type MR cell). The gamma-cell model accounts for the rheogenic active uptake of Cl(-) observed in several anuran species. There is indirect evidence also for non-rheogenic active uptake accomplished by a beta-type MR cell with apical base secretion and basolateral proton pumping. Several studies have indicated that the transport modes of MR cells are regulated via ion- and acid/base balance of the animal, but the signalling mechanisms have not been investigated. Estimates of energy consumption by the H(+)-ATPase and the Na(+)/K(+)-ATPase indicate that the gamma-cell accomplishes uptake of NaCl in normal and diluted freshwater. Under common freshwater conditions with serosa-positive or zero V(t), the K(+) conductance of the basolateral membrane would have to maintain the inward driving force for Na(+) uptake across the apical membrane. With the K(+) equilibrium potential across the basolateral membrane estimated to -105 mV, this would apply to external Na(+) concentrations down to 40-120 micromol/l. NaCl uptake from concentrations down to 10 micromol/l, as observed by Krogh, presupposes that the H(+) pump hyperpolarizes the apical membrane, which would then have to be associated with serosa-negative V(t). In diluted freshwater, exchange of cellular HCO(3)(-) with external Cl(-) seems to be possible only if the proton pump has the additional function of keeping the external concentration of HCO(3)(-) low. Quantitative considerations also lead to the conclusion that with the above extreme demand, at physiological intracellular pH of 7.2, the influx of Cl(-) via the apical antiporter and the passive exit of Cl(-) via basolateral channels would be possible within a common range of intracellular Cl(-) concentrations.  相似文献   

16.
Summary The lepidopteran midgut is a model for the oxygendependent, electrogenic K+ transport found in both alimentary and sensory tissues of many economically important insects. Structural and biochemical evidence places the K+ pump on the portasome-studded apical plasma membrane which borders the extracellular goblet cavity. However, electrochemical evidence implies that the goblet cell K+ concentration is less than 50mm. We used electron probe X-ray microanalysis of frozenhydrated cryosections to measure the concentration of Na, Mg, P, S, Cl, K, Ca and H2O in several subcellular sites in the larval midgut ofManduca sexta under several experimental regimes. Na is undetectable at any site. K is at least 100mm in the cytoplasm of all cells. Typicalin vivo values (mm) for K were: blood, 25; goblet and columnar cytoplasm, 120; goblet cavity, 190; and gut lumen, 180. The high K concentration in the apically located goblet cavity declined by 100mm under anoxia. Both cavity and gut fluid are Cl deficient, but fixed negative charges may be present in the cavity. We conclude that the K+ pump is sited on the goblet cell apical membrane and that K+ follows a nonmixing pathway via only part of the goblet cell cytoplasm. The cavity appears to be electrically isolated in alimentary tissues, as it is in sensory sensilla, thereby allowing a PD exceeding 180 mV (lumen positive) to develop across the apical plasma membrane. This PD appears to couple K+ pump energy to nutrient absorption and pH regulation.  相似文献   

17.
Summary The optical sectioning video imaging technique was used for measurements of the volume of mitochondria-rich (m.r.) cells of the isolated epithelium of toad skin. Under short-circuit conditions, cell volume decreased by about 14% in response to bilateral exposure to Cl-free (gluconate substitution) solutions, apical exposure to ouabain resulted in a large increase in volume, which could be prevented either by the simultaneous application of amiloride in the apical solution or by the exposure of the epithelium to bilateral Cl-free solutions. Unilateral exposure to a Cl-free solution did not prevent ouabain-induced cell swelling. It is concluded that m.r. cells have an amiloride-blockable Na conductance in the apical membrane, a ouabain-sensitive Na pump in the basolateral membrane, and a passive Cl permeability in both membranes. From the initial rate of ouabain-induced cell volume increase the active Na current carried by a single m.r. cell was estimated to be 9.9±1.3 pA. Voltage clamping of the preparation in the physiological range of potentials (0 to –100 mV, serosa grounded) resulted in a cell volume increase with a time course similar to that of the stimulation of the voltage-dependent activation were prevented by exposure of the tissue to a Cl-free apical solution. The steady-state volume of the m.r. cells increased with the clamping voltage, and at –100 mV the volume was about 1.15 times that under short-circuit conditions. The rate of volume increase during current passage was significantly decreased by lowering the serosal K concentration (K i ) to 0.5mm, but was independent of whether K i was 2.4, 5, or 10mm. This indicates that the K conductance of the serosal membrane becomes rate limiting for the uptake of KCl when K i is significantly lower than its physiological value. It is concluded that the voltage-activated Cl currents flow through the m.r. cells and that swelling is caused by an uptake of Cl ions from the apical bath and K ions from the serosal bath. Bilateral exposure of the tissue to hypo- or hypertonic bathing solutions changed cell volume without detectable changes in the Cl conductance. The volume response to external osmotic perturbations followed that of an osmometer with an osmotically inactive volume of 21%. Using this value and the change in cell volume in response to bilateral Cl-free solutions, we calculated an intracellular steady-state Cl concentration of 19.8±1.7mm (n=6) of the short-circuited cell.  相似文献   

18.
An open circuit kinetic model was developed to calculate the time course of proximal tubule cell pH, solute concentrations, and volume in response to induced perturbations in luminal or peritubular fluid composition. Solute fluxes were calculated from electrokinetic equations containing terms for known carrier saturabilities, allosteric dependences, and ion coupling ratios. Apical and basolateral membrane potentials were determined iteratively from the requirements of cell electroneutrality and equal opposing transcellular and paracellular currents. The model converged to membrane potentials accurate to 0.05% in one to four iterations. Model variables included cell concentrations of Na, K, HCO3, glucose, pH (uniform CO2), volume, and apical and basolateral membrane potentials. The basic model contained passive apical membrane transport of Na/H, Na/glucose, H and K, basolateral transport of Na/3HCO3, K, H, and glucose, and paracellular transport of Na, K, Cl, and HCO3; apical H and basolateral 3Na/2K-ATPases were present. Apical Na/H and basolateral K transport were regulated allosterically by pH. Apical Na/H transport, basolateral Na/3HCO3 transport, and the 3Na/2K-ATPase were saturable. Model parameters were chosen from data in the rat proximal tubule. Model predictions for the magnitude and time course of cell pH, Na, and membrane potential in response to rapid changes in apical and peritubular Na and HCO3 were in excellent agreement with experiment. In addition, the model requires that there exist an apical H-ATPase, basolateral Na/3HCO3 transport saturable with HCO3, and electroneutral basolateral K transport.  相似文献   

19.
Basolateral membrane vesicles isolated from rat jejunum were used to characterize a Cl/HCO3 exchange mechanism previously evidenced. Cl uptake experiments provided no evidence for Cl/OH countertransport, confirming anyhow the presence of Cl/HCO3 antiport, which was inhibited by 2 mm furosemide and unaffected by 2 mm amiloride. An outwardly directed Na gradient stimulated Cl uptake and this effect was increased if Na was present at both vesicle surfaces. To investigate the mechanism of coupling between Na and the transport protein, we performed Na uptake experiments. Na uptake was unaffected by cis-bicarbonate and trans-Cl gradients; the reversal of anion gradients was still ineffective. Similar results were obtained when a pH difference across the membrane vesicles was imposed. This study seems to suggest that Na is not transported by the Cl/HCO3 exchanger and that another mode of Na dependence must be taken into account.  相似文献   

20.
Net fluid transport (Jv) and electrical properties of the cell membranes and paracellular pathway of Necturus gallbladder epithelium were studied before and after the addition of ouabain (10(-4) M) to the serosal bathing medium. The glycoside inhibited Jv by 70% in 15 min and by 100% in 30 min. In contrast, the potentials across both cell membranes did not decrease significantly until 20 min of exposure to ouabain. At 30 min, the basolateral membrane potential (Vcs) fell only by ca 7 mV. If basolateral Na transport were electrogenic, with a coupling ratio (Na:K) of 3:2, the reductions of Vcs at 15 and 30 min should be 12--15 and 17--21 mV, respectively. Thus, we conclude that the mechanism of Na transport from the cells to the serosal bathing solution is not electrogenic under normal transport conditions. The slow depolarization observed in ouabain is caused by a fall of intracellular K concentration, and by a decrease in basolateral cell membrane K permeability. Prolonged exposure to ouabain results also in an increase in paracellular K selectivity, with no change of P Na/P Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号