首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atherosclerosis is a major complication of diabetes. Up to 16 weeks of age, the db/db mouse is insulin-resistant and hyperglycemic and is a good model of Type 2 diabetes. After approximately 16 weeks of age, the mice develop pancreatic beta cell failure that can progress to a Type 1 diabetes phenotype. We have previously shown that glucose increases production of endothelial 12/15 lipoxygenase (12/15LO) products in vitro. In young 10-week-old Type 2 diabetic db/db mice, we found significant elevations in levels of urinary 12/15LO products, 12S-hydroxyeicosatetraenoic acid (12S-HETE) and 13S-hydroxyoctadecaenoic acid (13S-HODE) in vivo compared with C57BLKS/J mice. Using isolated primary aortic endothelial cells (ECs) from db/db mice and WEHI78/24 mouse monocyte cells in static adhesion assays, we found increased WEHI monocyte adhesion to db/db ECs (14 +/- 2 monocytes/field for db/db ECs versus 4 +/- 1 monocytes/field for C57BLKS/J ECs, p < 0.002). Thus, ECs from db/db mice appear to be "pre-activated" to bind monocytes. Analysis of db/db ECs revealed a 2-fold elevation in 12/15LO protein compared with C57BLKS/J EC. To determine that 12/15LO products were responsible for the increased monocyte adhesion observed with db/db ECs, we inhibited expression of murine 12/15LO using either an adenovirus expressing a ribozyme to 12/15LO (AdRZ) or with the 12/15LO inhibitor cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate. Treatment of db/db ECs for 48 h with AdRZ or 4 h with 10 microm cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate significantly reduced monocyte adhesion to db/db endothelium (p < 0.009). Thus, inhibition of the murine 12/15LO in db/db mice significantly reduced monocyte/endothelial interactions. We also found that adhesion of monocytes to diabetic db/db ECs was mediated by interactions of alpha4beta1 integrin on monocytes with endothelial vascular cell adhesion molecule 1 and connecting segment 1 fibronectin and interactions of beta2 integrins with endothelial intercellular adhesion molecule 1. In summary, regulation of the 12/15LO pathway is important for mediating early vascular changes in diabetes. Modulation of the 12/15LO pathway in the vessel wall may provide therapeutic benefit for early vascular inflammatory events in diabetes.  相似文献   

2.
The leukocyte-type 12/15-lipoxygenase (12/15-LO) has been implicated in the pathogenesis of atherosclerosis, hypertension, and diabetes. 12/15-LO and its products are associated with LDL oxidation, cellular growth, migration, adhesion, and inflammatory gene expression in monocytes/macrophages, endothelial cells, and vascular smooth muscle cells (VSMCs). Our objective, therefore, was to develop novel expression vectors for short interfering RNAs (siRNAs) targeting 12/15-LO to evaluate its functional relevance in macrophages and VSMCs. We used a PCR-based approach to rapidly identify effective siRNA target sites on mouse 12/15-LO and initially tested their efficacy on a fusion construct of 12/15-LO cDNA and enhanced green fluorescent protein. We then cloned these U6 promoter+siRNA PCR products into plasmid vectors [short hairpin siRNAs (shRNAs)] to knockdown endogenous 12/15-LO expression in mouse macrophages and also rat and mouse VSMCs. Furthermore, the functional effects of shRNA-mediated 12/15-LO knockdown were noted by the reduced oxidant stress and chemokine [monocyte chemoattractant protein-1 (MCP-1)] expression in a differentiated mouse monocytic cell line as well as by the reduced cellular adhesion and fibronectin expression in VMSCs. Knocking down 12/15-LO expression also reduced the expression of inflammatory genes, MCP-1, vascular cell adhesion molecule-1, and interleukin-6 in VSMCs. Our results illustrate the functional relevance of 12/15-LO activation in macrophages and VSMCs and its relationship to oxidant stress and inflammation.  相似文献   

3.
AimsOur previous studies have established a role for 12/15-lipoxygenase (LO) in mediating the inflammatory response in diabetic retinopathy (DR). However, the extent at which the local or systemic induction of 12/15-LO activity involved is unclear. Thus, the current study aimed to characterize the relative contribution of retinal endothelial versus monocytic/macrophagic 12/15-LO to inflammatory responses in DR.Materials & methodsWe first generated a clustered heat map for circulating bioactive lipid metabolites in the plasma of streptozotocin (STZ)-induced diabetic mice using liquid chromatography coupled with mass-spectrometry (LC–MS) to evaluate changes in circulating 12/15-LO activity. This was followed by comparing the in vitro mouse endothelium-leukocytes interaction between leukocytes isolated from 12/15-LO knockout (KO) versus those isolated from wild type (WT) mice using the myeloperoxidase (MPO) assay. Finally, we examined the effects of knocking down or inhibiting endothelial 12/15-LO on diabetes-induced endothelial cell activation and ICAM-1 expression.ResultsAnalysis of plasma bioactive lipids' heat map revealed that the activity of circulating 12/15-LO was not altered by diabetes as evident by no significant changes in the plasma levels of major metabolites derived from 12/15-lipoxygenation of different PUFAs, including linoleic acid (13-HODE), arachidonic acid (12- and 15- HETEs), eicosapentaenoic acid (12- and 15- HEPEs), or docosahexaenoic acid (17-HDoHE). Moreover, leukocytes from 12/15-LO KO mice displayed a similar increase in adhesion to high glucose (HG)-activated endothelial cells as do leukocytes from WT mice. Furthermore, abundant proteins of 12-LO and 15-LO were detected in human retinal endothelial cells (HRECs), while it was undetected (15-LO) or hardly detectable (12-LO) in human monocyte-like U937 cells. Inhibition or knock down of endothelial 12/15-LO in HRECs blocked HG-induced expression of ICAM-1, a well-known identified important molecule for leukocyte adhesion in DR.ConclusionOur data support that endothelial, rather than monocytic/macrophagic, 12/15-LO has a critical role in hyperglycemia-induced ICAM-1 expression, leukocyte adhesion, and subsequent local retinal barrier dysfunction. This may facilitate the development of more precisely targeted treatment strategies for DR.  相似文献   

4.
Adherence to endothelium and then to the extracellular matrix is a prerequisite for extravasation of monocytes into injured tissues. There, monocytes differentiate into macrophages and express heparin binding epidermal growth factor-like growth factor (HB-EGF), a key growth factor involved in normal wound healing. We investigated whether the interaction of human monocytic THP-1 cells with the endothelial cell adhesion molecules (vascular CAM-1, VCAM-1; intercellular adhesion molecule-1 ICAM-1 and endothelial-selectin, E-selectin), or the extracellular matrix (ECM) proteins (fibronectin, FN; laminin, LN and fibrinogen, FG) regulate HB-EGF expression. We have shown that adherence of THP-1 cells via VCAM-1, E-selectin or FN, which are all overexpressed at sites of inflammation, potentiates HB-EGF mRNA expression. In contrast, adhesion of THP-1 cells via ICAM-1 or FG, has no significant effect. Since THP-1 cells interact with ICAM-1 and FG through beta2 integrins, and with VCAM-1 and FN via beta1 integrins, regulation of HB-EGF expression appears to be specific to beta1 integrin ligation. In addition, we demonstrate that THP-1 binding to LN, through the beta1 integrin VLA-6, down regulates HB-EGF expression. Thus physiologically, transient destruction of LN and expression of VCAM-1, E-selectin and fibronectin at sites of inflammation, may locally induce HB-EGF overexpression.  相似文献   

5.
In acute inflammation, infiltration of neutrophils often precedes a second phase of monocyte invasion, and data in the literature suggest that neutrophils may directly stimulate mobilization of monocytes via neutrophil granule proteins. In this study, we present a role for neutrophil-derived heparin-binding protein (HBP) in monocyte arrest on endothelium. Adhesion of neutrophils to bovine aorta endothelial cells (ECs) or HUVEC-triggered secretion of HBP and binding of the protein to the EC surface. Blockade of neutrophil adhesion by treatment with a mAb to CD18 greatly reduced accumulation of HBP. In a flow chamber model, immobilized recombinant HBP induced arrest of human monocytes or monocytic Mono Mac 6 (MM6) cells to activated EC or plates coated with recombinant adhesion molecules (E-selectin, P-selectin, VCAM-1). However, immobilized recombinant HBP did not influence arrest of neutrophils or lymphocytes. Treatment of MM6 cells with recombinant HBP evoked a rapid and clear-cut increase in cytosolic free Ca(2+) that was found to be critical for the HBP-induced monocyte arrest inasmuch as pretreatment with the intracellular calcium chelating agent BAPTA-AM abolished the evoked increase in adhesion. Thus, secretion of a neutrophil granule protein, accumulating on the EC surface and promoting arrest of monocytes, could contribute to the recruitment of monocytes at inflammatory loci.  相似文献   

6.
Resistin, firstly reported as an adipocyte-specific hormone, is suggested to be an important link between obesity and diabetes. Recent studies have suggested an association between resistin and atherogenic processes. The adhesion of circulating monocytes to endothelial cells is a critical step in the early stages of atherosclerosis. The purpose of the present study was to investigate the effect of resistin on the adhesion of THP-1 monocytes to human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. Our results showed that resistin caused a significant increase in monocyte adhesion. In exploring the underlying mechanisms of resistin action, we found that resistin-induced monocyte adhesion was blocked by inhibition of p38MAPK activation using SB203580 and SB202190. Furthermore, resistin increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by HUVECs and these effects were also p38MAPK-dependent. Resistin-induced monocyte adhesion was also blocked by monoclonal antibodies against ICAM-1 and VCAM-1. Taken together, these results show that resistin increases both the expression of ICAM-1 and VCAM-1 by endothelial cells and monocyte adhesion to HUVECs via p38MAPK-dependent pathways.  相似文献   

7.
Increased expression of endothelial adhesion molecules, high levels of the monocyte chemoattractant protein-1 (MCP-1) and enhanced VLA4 integrin/VCAM-1 and CCR-2/MCP-1 interactions are initial steps in vascular inflammation. We sought to determine whether relaxin, a potent vasodilatory and anti-fibrotic agent, mitigates these early events compromising endothelial integrity. The effect of relaxin coincubation on the TNF-α-stimulated expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin; the MCP-1 expression by human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HAoSMC); as well as on direct monocyte–endothelium cell adhesion was quantified by ELISA or adhesion assay. CCR-2 and PECAM expression on HUVEC and THP-1 monocytes was investigated by FACS analysis. Relaxin treatment suppressed significantly TNF-α-induced upregulation of VCAM-1 and PECAM, CCR-2, and MCP-1 levels and direct monocyte adhesion to HUVEC. Our findings identify relaxin as a promising inhibitory factor in early vascular inflammation. By attenuating the upregulation of VCAM-1, key adhesion molecule in early vascular inflammation, and of MCP-1, a chemokine pivotal to monocyte recruitment, relaxin decreased initial monocyte–endothelium contact. This may be of relevance for the prevention and treatment of atherosclerosis and of other pro-inflammatory states.  相似文献   

8.
Insulitis is a hallmark feature of autoimmune diabetes that ultimately results in islet beta-cell destruction. We examined integrin requirements and specific inhibition of integrin structure in T cell and monocyte adhesion to pancreatic islet endothelium. Examination of cell surface integrin expression on WEHI 7.1 T cells revealed prominent expression of beta-, beta(1)-, alpha(L)-integrins, and low expression of alpha(M)-integrins; whereas WEHI 274.1 monocytes showed significant staining for beta(2)-, beta(1)-, alpha(M)-molecules and no expression of alpha(L)-molecules. Unstimulated islet endothelium showed constitutive levels of ICAM-1 counter-ligand expression with minimal VCAM-1 expression; however, TNF-alpha stimulation increased cell surface density of both molecules. TNF-alpha increased T cell and monocyte rolling and adhesion under hydrodynamic flow conditions. Administration of a cyclic peptide competitor for the alpha(L)-integrin I domain binding sites (cyclo1,12-PenITDGEATDSGC) blocked T cell adhesion without inhibiting monocyte adhesion. Examination of T cell rolling revealed that cLAB.L treatment increased the average rolling velocity on activated endothelium and significantly decreased the fraction of T cells rolling at < or =50 microm/s, suggesting that cLAB.L treatment interferes with signal activation events required for the conversion of T cell rolling to firm adhesion. These data demonstrate for the first time that cyclic peptide antagonists against alpha(L)-integrin I domain attenuate T cell recruitment to islet endothelium.  相似文献   

9.
Toll-like receptor 4 (TLR4) is known to mediate monocyte adhesion to endothelial cells, however, its role on the expression of monocyte adhesion molecules is unclear. In the present study, we investigated the role of TLR4 on the expression of monocyte adhesion molecules, and determined the functional role of TLR4-induced adhesion molecules on monocyte adhesion to endothelial cells. When THP-1 monocytes were stimulated with Kdo2-Lipid A (KLA), a specific TLR4 agonist, Mac-1 expression was markedly increased in association with an increased adhesion of monocytes to endothelial cells. These were attenuated by anti-Mac-1 antibody, suggesting a functional role of TLR4-induced Mac-1 on monocyte adhesion to endothelial cells. In monocytes treated with MK886, a 5-lipoxygenase (LO) inhibitor, both Mac-1 expression and monocyte adhesion to endothelial cells induced by KLA were markedly attenuated. Moreover, KLA increased the expression of mRNA and protein of 5-LO, suggesting a pivotal role of 5-LO on these processes. In in vivo studies, KLA increased monocyte adhesion to aortic endothelium of wild-type (WT) mice, which was attenuated in WT mice treated with anti-Mac-1 antibody as well as in TLR4-deficient mice. Taken together, TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role on monocyte adhesion to vascular endothelium, leading to increased foam cell formation in the development of atherosclerosis.  相似文献   

10.
Epidemiological studies have shown that arsenic exposure increases atherosclerosis, but the mechanisms underlying this relationship are unknown. Monocytes, macrophages and platelets play an important role in the initiation of atherosclerosis. Circulating monocytes and macrophages bind to the activated vascular endothelium and migrate into the sub-endothelium, where they become lipid-laden foam cells. This process can be facilitated by platelets, which favour monocyte recruitment to the lesion. Thus, we assessed the effects of low-to-moderate arsenic exposure on monocyte adhesion to endothelial cells, platelet activation and platelet-monocyte interactions. We observed that arsenic induces human monocyte adhesion to endothelial cells in vitro. These findings were confirmed ex vivo using a murine organ culture system at concentrations as low as 10 ppb. We found that both cell types need to be exposed to arsenic to maximize monocyte adhesion to the endothelium. This adhesion process is specific to monocyte/endothelium interactions. Hence, no effect of arsenic on platelet activation or platelet/leukocyte interaction was observed. We found that arsenic increases adhesion of mononuclear cells via increased CD29 binding to VCAM-1, an adhesion molecule found on activated endothelial cells. Similar results were observed in vivo, where arsenic-exposed mice exhibit increased VCAM-1 expression on endothelial cells and increased CD29 on circulating monocytes. Interestingly, expression of adhesion molecules and increased binding can be inhibited by antioxidants in vitro and in vivo. Together, these data suggest that arsenic might enhance atherosclerosis by increasing monocyte adhesion to endothelial cells, a process that is inhibited by antioxidants.  相似文献   

11.
Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte 1- and 2-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation. angiotensin II; platelet-derived growth factor-BB; cell interaction; CD36  相似文献   

12.
Zhu CH  Ying DJ  Mi JH  Zhu XH  Sun JS  Cui XP 《Biorheology》2004,41(2):127-137
In regions of a vessel that experience low shear stress and reversing flow patterns, early features in the pathogenesis of atherosclerosis include the accumulation of oxidized LDL (OxLDL) and adhesion of monocytes to endothelial cells (EC). Here we investigated the hypothesis that low shear stress (2 dyn/cm2) and OxLDL are synergistic for enhanced expression of vascular cell adhesion molecule (VCAM-1) and human aortic endothelial cell (HAEC)-monocyte adhesion. This study shows low shear stress can significantly reduce IkappaBalpha levels, activate NF-kappaB, increase the expression of VCAM-1 in HAEC and binding of monocytes. OxLDL itself cannot significantly increase the expression of VCAM-1 in HAEC and binding of monocytes, but through activation of NF-kappaB and degradation of IkappaBalpha induced by low shear stress it can significantly enhance VCAM-1 expression and monocyte adhesion, over that in unmodified LDL or control. These results suggest that low shear stress can regulate monocyte adhesion to oxidized lipid-induced endothelial cells via an IkappaBalpha-dependent pathway, and that low shear stress together with OxLDL may likely play an important role in atherogenesis.  相似文献   

13.
Modulation of integrin affinity and/or avidity provides a regulatory mechanism by which leukocyte adhesion to endothelium is strengthened or weakened at different stages of emigration. In this study, we demonstrate that binding of high-affinity alpha 4 beta 1 integrins to VCAM-1 strengthens alpha L beta 2 integrin-mediated adhesion. The strength of adhesion of Jurkat cells, a human leukemia T cell line, or MnCl2-treated peripheral blood T cells to immobilized chimeric human VCAM-1/Fc, ICAM-1/Fc, or both was quantified using parallel plate flow chamber leukocyte detachment assays in which shear stress was increased incrementally (0.5-30 dynes/cm2). The strength of adhesion to VCAM-1 plus ICAM-1, or to a 40-kDa fragment of fibronectin containing the CS-1 exon plus ICAM-1, was greater than the sum of adhesion to each molecule alone. Treatment of Jurkat or blood T cells with soluble cross-linked VCAM-1/Fc or HP2/1, a mAb to alpha 4, significantly increased adhesion to ICAM-1. These treatments induced clustering of alpha L beta 2 integrins, but not the high-affinity beta 2 integrin epitope recognized by mAb 24. Up-regulated adhesion to ICAM-1 was abolished by cytochalasin D, an inhibitor of cytoskeletal rearrangement. Taken together, our data suggest that the binding of VCAM-1 or fibronectin to alpha 4 beta 1 integrins initiates a signaling pathway that increases beta 2 integrin avidity but not affinity. A role for the cytoskeleton is implicated in this process.  相似文献   

14.
The comparative roles of the endothelial cell (EC) adhesion receptors VCAM-1 and ICAM-1 during the adhesion and transendothelial migration of T cells were examined. The adhesion of T cells to IL-1-activated EC was markedly, but not completely, inhibited by mAb to VCAM-1 as well as to its counter-receptor, VLA-4, whereas, T cell binding to IL-1-activated EC was not blocked by mAb to ICAM-1 or to its counter-receptor, LFA-1. In contrast, LFA-1/ICAM-1, but not VLA-4/VCAM-1, mediated much, but not all, of the binding of T cells to unstimulated EC. Activation of T cells with phorbol dibutyrate and ionomycin alter the receptor-counter-receptor pairs used for binding to EC. Regardless of the activation status of the EC, the binding of activated T cells was not blocked by mAb to VLA-4 or VCAM-1. Moreover, the binding of activated T cells to EC was blocked to a lesser degree by mAb to LFA-1 than that of resting T cells, and mAb to ICAM-1 blocked binding only modestly. The role of VCAM-1 and ICAM-1 during the transendothelial migration of T cells was also examined. Regardless of the activation status of the T cells or the EC, VCAM-1 was never found to function during transendothelial migration, even when it mediated the binding of resting T cells to IL-1-activated EC. In contrast, ICAM-1 played an important role in transendothelial migration under all of the conditions examined, including situations when T cell-EC binding was not mediated by ICAM-1. Immunoelectron microscopic analysis of transendothelial migration supported the conclusion that ICAM-1 but not VCAM-1 played a central role in this process. Thus, ICAM-1 was prominently and uniformly expressed at all EC membrane sites that were in contact with bound and migrating T cells, whereas VCAM-1 was localized to the luminal surface of IL-1-activated EC, but was often absent from the surface of the EC in contact with T cells undergoing transendothelial migration. These studies confirm that ICAM-1 and VCAM-1 play reciprocal roles in the binding of resting T cells to resting and IL-1-activated EC, respectively, but a less prominent role in the binding of activated T cells. Moreover, ICAM-1 but not VCAM-1 plays a role in transendothelial migration, regardless of the receptor-counter-receptor pairs used for initial binding.  相似文献   

15.
To investigate the possible role of mast cells (MC) in regulating leukocyte adhesion to vascular endothelial cells (EC), microvascular and macrovascular EC were exposed to activated MC or MC conditioned medium (MCCM). Expression of intercellular and vascular adhesion molecules (ICAM-1 and VCAM-1) on EC was monitored. Incubation of human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells (HUVEC) with activated MC or MCCM markedly increased ICAM-1 and VCAM-1 surface expression, noted as éarly as 4 hr. Maximal levels were observed at 16 hr followed by a general decline over 48 hr. A dose-dependent response was noted using incremental dilutions of MCCM or by varying the number of MC in coculture with EC. At a ratio as low as 1:1,000 of MC:EC, increased ICAM-1 was observed. The ICAM-1 upregulation by MCCM was >90% neutralized by antibody to tumor necrosis factor alpha (TNF-α), suggesting that MC release of this cytokine contributes significantly to inducing EC adhesiveness. VCAM-1 expression enhanced by MCCM was partly neutralized (70%) by antibody to TNF-α; thus other substances released by MC may contribute to VCAM-1 expression. Northern blot analysis demonstrated MCCM upregulated ICAM-1 and VCAM-1 mRNA in both HDMEC and HUVEC. To evaluate the function of MCCM-enhanced EC adhesion molecules, T cells isolated from normal human donors were used in a cell adhesion assay. T-cell binding to EC was increased significantly after exposure of EC to MCCM, and inhibited by antibodies to ICAM-1 or VCAM-1. Intradermal injection of allergen in human atopic volunteers known to develop late-phase allergic reactions led to marked expression of both ICAM-1 and VCAM-1 at 6 hr, as demonstrated by immunohistochemistry. These studies indicate that MC play a critical role in regulating the expression of EC adhesion molecules, ICAM-1 and VCAM-1, and thus augment inflammatory responses by upregulating leukocyte binding. © 1995 Wiley-Liss Inc.  相似文献   

16.
Cytotoxicity of activated monocytes on endothelial cells   总被引:4,自引:0,他引:4  
Unstimulated human monocytes did not express appreciable levels of cytotoxicity on normal human umbilical vein endothelial cells (EC) in a 24-48 hr TdR release assay. On activation with IFN-gamma and LPS, monocytes had appreciable cytotoxicity on EC. Monocyte cytotoxicity on EC was not dependent on the presence of contaminating lymphoid cells. Recombinant TNF, IL-1, and IL-6 as well as monocyte supernatants did not exert a cytotoxic effect on EC. Moreover, anti-TNF, anti-IL-1, and anti-IL-6 antibodies, as well as scavengers of reactive oxygen intermediates, did not affect the cytotoxicity of activated monocytes on EC. Antibodies against the beta-chain (CD18) of leukocyte integrins inhibited the adhesion and cytotoxicity of activated monocytes on EC. Pretreatment of EC with IL-1 augmented the adhesion of monocytes on EC. Normal monocytes were not cytotoxic on IL-1-pretreated EC and IL-1 treatment did not increase the susceptibility of EC to activated monocytes. Thus adhesion is necessary but not sufficient for monocyte killing of EC. Anti-alpha L (LFA-1) antibodies markedly reduced monocyte cytotoxicity on EC, although anti-alpha X (p150) antibodies had only a modest effect. Anti-alpha M (Mac-1/CR3) antibodies were intermediate inhibitors of EC killing by activated monocytes. Thus, alpha L, beta 2 (LFA-1), and, to a lesser extent, alpha M, beta 2 (Mac-1/CR3) and alpha X, beta 2 (p 150, 95) integrins are the main adhesive structures involved in the cytotoxic interaction of activated monocytes with EC. Monocyte-mediated damage of EC could play a role as a mechanism of tissue injury under conditions of local or systemic activation of mononuclear phagocytes.  相似文献   

17.
The intercellular adhesion molecule-3 (ICAM-3) is a counter receptor for the integrin LFA-1 that supports cell-cell adhesion dependent functions. ICAM-3 is a member of the immunoglobulin superfamily possessing five immunoglobulin-like domains. Here, we characterize the overall shape of ICAM-3 and the amino acid residues involved in binding LFA-1 and monoclonal antibodies (Mab). Electron microscopic observations show that ICAM-3 is predominantly a straight rod of 15 nm in length, suggesting a head to tail arrangement of the immunoglobulin-like domains. Six out of nine ICAM-3 Mab described blocked the interaction with LFA-1 to varying degrees. Domain assignment of blocking Mab epitopes and characterization of LFA-1-dependent cell adhesion to ICAM-3 mutants demonstrate that the amino-terminal domain of ICAM-3 interacts with LFA-1. A conserved amino acid motif including residues E37 and T38 form an integrin binding site (IBS) in ICAM-3. This motif has also been shown to function as an IBS in ICAM-1 and VCAM-1 and hence may form a common site of contact in all CAMs of this type. Other ICAM-3 residues critical to adhesive interactions, such as Q75, conserved in ICAM-1 and ICAM-2, but not VCAM-1, may confer specificity to LFA-1 binding. This residue, Q75, is predicted to locate in a model of ICAM-3 to the same site as RGD in the immunoglobulin-like domain of fibronectin that binds several integrins. This suggests an evolutionary relationship between ICAMs and fibronectin interactions with integrins.  相似文献   

18.
The intercellular adhesion molecule-3 (ICAM-3) is a counter receptor for the integrin LFA-1 that supports cell-cell adhesion dependent functions. ICAM-3 is a member of the immunoglobulin superfamily possessing five immunoglobulin-like domains. Here, we characterize the overall shape of ICAM-3 and the amino acid residues involved in binding LFA-1 and monoclonal antibodies (Mab). Electron microscopic observations show that ICAM-3 is predominantly a straight rod of 15 nm in length, suggesting a head to tail arrangement of the immunoglobulin-like domains. Six out of nine ICAM-3 Mab described blocked the interaction with LFA-1 to varying degrees. Domain assignment of blocking Mab epitopes and characterization of LFA-1-dependent cell adhesion to ICAM-3 mutants demonstrate that the amino-terminal domain of ICAM-3 interacts with LFA-1. A conserved amino acid motif including residues E37 and T38 form an integrin binding site (IBS) in ICAM-3. This motif has also been shown to function as an IBS in ICAM-1 and VCAM-1 and hence may form a common site of contact in all CAMs of this type. Other ICAM-3 residues critical to adhesive interactions, such as Q75, conserved in ICAM-1 and ICAM-2, but not VCAM-1, may confer specificity to LFA-1 binding. This residue, Q75, is predicted to locate in a model of ICAM-3 to the same site as RGD in the immunoglobulin-like domain of fibronectin that binds several integrins. This suggests an evolutionary relationship between ICAMs and fibronectin interactions with integrins.  相似文献   

19.
Rats immunized with Mycobacterium butyricum in Freund's adjuvant develop a chronic vasculitis, with large increases in leukocyte rolling and adhesion in mesenteric postcapillary venules that are significantly inhibited with an alpha 4 integrin Ab. Using intravital microscopy to visualize chronically inflamed microvessels, we demonstrated that alpha 4 integrin-dependent leukocyte rolling and adhesion was inhibited with a beta 1 integrin, but not a beta 7 integrin Ab. To date, VCAM-1 has been presumed to be the primary ligand for alpha 4 beta 1 integrin in the vasculature. However, alpha 4 beta 1 integrin-dependent interactions were not reduced by monoclonal or polyclonal VCAM-1 Abs or a VCAM-1 antisense oligonucleotide despite increased VCAM-1 expression in the mesenteric vasculature. To ensure that the VCAM-1 Abs were functional and used at saturating concentrations, blood from Ab-treated rats was perfused over monolayers of CHO cells transfected with rat VCAM-1. Sufficient alpha 4 integrin or VCAM-1 Ab was present to inhibit leukocyte interactions with rat VCAM-1 by 95-100%. Under in vitro flow conditions, only mononuclear leukocytes were recruited from blood of control rats onto purified VCAM-1. However, neutrophils were also recruited onto VCAM-1 from whole blood of adjuvant-immunized animals via alpha 4 integrin. Another ligand for alpha 4 beta 1 integrin is the connecting segment-1 (CS-1) region of fibronectin. An Ab to the CS-1 portion of fibronectin, which did not reduce rolling and adhesion in adjuvant arthritis animals, completely inhibited leukocyte adhesion to CS-1 under static conditions. These findings provide the first evidence that alpha 4 beta 1 integrin-dependent leukocyte rolling and adhesion can occur in vivo via a mechanism other than VCAM-1.  相似文献   

20.
Alveolar monocyte influx requires adherence and transmigration through the vascular endothelium, extracellular matrix, and alveolar epithelium. For investigating the monocyte migratory process across the epithelial barrier, we employed both the A549 cell line and isolated human alveolar epithelial cells. Under baseline conditions, spontaneous bidirectional transepithelial monocyte migration was noted, which was dose-dependently increased in the presence of the monocyte chemoattractant protein-1. TNF-alpha stimulation of the alveolar epithelium provoked the polarized apical secretion of monocyte chemoattractant protein-1 and RANTES and up-regulation of ICAM-1 and VCAM-1 expression, accompanied by markedly enhanced transepithelial monocyte traffic in the basal-to-apical direction. Multiple adhesive interactions were noted to contribute to the enhanced monocyte traffic across the TNF-alpha-stimulated alveolar epithelium: these included the beta 2 integrins CD11a, CD11b, CD11c/CD18, the beta 1 integrins very late Ag (VLA)-4, -5, and -6, and the integrin-associated protein CD47 on monocytes, as well as ICAM-1, VCAM-1, CD47, and matrix components on the epithelial side. In contrast, spontaneous monocyte migration through unstimulated epithelium depended predominantly on CD11b/CD18 and CD47, with some additional contribution of VLA-4, -5, and -6. In summary, unlike transendothelial monocyte traffic, for which beta 1 and beta 2 integrins are alternative mechanisms, monocyte migration across the alveolar epithelium largely depends on CD11b/CD18 and CD47 but required the additional engagement of the beta 1 integrins for optimal migration. In response to inflammatory challenge, the alveolar epithelium orchestrates enhanced monocyte traffic to the apical side by polarized chemokine secretion and up-regulation of ICAM-1 and VCAM-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号