首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dicot wood is mainly composed of cellulose, lignin and glucuronoxylan (GX). Although the biosynthetic genes for cellulose and lignin have been studied intensively, little is known about the genes involved in the biosynthesis of GX during wood formation. Here, we report the molecular characterization of two genes, PoGT8D and PoGT43B, which encode putative glycosyltransferases, in the hybrid poplar Populus alba x tremula. The predicted amino acid sequences of PoGT8D and PoGT43B exhibit 89 and 75% similarity to the Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9, respectively, both of which have been shown to be required for GX biosynthesis. The PoGT8D and PoGT43B genes were found to be expressed in cells undergoing secondary wall thickening, including the primary xylem, secondary xylem and phloem fibers in stems, and the secondary xylem in roots. Both PoGT8D and PoGT43B are predicted to be type II membrane proteins and shown to be targeted to Golgi. Overexpression of PoGT43B in the irx9 mutant was able to rescue the defects in plant size and secondary wall thickness and partially restore the xylose content. Taken together, our results demonstrate that PoGT8D and PoGT43B are Golgi-localized, secondary wall-associated proteins, and PoGT43B is a functional ortholog of IRX9 involved in GX biosynthesis during wood formation.  相似文献   

2.
Arabidopsis IRX10 and IRX10-LIKE (IRX10-L) proteins are closely related members of the GT47 glycosyltransferase family. Single gene knock-outs of IRX10 or IRX10-L result in plants with either a weak or no mutant phenotype. However irx10 irx10-L double mutants are severely affected in their development, with a reduced rosette size and infrequent formation of a small infertile inflorescence. Plants homozygous for irx10 and heterozygous for irx10-L have an intermediate phenotype exhibiting a short inflorescence compared with the wild type, and an almost complete loss of fertility. Stem sections of the irx10 homozygous irx10-L heterozygous or irx10 irx10-L double mutants show decreased secondary cell-wall formation. NMR analysis shows that signals derived from the reducing end structure of glucuronoxylan were detected in the irx10 single mutant, and in the irx10 homozygous irx10-L heterozygous combination, but that the degree of polymerization of the xylan backbone was reduced compared with the wild type. Additionally, xylans from irx10 stem tissues have an almost complete loss of the GlcUA side chain, whereas the level of 4- O -Me-GlcUA was similar to that in wild type. Deletion of the predicted signal peptide from the N terminus of IRX10 or IRX10-L results in an inability to rescue the irx10 irx10-L double mutant phenotype. These findings demonstrate that IRX10 and IRX10-L perform a critical function in the synthesis of glucuronoxylan during secondary cell-wall formation, and that this activity is associated with the formation of the xylan backbone structure. This contrasts with the proposed function of the tobacco NpGUT1, which is closely related to the Arabidopsis IRX10 and IRX10-L proteins, in rhamnogalacturonan II biosynthesis.  相似文献   

3.
Photosynthetic parameters of the nadk2 mutant of Arabidopsis thaliana, which is defective in chloroplast NAD kinase, were investigated. In this plant, the effective efficiency of photosynthetic electron transport (PhiII) and the quantum yield of open reaction centers of photosystem II (Fv'/Fm') were decreased. Furthermore, an increase in non-photochemical quenching attributed to energy dissipation from the xanthophyll cycle was observed. The mutant showed an aberrant de-epoxidation state of xanthophyll cycle carotenoids and had a high level of zeaxanthin even under low light conditions. These results indicate that chloroplast NAD kinase, catalyzing phosphorylation of NAD, is essential for the proper photosynthetic machinery of PSII and the xanthophyll cycle.  相似文献   

4.
Three Arabidopsis genes encoding a putative beta-galactosidase (At5g56870), beta-xylosidase (At5g49360) and beta-glucosidase (At3g60140) are induced by sugar starvation. The deduced proteins belong to the glycosyl hydrolase families 35, 3 and 1, respectively. They are predicted to be secretory proteins that play roles in modification of cell wall polysaccharides based on amino acid similarity. The beta-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved conditions with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose, as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These findings suggest that the cell wall may function as a storage reserve of carbon in addition to providing physical support for the plant body.  相似文献   

5.
The Arabidopsis FLOWERING LOCUS C (FLC) gene encodes a MADS box protein that acts as a dose-dependent repressor of flowering. Mutants and ecotypes with elevated expression of FLC are late flowering and vernalization responsive. In this study we describe an early flowering mutant in the C24 ecotype, flc expressor (flx), that has reduced expression of FLC. FLX encodes a protein of unknown function with putative leucine zipper domains. FLX is required for FRIGIDA (FRI)-mediated activation of FLC but not for activation of FLC in autonomous pathway mutants. FLX is also required for expression of the FLC paralogs MADS AFFECTING FLOWERING 1 (MAF1) and MAF2.  相似文献   

6.
Successful automatic self-pollination in flowering plants isdependent on the correct development of reproductive organs.In the stamen, the appropriate growth of the filament, whichlargely depends on the mechanical properties of the cell wall,is required to position the anther correctly close to the stigmaat the pollination stage. Xyloglucan endotransglucosylase/hydrolases(XTHs) are a family of enzymes that mediate the constructionand restructuring of xyloglucan cross-links, thereby controllingthe extensibility or mechanical properties of the cell wallin a wide variety of plant tissues. Our reverse genetic analysishas revealed that a loss-of-function mutation of an ArabidopsisXTH family gene, AtXTH28, led to a decrease in capability forself-pollination, probably due to inhibition of stamen filamentgrowth. Our results also suggest that the role of AtXTH28 inthe development of the stamen is not functionally redundantwith its closest paralog, AtXTH27. Thus, our finding indicatesthat AtXTH28 is specifically involved in the growth of stamenfilaments, and is required for successful automatic self-pollinationin certain flowers in Arabidopsis thaliana.  相似文献   

7.
Despite the recognized physiological importance of transfer cells, little is known about how these specialized cells achieve localized deposition of cell wall material, leading to amplification of plasma membrane surface area and enhanced membrane transport capacity. This study establishes that cellulose synthesis is a key early factor in the construction of 'reticulate' wall ingrowths, an elaborate but common form of localized wall deposition characteristic of most transfer cells. Using field emission scanning electron microscopy, wall ingrowths were first visible in epidermal transfer cells of Faba bean cotyledons as raised 'patches' of disorganized and tangled cellulosic material, and, from these structures, ingrowths emerged via further deposition of wall material. The cellulose biosynthesis inhibitors 2,6-dichlorobenzonitrile and isoxaben both caused dramatic reductions in the number of cells depositing wall ingrowths, altered wall ingrowth morphology and visibly disrupted microfibril structure. The restriction of cellulose deposition to discrete patches suggests a novel mechanism for cellulose synthesis in this circumstance. Overall, these results implicate a central role for cellulose synthesis in reticulate wall ingrowth morphology, especially at the initial stage of ingrowth formation, possibly by providing a template for the self-assembly of wall polymers.  相似文献   

8.
9.
10.
Luo B  Xue XY  Hu WL  Wang LJ  Chen XY 《Plant & cell physiology》2007,48(12):1790-1802
Cuticle, including wax and cutin, is the barrier covering plant aerial organs and protecting the inner tissues. The Arabidopsis thaliana ATP-binding cassette (ABC) transporter CER5 (AtWBC12) has been identified as a wax exporter. In agreement with the latest report of another wax exporter, AtWBC11, here we show that atwbc11 mutants displayed organ fusions and stunted growth, and became vulnerable to chlorophyll leaching and toluidine blue staining. Chemical analysis showed that wax and cutin monomers were both reduced in the atwbc11 mutant. AtWBC11 was widely expressed in aerial organs. Interestingly, we found that the expression was light dependent, and the phytohormone ABA up-regulated AtWBC11 expression. We also found that while the AtWBC11 promoter had a broad pattern of activity, the expression was converted to epidermis specific when the reporter gene was fused to AtWBC11 cDNA. Furthermore, RNA blot analysis supported epidermis-specific expression of AtWBC11. Our results support that AtWBC11 is involved in cuticle development.  相似文献   

11.
Xylan is the second most abundant polysaccharide in dicot wood, and thus elucidation of the xylan biosynthetic pathway is required to understand the mechanisms controlling wood formation. Genetic and chemical studies in Arabidopsis have implicated three genes, FRAGILE FIBER8 (FRA8), IRREGULAR XYLEM8 (IRX8) and IRREGULAR XYLEM9 (IRX9), in the biosynthesis of glucuronoxylan (GX), but the biochemical functions of the encoded proteins are not known. In this study, we determined the effect of the fra8, irx8 and irx9 mutations on the activities of xylan xylosyltransferase (XylT) and glucuronyltransferase (GlcAT). We show that microsomes isolated from the stems of wild-type Arabidopsis exhibit XylT and GlcAT activities in the presence of exogenous 1,4-linked beta-d-xylooligomers. Xylooligomers ranging in size from two to six can be used as acceptors by XylT to form xylooligosaccharides with up to 12 xylosyl residues. We provide evidence that the irx9 mutation results in a substantial reduction in XylT activity but has no discernible effect on GlcAT activity. In contrast, neither XylT nor GlcAT activity is affected by fra8 and irx8 mutations. Our results provide biochemical evidence that the irx9 mutation results in a deficiency in xylan XylT activity, thus leading to a defect in the elongation of the xylan backbone.  相似文献   

12.
13.
Digalactosyldiacylglycerol (DGDG) is a typical membrane lipid of oxygenic photosynthetic organisms. Although DGDG synthase genes have been isolated from plants, no homologous gene has been annotated in the genomes of cyanobacteria and the unicellular red alga Cyanidioschyzon merolae. Here we used a comparative genomics approach and identified a non-plant-type DGDG synthase gene (designated dgdA) in Synechocystis sp. PCC6803. The enzyme produced DGDG in Escherichia coli when co-expressed with a cucumber monogalactosyldiacylglycerol synthase. A DeltadgdA knock-out mutant showed no obvious phenotype other than loss of DGDG when grown in a BG11 medium, indicating that DGDG is dispensable under optimal conditions. However, the mutant showed reduced growth under phosphate-limited conditions, suggesting that DGDG may be required under phosphate-limited conditions, such as those in natural niches of cyanobacteria.  相似文献   

14.
Dihydrosphingosine C4 hydroxylase is a key enzyme in the biosynthesis of phytosphingosine, a major constituent of sphingolipids in plants and yeasts. The rice genome contains five homologue genes for dihydrosphingosine C4 hydroxylase, DSH1-DSH5, whose gene products show high degrees of homology to the yeast counterpart, SUR2. Among them, expression of DSH1, DSH2 and DSH4 was detected, and DSH1 and DSH4 complement the yeast sur2 mutation. The DSH1 gene was specifically and abundantly expressed in vascular bundles and apical meristems. In particular, very strong expression was detected in the stigmas of flowers. Repression of DSH1 expression by the antisense gene or RNA interference (RNAi) resulted in a severe reduction of fertility. In the transformants in which DSH1 expression was suppressed, significantly increased expression of DSH2 was found in leaves but not in pistils, suggesting that there was tissue-specific correlation between DSH1 and DSH2 expression. Our results indicate that the product of DSH1 may be involved in plant viability or reproductive processes, and that the phenotype of sterility is apparently caused by loss of function of DSH1 in the stigma. It is also suggested that there is a complex mechanism controlling the tissue-specific expression of the DSH1 gene.  相似文献   

15.
The retromer complex is responsible for retrograde transport,which is coordinated with anterograde transport in the secretorypathway including vacuolar protein sorting. Yeast VPS35 is acomponent of the retromer complex that is essential for recognitionof specific cargo molecules. The physiological function of VPS35has not been determined in vacuolar protein sorting in higherorganisms. Arabidopsis thaliana has three VPS35 homologs designatedVPS35a, VPS35b and VPS35c. We isolated four vps35 mutants (vps35a-1,vps35b-1, vps35b-2 and vps35c-1) and then generated four doublemutants and one triple mutant. vps35a-1 vps35c-1 exhibited nounusual phenotypes. On the other hand, vps35b-1 vps35c-1 andthe triple mutant (vps35a-1 vps35b-2 vps35c-1) exhibited severephenotypes: dwarfism, early leaf senescence and fragmentationof protein storage vacuoles (PSVs). In addition, these mutantsmis-sorted storage proteins by secreting them out of the cellsand accumulated a higher level of vacuolar sorting receptor(VSR) than the wild type. VPS35 was localized in pre-vacuolarcompartments (PVCs), some of which contained VSR. VPS35 wasimmunoprecipitated with VPS29/MAG1, another component of theretromer complex. Our findings suggest that VPS35, mainly VPS35b,is involved in sorting proteins to PSVs in seeds, possibly byrecycling VSR from PVCs to the Golgi complex, and is also involvedin plant growth and senescence in vegetative organs.  相似文献   

16.
17.
The microtubule-associated protein AtMAP65-1 from Arabidopsis thaliana dimerizes and forms 25 nm cross-bridges between microtubules, but the exact mechanism is unknown. Here, we used the predicted three-dimensional structure of AtMAP65-1 as a basis for analyzing the actual cross-bridging in detail. Fold-recognition predicts that AtMAP65-1 contains four coiled-coil domains and a flexible extended loop. The length of these coiled-coil domains is about 25 nm, suggesting that one molecule could span the gap, hence forming an antiparallel overlapping dimer instead of an end-to-end dimer. We then tested this model by using truncations of AtMAP65-1. EDC {[3-(dimethylamino) propyl] carbodiimide} cross-linking analysis indicated that the N-terminus of the rod domain of AtMAP65-1 (amino acids 1-339) binds to the C-terminus of the rod domain (amino acids 340-494) and also participates in connecting the two antiparallel proteins in the cross-bridge. Nevertheless, microtubules can still form bundles in the presence of AtMAP65-1 340-587 (amino acids 340-587) or AtMAP65-1 1-494 (amino acids 1-494). Comparing the cold stability of microtubule bundles induced by full-length AtMAP65-1 with that of AtMAP65-1 340-587 or AtMAP65-1 1-494, we conclude that AtMAP65-1 495-587 acts as a flexible extended loop, playing a crucial role in binding to and stabilizing microtubules in the AtMAP65-1 cross-bridge.  相似文献   

18.
19.
We established a large-scale, high-throughput protocol to construct Arabidopsis thaliana suspension-cultured cell lines, each of which carries a single transgene, using Agrobacterium-mediated transformation. We took advantage of RIKEN Arabidopsis full-length (RAFL) cDNA clones and the Gateway cloning system for high-throughput preparation of binary vectors carrying individual full-length cDNA sequences. Throughout all cloning steps, multiple-well plates were used to treat 96 samples simultaneously in a high-throughput manner. The optimal conditions for Agrobacterium-mediated transformation of 96 independent binary vector constructs were established to obtain transgenic cell lines efficiently. We evaluated the protocol by generating transgenic Arabidopsis T87 cell lines carrying individual 96 metabolism-related RAFL cDNA fragments, and showed that the protocol was useful for high-throughput and large-scale production of gain-of-function lines for functional genomics.  相似文献   

20.
The aim of this work was to investigate the occurrence of phosphoenolpyruvate carboxykinase (PEPCK) in different tissues of Arabidopsis thaliana throughout its vegetative and reproductive growth. The A. thaliana genome contains two PEPCK genes (PCK1 and PCK2), and these are predicted to generate 73,404 and 72,891 Da protein products, respectively. Both genes were transcribed in a range of tissues; however, PCK1 mRNA appeared to be more abundant and was present in a wider range of tissues. PEPCK protein was present in flowers, fruit, developing seed, germinating seed, leaves, stems and roots. Two PEPCK polypeptides, of approximately 74 and approximately 73 kDa were detected by immunoblotting, and these may arise from PCK1 and PCK2, respectively. PEPCK was abundant in cotyledons during post-germinative growth, and this is consistent with its well established role in gluconeogenesis. PEPCK was also abundant in sink tissues, such as young leaves, in developing flowers, fruit and seed. Immunohistochemistry and in situ hybridization showed that PEPCK was present in the nectaries, stigma, endocarp of the fruit wall and in tissues involved in the transfer of assimilates to the developing ovules and seeds, such as the vasculature and seed coat. The potential functions of PEPCK in A. thaliana are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号