首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
This study examines the ventilatory physiology of the numbat (Myrmecobius fasciatus), a small to medium-sized (550 g) termitivorous marsupial. Ventilatory parameters at thermoneutrality reflect the slightly low (83% of predicted) basal metabolic rate of the numbat, with ventilation frequency (ƒR; 30.6±3.65 breaths min–1), tidal volume [VT; 6.0±0.66 ml at body temperature and pressure, saturated (BTPS)] and consequently minute volume (VI; 117.7±15.22 ml min–1; BTPS) all being 80–87% of that expected for a marsupial of similar body mass. Oxygen extraction was 27.7±1.37% in the thermoneutral zone. As is typical of marsupials, numbats accommodated increased oxygen consumption rates at ambient temperatures (T a) below the thermoneutral zone by increasing minute volume (up to 411.2±43.98 ml min–1; BTPS at T a=10 °C) rather than oxygen extraction. Minute volume at 10 °C increased more by changes in ventilation frequency (up to 45.5±4.85 breaths min–1) than tidal volume (9.4±1.03 ml, BTPS), as is also typical for a small-medium sized marsupial.Abbreviations BMR basal metabolic rate - BTPS body temperature and pressure, saturated - EO 2 oxygen extraction - ƒ R ventilation frequency - STPD standard temperature and pressure, dry - T a ambient temperature - T b body temperature - TNZ thermoneutral zone - V I minute volume - V T tidal volume - O 2 oxygen consumption rate Communicated by I.D. Hume  相似文献   

2.
3.
Stomatal regulation of transpiration was studied in hedgerow coffee (Coffea arabica L.) at different stages of canopy development encompassing a range of leaf area indices (L) from 0·7 to 6·7. Stomatal (gs) and crown (gc) conductance attained maximum values early during the day and then declined as both leaf-to-bulk air water vapour mole fraction difference (Va) and photosynthetically active photon flux density (I) continued to increase. Covariation of environmental variables during the day, particularly V, I, and wind speed (u), obscured stomatal responses to individual variables. This also caused diurnal hysteresis in the relationship between gc and individual variables. Normalization of gs and gc by I removed the hysteresis and revealed a strong stomatal response to humidity. At the crown scale, transpiration (E) increased linearly with net radiation (Rn) and seemed to increase with increasing wind speed. Increasing wind speed imposed higher leaf interior to leaf surface water vapour mole fraction differences (Vs) at given levels of Va. However, strong relationships between declining gc and E and increasing wind speed were obtained when gc and E were normalized by I and Rn, respectively, without invoking additional potential interactions involving temperature or CO2 concentration at the leaf surface. Apparent stomatal responses to wind were thus at least partially a reflection of the stomatal response to humidity.  相似文献   

4.
Sex differences in running economy (gross oxygen cost of running, CR), maximal oxygen uptake (VO2max), anaerobic threshold (Than), percentage utilization of aerobic power (% VO2max), and Than during running were investigated. There were six men and six women aged 20–30 years with a performance time of 2 h 40 min over the marathon distance. The VO2max, Than, and CR were measured during controlled running on a treadmill at 1° and 3° gradient. From each subject's recorded time of running in the marathon, the average speed (v M) was calculated and maintained during the treadmill running for 11 min. The VO2 max was inversely related to body mass (m b), there were no sex differences, and the mean values of the reduced exponent were 0.65 for women and 0.81 for men. These results indicate that for running the unit ml·kg–0.75·min–1 is convenient when comparing individuals with different m b. The VO2max was about 10% (23 ml·kg–0.75·min–1) higher in the men than in the women. The women had on the average 10–12 ml·kg–0.75·min–1 lower VO2 than the men when running at comparable velocities. Disregarding sex, the mean value of CR was 0.211 (SEM 0.005) ml·kg–1·m–1 (resting included), and was independent of treadmill speed. No sex differences in Than expressed as % VO2max or percentage maximal heart rate were found, but Than expressed as VO2 in ml·kg–0.75·min–1 was significantly higher in the men compared to the women. The percentage utilization of f emax and concentration of blood lactate at v M was higher for the female runners. The women ran 2 days more each week than the men over the first 4 months during the half year preceding the marathon race. It was concluded that the higher VO2max and Than in the men was compensated for by more running, superior CR, and a higher exercise intensity during the race in the performance-matched female marathon runners.  相似文献   

5.
We have investigated the respiratory control system with the hypothesis that, although many variables such as minute ventilation (V I), tidal volume (V T),breathing period (T T),inspiratory duration (T I),and exspiratory duration (T E),may be observed, the controller functions more simply by manipulating only 2 or 3 of these. Thus, if tidal volume is the only independent variable, T Ibeing determined by the off-switch threshold, these variables should have very similar time courses. Anesthetized dogs were subjected to CO2 breathing and carotid sinus perfusion to stimulate both chemoreceptors. The time series of the variables V I, V T, TT, TEand T Ias well as P A CO 2were determined on a breath by breath basis. Derived characteristics of these time series were compared using Cluster Analysis and the latent dimensionality of respiratory control determined by Factor Analysis. The characteristics of the time series clustered into 4 groups: magnitude (of the response), speed, variability and relative change. One respiratory factor accounted for 86% of the variance for the variability characteristics, 2 factors for magnitude (91%) and relative change (85%) and 3 factors for speed (89%). The respiratory variables were analysed for each of the 4 groups of characteristics with the following results: V Tand T I clustered together only for the magnitude and relative change characteristics where as T Tand T Eclustered closely for all four characteristics. One latent factor was associated with the [T T-TE]group and the other usually with P A CO 2.Supported by USPHS 5t01 01919-05, NIH HL 12564 and GM 07033  相似文献   

6.
Lipase Pseudomonas cepacia (PS) catalyzed transesterification of ethyl 3-phenylpropanoate with eleven alcohols was investigated in three ionic liquids [ILs], [Bmim]BF4, [Bmim]PF6, and [Bmim]Tf2N, consisting of an identical cation and different anions. The yields were higher in hydrophobic ILs [Bmim]Tf2N (55–96%) and [Bmim]PF6 (22–95%), than in hydrophilic [Bmim]BF4 (0–19%). The incubation of lipase PS in hydrophobic ILs for a period of 20–300 days at room temperature resulted in an increased yield of 62–98% in [Bmim]Tf2N and 45–98% in [Bmim]PF6, respectively. The lipase PS-hydrophobic IL mixture was recycled five times without any decrease in the yield of the products. In another set of experiments, the hydrolytic activity of the enzyme was determined after incubation in each of the three ILs and in hexane for 20 days at room temperature. It was found to be 1.8- and 1.6-fold higher in [Bmim]Tf2N and [Bmim]PF6, respectively, remained unchanged in [Bmim]BF4 and was 1.6 times lower in hexane as compared to the non-incubated enzyme.  相似文献   

7.
The effect of sublethal levels of methylparathion (0, 1, 3, 5, 7 mg l–1) on the freshwater rotifer, Brachionus calyciflorus, during their entire life cycle was studied. Rotifers were fed on two species of unicellular algae: Nannochloris oculata and Chlorella pyrenoidosa; both algal concentrations were 5 × 105 cell ml–1.The parameters used to determine the toxicity of this compound were survival, fecundity, net reproductive rate (R)o, generation time (T), intrinsic rate of natural increase (r), reproductive value (V x/Vo) and life expectancy at hatching (eo). All the demographic parameters studied were affected by methyl-parathion exposure on rotifers fed on both species of algae, but the toxic effect was larger when animals were fed on Chlorella pyrenoidosa; in this case, animals showed a decreased in fertility and also a delayed first reproduction. Sublethal methylparathion levels produced a reduction in most of the parameters selected, especially after exposure to 7 mg l–1, where the animals died before reproducing.  相似文献   

8.
The pH-sensitivity of transepithelial K+ transport was studied in vitro in isolated vestibular dark cell epithelium from the gerbil ampulla. The cytosolic pH (pH iwas measured microfluorometrically with the pH-sensitive dye 2,7-bicarboxyethyl-5(6)-carboxyfluorescein (BCECF) and the equivalent short-circuit current (I sc), which is a measure for transepithelial K+ secretion, was calculated from measurements of the transepithelial voltage (V t)and the transepithelial resistance (R t) in a micro-Ussing chamber. All experiments were conducted in virtually HCO 3 -free solutions. Under control conditions, pH iwas 7.01±0.04 (n=18), V twas 9.1±0.5 mV, R t16.7±0.09 cm2, and I sc was 587±30 A/cm2 (n=49). Addition of 20 mm propionate caused a biphasic effect involving an initial acidification of pH i, increase in V tand I sc and decrease in R tand a subsequent alkalinization of pH i, decrease of V tand increase of R t. Removal of propionate caused a transient effect involving an alkalinization of pH i, a decrease of V tand I sc and an increase in R t. pH iin the presence of propionate exceeded pH iunder control conditions. Effects of propionate on V t, R tand I sc were significantly larger when propionate was applied to the basolateral side rather than to the apical side of the epithelium. The pH i-sensitivityof I sc between pH 6.8 and 7.5 was –1089 A/(cm2 · pH-unit) suggesting that K+ secretion ceases at about pH i7.6. Acidification of the extracellular pH (pH o)caused an increase of V tand I sc and a decrease of R tmost likely due to acidification of pH i. Effects were significantly larger when the extracellular acidification was applied to the basolateral side rather than to the apical side of the epithelium. The pH osensitivity of I sc between pH 7.4 and 6.4 was –155 A/(cm2 · pH unit). These results demonstrate that transepithelial K+ transport is sensitive to pH iand pH oand that vestibular dark cells contain propionate uptake mechanism. Further, the data suggest that cytosolic acidification activates and that cytosolic alkalinization inactivates the slowly activating K+ channel (I sK)in the apical membrane. Whether the effect of pH ion the I sK channel is a direct or indirect effect remains to be determined.The authors wish to thank Drs. Daniel C. Marcus, Zhjiun Shen and Hiroshi Sunose for helpful discussions. This work was supported by grants NIH-R29-DC01098 and NIH-R01-DC00212.  相似文献   

9.
This study used a combined electromyographic, mechanomyographic, and force approach to identify electromechanical delay (EMD) from the onsets of the electromyographic to force signals (EMDE-F), onsets of the electromyographic to mechanomyogrpahic signals (EMDE-M), and onsets of mechanomyographic to force signals (EMDM-F). The purposes of the current study were to examine: (1) the differences in EMDE-F, EMDE-M, and EMDM-F from the vastus lateralis during maximal, voluntary dynamic (1 repetition maximum [1-RM]) and isometric (maximal voluntary isometric contraction [MVIC]) muscle actions; and (2) the effects of fatigue on EMDE-F, EMDM-F, and EMDE-M. Ten men performed pretest and posttest 1-RM and MVIC leg extension muscle actions. The fatiguing workbout consisted of 70% 1-RM dynamic constant external resistance leg extension muscle actions to failure. The results indicated that there were no significant differences between 1-RM and MVIC EMDE-F, EMDE-M, or EMDM-F. There were, however, significant fatigue-induced increases in EMDE-F (94% and 63%), EMDE-M (107%), and EMDM-F (63%) for both the 1-RM and MVIC measurements. Therefore, these findings demonstrated the effects of fatigue on EMD measures and supported comparisons among studies which examined dynamic or isometric EMD measures from the vastus lateralis using a combined electromyographic, mechanomyographic, and force approach.  相似文献   

10.
We appraised the literature and described an approach to estimate the parameters of the Farquhar, von Caemmerer and Berry model using measured CO2 assimilation rate (A) and photosystem II (PSII) electron transport efficiency (Φ2). The approach uses curve fitting to data of A and Φ2 at various levels of incident irradiance (Iinc), intercellular CO2 (Ci) and O2. Estimated parameters include day respiration (Rd), conversion efficiency of Iinc into linear electron transport of PSII under limiting light [κ2(LL)], electron transport capacity (Jmax), curvature factor (θ) for the non‐rectangular hyperbolic response of electron flux to Iinc, ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) CO2/O2 specificity (Sc/o), Rubisco carboxylation capacity (Vcmax), rate of triose phosphate utilization (Tp) and mesophyll conductance (gm). The method is used to analyse combined gas exchange and chlorophyll fluorescence measurements on leaves of various ages and positions in wheat plants grown at two nitrogen levels. Estimated Sc/o (25 °C) was 3.13 mbar µbar?1; Rd was lower than respiration in the dark; Jmax was lower and θ was higher at 2% than at 21% O2; κ2(LL), Vcmax, Jmax and Tp correlated to leaf nitrogen content; and gm decreased with increasing Ci and with decreasing Iinc. Based on the parameter estimates, we surmised that there was some alternative electron transport.  相似文献   

11.
Summary The effects of complete substitution of gluconate for mucosal and/or serosal medium Cl on transepithelial Na+ transport have been studied using toad urinary bladder. With mucosal gluconate, transepithelial potential difference (V T) decreased rapidly, transepithelial resistance (R T) increased, and calculated short-circuit current (I sc) decreased. CalculatedE Na was unaffected, indicating that the inhibition of Na+ transport was a consequence of a decreased apical membrane Na+ conductance. This conclusion was supported by the finding that a higher amiloride concentration was required to inhibit the residual transport. With serosal gluconateV T decreased,R T increased andI sc fell to a new steady-state value following an initial and variable transient increase in transport. Epithelial cells were shrunken markedly as judged histologically. CalculatedE Na fell substantially (from 130 to 68 mV on average). Ba2+ (3mm) reduced calculatedE Na in Cl Ringer's but not in gluconate Ringer's. With replacement of serosal Cl by acetate, transepithelial transport was stimulated, the decrease in cellular volume was prevented andE Na did not fall. Replacement of serosal isosmotic Cl medium by a hypo-osmotic gluconate medium (one-half normal) also prevented cell shrinkage and did not result in inhibition of Na+ transport. Thus the inhibition of Na+ transport can be correlated with changes in cell volume rather than with the change in Cl per se. Nystatin virtually abolished the resistance of the apical plasma membrane as judged by measurement of tissue capacitance. With K+ gluconate mucosa, Na+ gluconate serosa, calculated basolateral membrane resistance was much greater, estimated basolateral emf was much lower, and the Na+/K+ basolateral permeability ratio was much higher than with acetate media. It is concluded the decrease in cellular volume associated with substitution of serosal gluconate for Cl results in a loss of highly specific Ba2+-sensitive K+ conductance channels from the basolateral plasma membrane. It is possible that the number of Na+ pump sites in this membrane is also decreased.  相似文献   

12.
C. Fu    D. Li    W. Hu    Y. Wang  † Z. Zhu   《Journal of fish biology》2007,70(2):347-361
The growth and energy budget for F2‘all‐fish’ growth hormone gene transgenic common carp Cyprinus carpio of two body sizes were investigated at 29·2° C for 21 days. Specific growth rate, feed intake, feed efficiency, digestibility coefficients of dry matter and protein, gross energy intake (IE), and the proportion of IE utilized for heat production (HE) were significantly higher in the transgenics than in the controls. The proportion of IE directed to waste products [faecal energy (FE) and excretory energy loss (ZE+UE) where ZE is through the gills and UE through the kidney], and the proportion of metabolizable energy (ME) for recovered energy (RE) were significantly lower in the transgenics than in the controls. The average energy budget equation of transgenic fish was as follows: 100 IE= 19·3 FE+ 6·0 (ZE+UE) + 45·2 HE+ 29·5 RE or 100 ME= 60·5 HE+ 39·5 RE. The average energy budget equation of the controls was: 100 IE= 25·2 FE+ 7·4 (ZE+UE) + 35·5 HE+ 31·9 RE or 100 ME= 52·7 HE+ 47·3 RE. These findings indicate that the high growth rate of ‘all‐fish’ transgenic common carp relative to their non‐transgenic counterparts was due to their increased feed intake, reduced lose of waste productions and improved feed efficiency. The benefit of the increased energy intake by transgenic fish, however, was diminished by their increased metabolism.  相似文献   

13.
The present investigation examined the relationship between CO2 sensitivity [at rest (S R) and during exercise (S E)] and the ventilatory response to exercise in ten elderly (61–79 years) and ten younger (17–26 years) subjects. The gradient of the relationship between minute ventilation and CO2 production ( E/ CO2) of the elderly subjects was greater than that of the younger subjects [mean (SEM); 32.8 (1.6) vs 27.3 (0.4); P<0.01]. At rest, S R was lower for the elderly than for the younger group [10.77 (1.72) vs 16.95 (2.13) 1 · min–1 · kPa–1; 1.44 (0.23) vs 2.26 (0.28) 1 · min–1 · mmHg–1; P<0.05], but S E was not significantly different between the two groups [17.85 (2.49) vs 19.17 (1.62) l · min–1 · kPa–1; 2.38 (0.33) vs 2.56 (0.21) 1 · min–1 · mmHg–1]. There were significant correlations between both S R and S E, and E/ CO2 (P<0.05; P<0.001) for the younger group, bot none for the elderly. The absence of a correlation for the elderly supports the suggestion that E/ CO2 is not an appropriate index of the ventilatory response to exercise for elderly humans.  相似文献   

14.
The heritability (h2) of fitness traits is often low. Although this has been attributed to directional selection having eroded genetic variation in direct proportion to the strength of selection, heritability does not necessarily reflect a trait's additive genetic variance and evolutionary potential (“evolvability”). Recent studies suggest that the low h2 of fitness traits in wild populations is caused not by a paucity of additive genetic variance (VA) but by greater environmental or nonadditive genetic variance (VR). We examined the relationship between h2 and variance‐standardized selection intensities (i or βσ), and between evolvability (IA:VA divided by squared phenotypic trait mean) and mean‐standardized selection gradients (βμ). Using 24 years of data from an island population of Savannah sparrows, we show that, across diverse traits, h2 declines with the strength of selection, whereas IA and IR (VR divided by squared trait mean) are independent of the strength of selection. Within trait types (morphological, reproductive, life‐history), h2, IA, and IR are all independent of the strength of selection. This indicates that certain traits have low heritability because of increased residual variance due to the age at which they are expressed or the multiple factors influencing their expression, rather than their association with fitness.  相似文献   

15.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na+,K+)-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4±7.5 U mg−1 with K0.5=1.2±0.1 mmol l−1; stimulation by potassium (V=121.0±6.1 U mg−1; K0.5=2.1±0.1 mmol l−1) and magnesium ions (V=125.3±6.3 U mg−1; K0.5=1.0±0.1 mmol l−1) was cooperative. Ammonium ions also stimulated the enzyme through site–site interactions (nH=2.7) to a rate of V=126.1±4.8 U mg−1 with K0.5=13.7±0.5 mmol l−1. However, K+-phosphatase activity was not stimulated further by K+ plus NH4+ ions. Sodium ions (KI=36.7±1.7 mmol l−1), ouabain (KI=830.3±42.5 μmol l−1) and orthovanadate (KI=34.0±1.4 nmol l−1) completely inhibited K+-phosphatase activity. The competitive inhibition by ATP (KI=57.2±2.6 μmol l−1) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K+-phosphatase activity corresponds strictly to a (Na+,K+)-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K+-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.  相似文献   

16.
The effect of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) on the asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate (EOPB) to synthesize optical active ethyl 2-hydroxy-4-phenylbutyrate (EHPB) catalyzed by Saccharomyces cerevisiae was investigated. (R)-EHPB [70.4%, e.e.(R)] is obtained using ethyl ether or benzene as the solvent. The main product is (S)-EHPB [27.7%, e.e.(S)] in [BMIM][PF6]. However, in ionic liquid-water (10:1, v/v) biphasic system, the enantioselectivity of the reduction is shifted towards (R)-side, and e.e.(R) is increased from 6.6 to 82.5% with the addition of ethanol (1%, v/v). The effect of the use of [BMIM][PF6] as an additive in relatively small amounts on the reduction was also studied. We find that there is a decline in the enantioselectivity of the reduction in benzene. In addition, a decrease in the conversion of EOPB and the yield of EHPB with increasing [BMIM][PF6] concentrations occurs in either organic solvent–water biphasic systems or benzene.  相似文献   

17.
Summary This study is concerned with the short-circuit current,I sc, responses of the Cl-transporting cells of toad skin submitted to sudden changes of the external Cl concentration. [Cl]0. Sudden changes of [Cl]0, carried out under apical membrane depolarization, allowed comparison of the roles of [Cl]0 and [Cl]cell on the activation of the apical Cl pathways. Equilibration of shortcircuited skins symmetrically in K-Ringer's solutions of different Cl concentrations permitted adjustment of [Cl]cell to different levels. For a given Cl concentration (in the range of 11.7 to 117mm) on both sides of a depolarized apical membrane, this structure exhibits a high Cl permeability,P (Cl)apical. On the other hand, for the same range of [Cl]cell but with [Cl]0=0,P (Cl)apical is reduced to negligible values. These observations indicate that when the apical membrane is depolarizedP (Cl)apical is modulated by [Cl]0; in the absence of external Cl ions, intracellular Cl is not sufficient to activateP (Cl)apical. Computer simulation shows that the fast Cl currents induced across the apical membrane by sudden shifts of [Cl]0 from a control equilibrium value strictly follow the laws of electrodiffusion. For each experimental group, the computer-generatedI sc versus ([Cl]cell–[Cl]0) curve which best fits the experimental data can only be obtained by a unique pair ofP (Cl)apical andR b (resistance of the basolateral membrane), thus allowing the calculation of these parameters. The electrodiffusional behavior of the net Cl flux across the apical membrane supports the channel nature of the apical Cl pathways in the Cl-transporting cell. Cl ions contribute significantly to the overall conductance of the basolateral membrane even in the presence of a high K concentration in the internal solution.  相似文献   

18.
Serotonin (5-HT) applied to the exposed but otherwise intact nervous system results in enhanced excitability of Hermissenda type-B photoreceptors. Several ion currents in the type-B photoreceptors are modulated by 5-HT, including the A-type K+ current (IK,A), sustained Ca2+ current (ICa,S), Ca-dependent K+ current (IK,Ca), and a hyperpolarization-activated inward rectifier current (Ih). In this study, we developed a computational model that reproduces physiological characteristics of type B photoreceptors, e.g. resting membrane potential, dark-adapted spike activity, spike width, and the amplitude difference between somatic and axonal spikes. We then used the model to investigate the contribution of different ion currents modulated by 5-HT to the magnitudes of enhanced excitability produced by 5-HT. Ion currents were systematically varied within limits observed experimentally, both individually and in combinations. A reduction of IK,A or IK,Ca, or an increase in Ih enhanced excitability by 20–50%. Decreasing ICa,S produced a dramatic decrease in excitability. Reductions of IK,V produced only minimal increases in excitability, suggesting that IK,V probably plays a minor role in 5-HT induced enhanced excitability. Combinations of changes in IK,A, IK,Ca, Ih and ICa,S produced increases in excitability comparable to experimental observations. After 5-HT application, the cell's depolarization force is shifted from the Ih–ICa,S combination to predominantly Ih.  相似文献   

19.
Summary In the isolated frog cornea, the effects of 0.1mm epinephrine were measured on both the transepithelial and intracellular electrical parameters. Epinephrine increased the short-circuit current (I sc) and transepithelial electrical conductance (g t) by 176 and 96%, respectively. The effective electromotive driving force for active transepithelial Cl transport (E Cl) was 45 mV and agrees with the value forE Cl calculated by a different technique in the isolated rabbit corneal epithelium (Klyce, S.D., Wong, R.K.S., 1977,J. Physiol. (London) 266: 777). With respect to the tear-side bathing solution, epinephrine caused the intracellular potential difference of shortcircuited frog corneas to decrease from –54 to –50 mV (P>0.05). The fractional resistance of the apical membrane {F(R o)=(Ro/Ro+Ri)} whereR o andR i represent the resistances of the apical and basolateral membranes, respectively, decreased from 0.38±0.06 to 0.23±0.03. Using these values ofF(R o) and the cellular conductances, the calculated Cl resistances ofR o andR i decreased 4.3- and 2.3-fold, respectively. However, the value forE Cl calculated from the intracellular electrical measurements (48 mV) did not appear to change since this value was in close agreement with the value forE Cl calculated from the effects of epinephrine on the transepithelial electrical parameters. Thus, the effects of epinephrine onI sc andg t can be accounted for by increases in the Cl conductance of both the apical and basolateral membranes. Epinephrine caused the potential difference across the basolateral membrane to hyperpolarize by 9 mV. All of these results are consistent with the notion that the steps in transepithelial Cl transport include uphill movement into the cell across the basolateral membrane followed by downhill movement across the apical membrane into the tear-side bathing solution.  相似文献   

20.
Summary Using the patch-clamp technique, we recorded whole-cell calcium current from isolated cardiac myocytes dissociated from the apical ventricles of 7-day and 14-day chick embryos. In 70% of 14-day cells after 24 hr in culture, two component currents could be separated from totalI Ca activated from a holding potential (V h) of –80 mV. L-type current (I L) was activated by depolarizing steps fromV h –30 or –40 mV. The difference current (I T) was obtained by subtractingI L, fromI Ca.I T could also be distinguished pharmacologically fromI L in these cells.I T was selectively blocked by 40–160 m Ni2+, whereasI L was suppressed by 1 m D600 or 2 m nifedipine. The Ni2+-resistant and D600-resistant currents had activation thresholds and peak voltages that were near those ofI T andI L defined by voltage threshold, and resembled those in adult mammalian heart. In 7-day cells,I T andI L could be distinguished by voltage threshold in 45% (S cells), while an additional 45% of 7-day cells were nonseparable (NS) by activation voltage threshold. Nonetheless, in mostNS cells,I Ca was partly blocked by Ni2+ and by D600 given separately, and the effects were additive when these agents were given together. Differences among the cells in the ability to separateI T andI L by voltage threshold resulted largely from differences in the position of the steady-state inactivation and activation curves along the voltage axis. In all cells at both ages in which the steady-state inactivation relation was determined with a double-pulse protocol, the half-inactivation potential (V 1/2) of the Ni2+-resistant currentI L averaged –18 mV. In contrast,V 1/2 of the Ni2+-sensitiveI T was –60 mV in 14-day cells, –52 mV in 7-dayS cells, and –43 mV in 7-day NS cells. The half-activation potential was near –2 mV forI L at both ages, but that ofI T was –38 mV in 14-day and –29 mV in 7-day cells. Maximal current density was highly variable from cell to cell, but showed no systematic differences between 7-day and 14-day cells. These results indicate that the main developmental change that occurs in the components ofI Ca is a negative shift with, embryonic age in the activation and inactivation relationships ofI T along the voltage axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号