首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of sucrose with a combination of 2,2-dimethoxypropane, N,N-dimethylformamide, and toluene-p-sulphonic acid (reagent A) gave, after acetylation followed by chromatography, 1′,2:4,6-di-O-isopropylidenesucrose tetra-acetate (1) in 15% yield. The structure of 1 was determined on the basis of p.m.r. and mass spectrometry, and by chemical transformations. Treatment of 1 with aqueous acetic acid afforded sucrose 3,3′,4′,6′-tetra-acetate 2. Reacetalation of 2 using reagent A gave 1 in 80% yield. The p.m.r. spectrum of 2 confirmed the presence of hydroxyl groups at C-2 and C-4. The following sequence of reactions showed that the remaining two hydroxyl groups were located at C-6 and C-1′. Selective tritylation of 2 gave 1′,6-di-O-tritylsucrose 3,3′,4′,6′-tetra-acetate (3) as the minor, and 6-O-tritylsucrose 3,3′,4′,6′-tetra-acetate (4) as the major, product. When tritylation was carried out under forcing conditions, 2 gave 3 as the major product. Acetylation of 4 afforded 6-O-tritylsucrose hepta-acetate. Mesylation of 2 gave the tetramethanesulphonate 5, which afforded the 6-dcoxy-6-iodo derivative 6 on treatment with a refluxing solution of sodium iodide in butanone. Treatment of 3 with methanesulphonyl chloride in pyridine gave the disulphonate 7, which on detritylation followed by acetylation gave 2,4-di-O-methanesulphonylsucrose hexa-acetate (9). Treatment of 9 with sodium benzoate in hexamethylphosphoric triamide displaced the 4-sulphonate, with inversion of configuration, to give the galacto derivative 10.  相似文献   

2.
Acetylation of benzyl 6-deoxy-3,4O-isopropylidene-β-L-galactopyranoside gave benzyl 2-O-acetyl-6-deoxy-3,4-O-isopropylidene-β-L-galactopyranoside (1). Removal of the isopropylidene group afforded benzyl 2-O-acetyl-6-deoxy-β-L-galactopyranoside (2), which was converted into benzyl 2-O-acetyl-6-deoxy-3,4-di-O-(methyl-sulfonyl)-β-L-galactopyranoside (3). Benzyl 2,3-anhydro-6-deoxy-4-O-(methyl-sulfonyl)-β-L-gulopyranoside (4) was obtained from 3 by treatment with alkali. Reaction of 4 with sodium azide in N,N-dimethylformamide gave a mixture of two isomeric benzyl 2,4-diazido-2,4,6-trideoxy hexoses, the syrupy diazido derivative 5 and the crystalline benzyl 2,4-diazido-2,4,6-trideoxy-β-L-idopyranoside (6). Acetylation of 6 afforded a compound whose n.m.r. spectrum was completely first order and in agreement with the structure of benzyl 3-O-acetyl-2,4-diazido-2,4,6-trideoxy-β-L-idopyranoside (7). Lithium aluminium hydride reduction of 5, followed by acetylation, afforded a crystalline product (8), shown by n.m.r. spectroscopy to be benzyl 2,4-diacetamido-3-O-acetyl-2,4,6-trideoxy-β-L-altropyranoside. Similar treatment of the diazido derivative 6 afforded benzyl 2,4-diacetamido-3-O-acetyl-2,4,6-trideoxy-β-L-idopyranoside (9). Compounds 8 and 9 could also be obtained from 4 by treatment of the crude diazido mixture with lithium aluminium hydride, with subsequent N-acetylation. The syrupy benzyl 2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranoside (10) and the crystalline benzyl 2,4-diacetamido-2,4,6-trideoxy-β-L-idopyranoside (11) thus obtained were then O-acetylated to give 8 and 9 respectively. Benzyl 2,4-diacetamido-2,4,6-trideoxy-β-L-talopyranoside (15) was obtained from 11 by treatment with methanesulfonyl chloride and subsequent solvolysis. Compound 15 was O-acetylated to yield benzyl 2,4-diacetamido-3-O-acetyl-2,4,6-trideoxy-β-L-talopyranoside (16). the n.m.r. spectrum of which was in full agreement with the assigned structure. The mass spectra of compounds 8–11, 15, and 16 were also in agreement with their proposed structures. Removal of the benzyl groups from 10, 11 and 15 afforded the corresponding 2,4-diacetamido-2,4,6-trideoxyhexoses 12, 13, and 17, having the L-altro, L-ido, and L-talo configurations, respectively.  相似文献   

3.
Treatment of benzyl 2-acetamido-3-O-benzyl-2,6-dideoxy-4-O-(methylsulfonyl)-α-D-glucopyranoside (1) with sodium azide in hexamethylphosphoric triamide gave the 4-azido-α-D-galacto derivative (2), which was converted into benzyl 2,4-di-acetamido-3-O-benzyl-2,3,6-trideoxy-α-D-galactopyranoside (3) by hydrogenation and subsequent acetylation. Hydrogenolysis of 3 at atmospheric pressure afforded benzyl 2,4-diacetamido-2,4,6-tridcoxy-α-D-galactopyranoside (4), which was acetylated to give the 3-O-acetyl derivative (5). The n.m.r. spectrum of 5 was in agreement with the assigned structure and different from that of benzyl 2,4-di-acetamido-3-O-acetyl-α-D-glucopyranoside (9), which was prepared from the known benzyl 2,4-diacetamido-3-O-benzyl-2,4,6-trideoxy-α-D-glucopyranoside. Catalytic hydrogenolysis of 4 gave 2,4-diacetamido-2,4,6-trideoxy-D-galactose (6).  相似文献   

4.
Monotosylation of 1,6-anhydro-β-D-glucofuranose is a highly selective process, which yields the 5-O-tosyl derivative 2 preferentially (77%). By-products of the reaction are the 2-O-monotosyl derivative (6%) and the 2,5- and 3,5-di-O-tosyl derivatives (both 5%). The substitution pattern of all compounds was derived from n.m.r. spectra, especially from those of the acetylated compounds. Attempts to use 2 in the synthesis of 1,6-anhydro-α-L-idofuranose by intermolecular nucleophilic substitution failed, but instead yielded 1,6:3,5-dianhydro-α-L-idofuranose. This first representative of a new class of dianhydrohexoses was characterized by n.m.r. and m.s. Acetylation gave the 2-monoacetate showing an n.m.r. spectrum in agreement with the proposed structure. This tricyclic structure is expected to be very rigid and is composed of four-, five-, six-, seven-, and eight-membered rings.  相似文献   

5.
Treatment of methyl tri-O-acetyl-β-D-arabinopyranoside (1a) with hydrogen bromide in benzene or in acetic acid gave, in addition to the pyranosyl bromide (2a), a considerable proportion of tri-O-acetyl-D-arabinofuranosyl bromide (5). Similar treatment of methyl tri-O-benzoyl-β-D-arabinopyranoside (1b) gave a good yield of the pyranosyl bromide (2b); no furanoid derivative was formed. Ring contraction also took place when methyl 4-O-acetyl-2,3-di-O-benzoyl-β-D-arabinopyranoside (7) was treated with hydrogen bromide, whereas the isomeric 3-O-acetyl-2,4-di-O-benzoyl compound (12) gave the pyranosyl bromide 13 in high yield. Thus, methyl pyranosides with an O-acetyl group at C-4 undergo ring contraction on treatment with hydrogen bromide. The corresponding compounds with O-benzoyl groups at C-4 gave pyranosyl bromides only.  相似文献   

6.
The reaction of 2,3-di-O-acetyl-1,4,5,6-tetra-O-(methylsulfonyl)-myo-inositol (1) with sodio-adenine in HCONMe2 for 24 h at 100° gave, in 53.7% yield, the title compound, whose structure was ascertained by physical methods. Other parallel, secondary reactions were the aromatization of compound 1 to give 2,4-di-O-(methylsulfonyl)-1,2,4-benzenetriol (13.8%), and the formation of 1,5,6-tri-O-(methylsulfonyl)-muco-inositol (17.8%).  相似文献   

7.
Derivatives of 6-amino-6-deoxy-D-galactose-6-15N have been synthesized by reaction of the 6-deoxy-6-iodo (1) or 6-O-p-tolylsulfonyl derivative of 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose with potassium phthalimide-15N. The reaction of 1 also yielded an elimination product, 6-deoxy-1,2:3,4-di-O-isopropylidene-β-L-arabino-hex-5-enopyranose. The structures of the 6-amino-6-deoxy-D-galactose derivatives and their precursors were characterized by proton- and 13C-n.m.r. spectroscopy, with confirmation of the 13C assignments by selective proton decoupling. Selective broadening of the C-1, C-4, C-5, and C-6 resonances of 6-amino-6-deoxy-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose by low concentrations of cupric ion was observed, and studied by computerized measurements of the 13C linewidths. The application of this broadening to 13C-spectral assignments of amino sugar derivatives is indicated.  相似文献   

8.
Benzylation of methyl 2,3-anhydro-4-O-[2-O-benzyl-3,4-di-O-(β-D-xylop yranosyl]-β-D-xylopyranosyl]-β-D-ribopyranoside (1) afforded the crystalline. fully benzylated tetrasaccharide derivative 2. The octa-O-benzyl derivative 3, having only HO-2 unsubstituted, obtained by treatment of 2 with benzyl alcoholate anion in benzyl alcohol, was allowed to react in dichloromethane with methyl 2,3-di-O-benzyl- 1-chloro-1-deoxy-4-O-methy]-α,β-glucopyranuronate in the presence of silver perchlorate and triethylamine to give the branched, 4-O-methyl-α-D-glucuronic acid-containing pentasaccharide derivative 4a as the major product. Subsequent debenzylation afforded the aldopentaouronic acid derivative 5a, which contains all the basic structural features of branched, hardwood (4-O-methylglucurono)xylans. The structure of 5a was confirmed by analysis of its 13C-n.m.r. spectrum and the mass-spectral fragmentation pattern of the corresponding fully methylated derivative 6a.  相似文献   

9.
1,6-Diamino-2,5-anhydro-1,6-dideoxy-l-iditol (31) and its derivatives were synthesized, starting from 2,4-O-benzylidene-1,6-di-O-tosyl-d-glucitol. The 1,6-bis-(acetamido)-l-talo epoxide was readily hydrolyzed to the corresponding l-iditol derivative under anchimeric assistance of the 1-acetamido group. On treatment with formaldehyde-formic acid, diamine 31 gave a tricyclic, 1,4:3,6-bis(N,O-methylene) derivative which was stable under acidic conditions but, according to 13C-n.m.r. spectroscopy, was readily hydrolyzed to an equilibrium mixture in neutral, aqueous solution. The corresponding 1,6-bis(dimethylamino) derivative could be obtained by reducing this equilibrium mixture with borohydride. The different, quaternary salts obtained on methylation of the corresponding 1,6-bis(dimethylamino) derivatives with methyl iodide (aiming at the structure of epi-allo-muscarine) showed no muscarine-like, biological activity.  相似文献   

10.
A C-nucleoside analog of cordycepin, 6-amino-8-(3-deoxy-β-D-erythro-pentofuranosyl)purine (6), has been synthesized. 3-Deoxy-2,5-di-O-(p-nitrobenzoyl)- β-D-erythro-pentofuranosyl bromide reacted with mercuric cyanide in nitromethane to give 2,5-anhydro-4-deoxy-3,6-di-O-(p-nitrobenzoyl)-D-ribo-hexononitrile which, after acid hydrolysis and removal of the protecting groups, afforded 2,5-anhydro-4-deoxy-D-ribo-hexonic acid. Reaction of this acid with 4,5,6-triaminopyrimidine gave the corresponding amide, which was pyrolyzed to give compound 6. The mass- and n.m.r.-spectral data for the synthesized analog are quite similar to those of the natural antibiotic.  相似文献   

11.
Hydrolysis of 1,2-O-isopropylidene-3,5-di-O-methyl-α-d-glucofuranose by strong acid yielded 3,5-di-O-methyl-d-glucofuranose (6) and its 1,6-anhydride (10). The mechanism of the reaction giving 10 is discussed. On treatment with a catalytic amount of sodium methoxide, 1,2,6-tri-O-acetyl-3,5-di-O-methyl-d-glucofuranose (8) gives the 6-O-acetyl derivative, whereas complete deacetylation, and subsequent isomerization to the d-fructose derivative 16, takes place in the presence of 0.1m sodium methoxide. The structure of 16 was proved both chemically and spectroscopically. Reduction of 6 or 8 with a borohydride afforded 3,5-di-O-methyl-d-glucitol.2  相似文献   

12.
A new route is described for preparing methyl 4,6-di-O-methyl-α-d-mannopyranoside (5) via methyl 2,3-di-O-p-tolylsulfonyl-α-d-mannopyranoside (3) as an intermediate. The retention of the mannopyranoside configuration and ring form was confirmed by proton n.m.r. spectroscopy and by m.s. of peracetylated aldononitrile derivatives. Mass-spectral fragmentation-pathways previously proposed were confirmed for 5-O-acetyl-2,3,4,6-tetra-O-methyl-, 2,5-di-O-acetyl-3,4,6-tri-O-methyl-, and 3,5-di-O-acetyl-2,4,6-tri-O-methyl-d-mannononitrile.  相似文献   

13.
《Carbohydrate research》1985,138(1):65-72
Treatment of peptidoglycan monomer (1) from Brevibacterium divaricatum with aqueous ammonia led to cleavage of the C-3 ether linkage in the N-acetylmuramoyl residue to give the d-lactoylpentapeptide and a saturated disaccharide. By using 13C-n.m.r. spectroscopy, the disaccharide was identified as chitobiosamine. Alkaline treatment of model compounds under similar conditions showed that N-acetylmuramoyl derivatives with C-1 unsubstituted undergo cleavage at C-3 to give the corresponding 2-acetamido-2-deoxy-d-glucopyranose derivative. The reaction of 1 with ammonia was monitored by 1H-n.m.r. spectroscopy and, from the data obtained, rate constants and the activation energy were calculated.  相似文献   

14.
Starting from myo-inositol, 1,2-O-isopropylidene-3,4,5,6-tetra-O-(methylsulfonyl)-, 1,4,5,6-tetra-O-(methylsulfonyl)-, and 2,3-di-O-acetyl-1,4,5,6-tetra-O-(methylsulfonyl)-myo-inositol (3) were synthesized. Compound 3 was treated with sodium azide to give 3-azido-3-deoxy-1,5,6-tri-O-(methylsulfonyl)-muco-inositol, reduction of whose diacetate led to a mixture of 3-amino-3-deoxy- and 3-acetamido-2-O-acetyl-3-deoxy-1,5,6-tri-O-(methylsulfonyl)-muco-inositol. The configurations and conformations of these compounds were ascertained by n.m.r. spectroscopy. 3-Acetamido-3-deoxy-1,5,6-tri-O-(methylsulfonyl)-muco-inositol and its 2,4-diacetate are also described.  相似文献   

15.
The following primary sulphonates have been converted into the corresponding deoxyfluoro derivatives by reaction with potassium fluoride in ethylene glycol:1,2:3,4-di-O-isopropylidene-6-O-tosyl α-D-galactopyranose (1), methyl 2,3-O2-isopropyliden-5-O-tosyl-α,β-D-ribofuranoside (2), 1,2:3,4-di-O-methylene-6-O-tosyl-α-D-glucofuranose (3), 3,5-di-O-benzylidene-1,2-O-isopropylidene-6-O-tosyl-α-D-glucofuranose (4), and 1,2:3,5-di-O-isopropylidene-6-O-tosyl-α-D-glucofuranose (5). The yields were generally poor; in the reaction of 1, a major by-product was 6-O-(2-hydroxyethyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (11). The reaction of the primary hydroxyl precursor of each of the above tosylates with N2-(2-chloro- 1,1,2-trifluoroethyl)-N,N-diethylamine generally yielded the O-chlorofluoroacetyl derivative; however, 1,2:3,5-di-O-methylene-α-D-glucofuranose (12) was converted into the 6-deoxy-6-fluoro derivative (8). The 19F resonances of compounds containing the CH2F moiety fall between φC +213 and φC +235 p.p.m. The differences between the vicinal19F-1H couplings of compounds having the D-gluco and D-galacto configurations clearly reflect the influence of the C-4O-4 substitutents on the populations of the C-5C-6 rotamers. A novel type of noise-modulated, heteronuclear decoupling experiment is described.  相似文献   

16.
Addition of phenyl azide to 3,5-di-O-acetyl-6,7-dideoxy-1,2-O-isopropylidene-β-l-idio-hept-6-ynofuranose (1) and subsequent saponification gave a 4-substituted 1-phenyl-1,2,3-triazole derivative (3) whose optical rotatory dispersion (o.r.d.) curve was positive. The α-d-gluco analog (5) of 1 similarly gave the 5-epimer (7) of 3; its o.r.d. curve was negative. Both 3 and 7 were degraded to the known 1-phenyl-1,2,3-triazole-4-carboxaldehyde. Similarly, addition of 2,4,6-trimethylbenzonitrile N-oxide to 1 or 5 gave the corresponding, crystalline 3-mesitylisoxazoles as single products; 13C-n.m.r. spectroscopy was used to establish the orientation of addition. Related 3-mesitylisoxazoles (11 and 13) were obtained from 1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranose (10) and its l-glycero 6-epimer (12), respectively; 11 showed the expected, large levorotation, and the 6-epimer 13 was also levorotatory. Benzonitrile (N-phenyl)imine, prepared in situ from 1-(α-chlorobenzylidene)-2-phenylhydrazine and base, did not react with 10 (or its 6-epimer 12), but did react with the 6-keto analog to give a 5-substituted 1,3-diphenyl-1,2-diazole.  相似文献   

17.
The preparation of mono-O-isopropylidene derivatives and mono-O-isopropylidene benzeneboronates of monosaccharides in one step is described, together with their p.m.r. and mass-spectral characteristics. In particular, the use of boric acid in the synthesis of the new acetal 1,2-O-isopropylidene-β-L-arabinopyranose (8) is described, together with improved procedures for the preparation of 2,3-O-isopropylidene-D-mannofuranose (5) and 3,4-O-isopropylidene-L-arabinopyranose (10). The use of boric acid in the partial hydrolysis of 1,2:3,4-di-O-isopropylidene-β-L-arabinopyranose to give the 1,2-acetal is reported.  相似文献   

18.
《Carbohydrate research》1985,140(2):299-311
Sequential tritylation, benzoylation, and detritylation of methyl 3-deoxy-3-fluoro-β-d-galactopyranoside gave crystalline methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β-d-galactopyranoside (9), which was used as the initial nucleophile in the synthesis of the target oligosaccharide (16). Treatment of 9 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-α-d-galactopyranosyl bromide gave the corresponding disaccharide derivative 13, having a selectively removable blocking group at O-6′. Debromoacetylation of 13 afforded the disaccharide nucleophile 14 which, when treated with 2,4,6-tri-O-benzoyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide, gave the fully protected trisaccharide 15. Debenzoylation of 15 gave the title glycoside 16. Condensation reactions were performed with silver trifluoromethane-sulfonate as a promoter in the presence of sym-collidine under base-deficient conditions, and gave excellent yields of the desired β-(trans)-products. Analyses of the 1H- and 13C-n.m.r. spectra, as well as determination of the JCF and JHF coupling constants, were made by using various one- and two-dimensional n.m.r. techniques.  相似文献   

19.
5,6-Dideoxy-6-C-nitro-5-(phenylphosphino)-d-glucopyranose was prepared by addition of phenylphosphine to 3-O-acetyl-5,6-dideoxy-1,2-O-isopropylidene-6-C-nitro-α-d-xylo-hex-5-enofuranose, followed by hydrolysis of the resulting 3-O-acetyl-5,6-dideoxy-1,2-O-isopropylidene-6-C-nitro-5-(phenylphosphino)-d-glucofuranose (10). Acetylation of 10 gave the crystalline 1,2,3,4-tetraacetate (16). 5,6-Dideoxy-6-C-nitro-5-(phenylphosphinyl)-d-glucopyranose (15) was obtained by oxidation of 10, and hydrolysis of the resulting 5-phenylphosphinyl compound. Acetylation of 15 gave the 1,2,3,4-tetraacetate (17). Although the n.m.r. spectrum of 17 was complex, the n.m.r. spectrum of 16 was rather simple. The n.m.r. data showed that 16 is the α anomer in the 4C1(d) conformation.  相似文献   

20.
The syntheses of 2,3,4,6-tetra-O-acetyl-1-S-dimethylarsino-1-thio-β-D-glucopyranose (3), 2,3,4,6-tetra-O-acetyl-1-Se-dimethylarsino-1-seleno-β-D-glucopyranose (4), 1-S-dimethylarsino-1-thio-β-D-glucopyranose (5), and -1-Se-dimethylarsino-1-seleno-β-D-glucopyranose (7) are described. The n.m.r., Raman, and mass-spectral properties of the compounds are given. 3-O-Diethylarsino-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose has also been prepared, but characterized only by n.m.r. spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号