首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Pseudomonas syringae type III secretion system (TTSS) translocates effector proteins into plant cells. Several P. syringae effectors require accessory proteins called type III chaperones (TTCs) to be secreted via the TTSS. We characterized the hopO1-1, hopS1, and hopS2 operons in P. syringae pv. tomato DC3000; these operons encode three homologous TTCs, ShcO1, ShcS1, and ShcS2. ShcO1, ShcS1, and ShcS2 facilitated the type III secretion and/or translocation of their cognate effectors HopO1-1, HopS1, and HopS2, respectively. ShcO1 and HopO1-1 interacted with each other in yeast two-hybrid and coimmunoprecipitation assays. Interestingly, ShcS1 and ShcS2 were capable of substituting for ShcO1 in facilitating HopO1-1 secretion and translocation and each TTC was able to bind the other's cognate effectors in yeast two-hybrid assays. Moreover, ShcO1, ShcS1, and ShcS2 all bound to the middle-third region of HopO1-1. The HopS2 effector possessed atypical P. syringae TTSS N-terminal characteristics and was translocated in low amounts. A site-directed HopS2 mutation that introduced a common N-terminal characteristic from other P. syringae type III secreted substrates increased HopS2 translocation, supporting the idea that this characteristic functions as a secretion signal. Additionally, hopO1-2 and hopT1-2 were shown to encode effectors secreted via the DC3000 TTSS. Finally, a DC3000 hopO1-1 operon deletion mutant produced disease symptoms similar to those seen with wild-type DC3000 but was reduced in its ability to multiply in Arabidopsis thaliana. The existence of TTCs that can bind to dissimilar effectors and that can substitute for each other in effector secretion provides insights into the nature of how TTCs function.  相似文献   

2.
The hrp pathogenicity island of Pseudomonas syringae encodes a type III secretion system (TTSS) that translocates effectors into plant cells. Most genes encoding effectors are dispersed in the P. syringae genome. Regardless of location, all are regulated coordinately by the alternative sigma factor HrpL. An HrpL-dependent promoter-trap assay was developed to screen genomic libraries of P. syringae strains for promoters whose activity in Escherichia coli is dependent on an inducible hrpL construct. Twenty-two HrpL-dependent promoter fragments were isolated from P. syringae Psy61 that included promoters for known HrpL-dependent genes. One fragment also was isolated that shared no similarity with known genes but retained a near consensus HrpL-dependent promoter. The sequence of the region revealed a 375-amino acid open reading frame encoding a 40.5-kDa product that was designated HopPsyL. HopPsyL was structurally similar to other secreted effectors and carried a putative chloroplast-targeting signal and two predicted transmembrane domains. HopPsyL':'AvrRpt2 fusions were translocated into host cells via the P. syringae pv. tomato DC3000 hrp TTSS. A hopPsyL::kan mutant of Psy61 exhibited strongly reduced virulence in Phaseolus vulgaris cv. Kentucky Wonder, but did not appear to act as a defense response suppressor. The ectopically expressed gene reduced the virulence of Pseudomonas syringae DC3000 transformants in Arabidopsis thaliana Col-0. The gene was shown to be conserved in 6 of 10 P. syringae pv. syringae strains but was not detected in 35 strains of other pathovars. HopPsyL appears to be a novel TTSS-dependent effector that functions as a host-species-specific virulence factor in Psy61.  相似文献   

3.
Fu ZQ  Guo M  Alfano JR 《Journal of bacteriology》2006,188(17):6060-6069
The bacterial plant pathogen Pseudomonas syringae requires a type III protein secretion system (TTSS) to cause disease. The P. syringae TTSS is encoded by the hrp-hrc gene cluster. One of the genes within this cluster, hrpJ, encodes a protein with weak similarity to YopN, a type III secreted protein from the animal pathogenic Yersinia species. Here, we show that HrpJ is secreted in culture and translocated into plant cells by the P. syringae pv. tomato DC3000 TTSS. A DC3000 hrpJ mutant, UNL140, was greatly reduced in its ability to cause disease symptoms and multiply in Arabidopsis thaliana. UNL140 exhibited a reduced ability to elicit a hypersensitive response (HR) in nonhost tobacco plants. UNL140 was unable to elicit an AvrRpt2- or AvrB1-dependent HR in A. thaliana but maintained its ability to secrete AvrB1 in culture via the TTSS. Additionally, UNL140 was defective in its ability to translocate the effectors AvrPto1, HopB1, and AvrPtoB. Type III secretion assays showed that UNL140 secreted HrpA1 and AvrPto1 but was unable to secrete HrpZ1, a protein that is normally secreted in culture in relatively large amounts, into culture supernatants. Taken together, our data indicate that HrpJ is a type III secreted protein that is important for pathogenicity and the translocation of effectors into plant cells. Based on the failure of UNL140 to secrete HrpZ1, HrpJ may play a role in controlling type III secretion, and in its absence, specific accessory proteins, like HrpZ1, may not be extracellularly localized, resulting in disabled translocation of effectors into plant cells.  相似文献   

4.
Pseudomonas syringae pv. tomato DC3000 is a pathogen of tomato and Arabidopsis that injects virulence effector proteins into host cells via a type III secretion system (TTSS). TTSS-deficient mutants have a Hrp- phenotype, that is, they cannot elicit the hypersensitive response (HR) in non-host plants or pathogenesis in host plants. Mutations in effector genes typically have weak virulence phenotypes (apparently due to redundancy), but deletion of six open reading frames (ORF) in the DC3000 conserved effector locus (CEL) reduces parasitic growth and abolishes disease symptoms without affecting function of the TTSS. The inability of the DeltaCEL mutant to cause disease symptoms in tomato was restored by a clone expressing two of the six ORF that had been deleted: CEL ORF3 (HopPtoM) and ORF4 (ShcM). A DeltahopPtoM::nptII mutant was constructed and found to grow like the wild type in tomato but to be strongly reduced in its production of necrotic lesion symptoms. HopPtoM expression in DC3000 was activated by the HrpL alternative sigma factor, and the protein was secreted by the Hrp TTSS in culture and translocated into Arabidopsis cells by the Hrp TTSS during infection. Secretion and translocation were dependent on ShcM, which was neither secreted nor translocated but, like typical TTSS chaperones, could be shown to interact with HopPtoM, its cognate effector, in yeast two-hybrid experiments. Thus, HopPtoM is a type III effector that, among known plant pathogen effectors, is unusual in making a major contribution to the elicitation of lesion symptoms but not growth in host tomato leaves.  相似文献   

5.
Many bacterial pathogens of plants and animals use a type III secretion system (TTSS) to deliver virulence effector proteins into host cells. Because effectors are heterogeneous in sequence and function, there has not been a systematic way to identify the genes encoding them in pathogen genomes, and our current inventories are probably incomplete. A pre-closure draft sequence of Pseudomonas syringae pv. tomato DC3000, a pathogen of tomato and Arabidopsis, has recently supported five complementary studies which, collectively, identify 36 TTSS-secreted proteins and many more candidate effectors in this strain. These studies demonstrate the advantages of combining experimental and computational approaches, and they yield new insights into TTSS effectors and virulence regulation in P. syringae, potential effector targeting signals in all TTSS-dependent pathogens, and strategies for finding TTSS effectors in other bacteria that have sequenced genomes.  相似文献   

6.
Pseudomonas syringae pv. tomato strain DC3000 is a pathogen of tomato and Arabidopsis: The hrp-hrc-encoded type III secretion system (TTSS), which injects bacterial effector proteins (primarily called Hop or Avr proteins) into plant cells, is required for pathogenicity. In addition to being regulated by the HrpL alternative sigma factor, most avr or hop genes encode proteins with N termini that have several characteristic features, including (i) a high percentage of Ser residues, (ii) an aliphatic amino acid (Ile, Leu, or Val) or Pro at the third or fourth position, and (iii) a lack of negatively charged amino acids within the first 12 residues. Here, the well-studied effector AvrPto was used to optimize a calmodulin-dependent adenylate cyclase (Cya) reporter system for Hrp-mediated translocation of P. syringae TTSS effectors into plant cells. This system includes a cloned P. syringae hrp gene cluster and the model plant Nicotiana benthamiana. Analyses of truncated AvrPto proteins fused to Cya revealed that the N-terminal 16 amino acids and/or codons of AvrPto are sufficient to direct weak translocation into plant cells and that longer N-terminal fragments direct progressively stronger translocation. AvrB, tested because it is poorly secreted in cultures by the P. syringae Hrp system, was translocated into plant cells as effectively as AvrPto. The translocation of several DC3000 candidate Hop proteins was also examined by using Cya as a reporter, which led to identification of three new intact Hop proteins, designated HopPtoQ, HopPtoT1, and HopPtoV, as well as two truncated Hop proteins encoded by the naturally disrupted genes hopPtoS4::tnpA and hopPtoAG::tnpA. We also confirmed that HopPtoK, HopPtoC, and AvrPphE(Pto) are translocated into plant cells. These results increased the number of Hrp system-secreted proteins in DC3000 to 40. Although most of the newly identified Hop proteins possess N termini that have the same features as the N termini of previously described Hop proteins, HopPtoV has none of these characteristics. Our results indicate that Cya should be a useful reporter for exploring multiple aspects of the Hrp system in P. syringae.  相似文献   

7.
The bacterial pathogen Pseudomonas syringae pv. tomato (Pst) strain DC3000 infects tomato and Arabidopsis plants, and is a model for studying the molecular basis of bacterial disease. Pst DC3000 secretes a battery of largely uncharacterized effector proteins into host cells via a type-III secretion system (TTSS). Little is currently known about the molecular mechanisms by which individual TTSS effectors promote virulence. The effector HopAO1 has similarity to protein tyrosine phosphatases, including a conserved catalytic site, and suppresses the hypersensitive response (HR) in some non-host plants. Whether HopAO1 has a similar effect in the host Arabidopsis is not clear. Here, we show that transgenic expression of HopAO1 in Arabidopsis suppresses callose deposition elicited by the Pst DC3000 hrpA mutant, and allows the normally non-pathogenic hrpA mutant to multiply within the leaf tissue. HopAO1 also suppresses resistance to Pst DC3000 induced by flg22, a pathogen-associated molecular pattern (PAMP). However, HopAO1 does not suppress the HR triggered by several classical avirulence genes. These results suggest that HopAO1 targets primarily PAMP-induced innate immunity in Arabidopsis. The virulence function of HopAO1 is dependent on an intact phosphatase catalytic site, as transgenic plants expressing a catalytically inactive derivative do not show these effects. Intriguingly, expression of the catalytically inactive HopAO1 has a dominant-negative effect on the function of the wild-type HopAO1. Analysis of mitogen-activated protein kinase (MAPK) activity suggests that HopAO1 targets a step downstream or independent of MAPK activation. Genome-wide expression analysis revealed that expression of several well-known defense genes was suppressed in hrpA mutant-infected HopAO1 transgenic plants.  相似文献   

8.
Sohn KH  Lei R  Nemri A  Jones JD 《The Plant cell》2007,19(12):4077-4090
The downy mildew (Hyaloperonospora parasitica) effector proteins ATR1 and ATR13 trigger RPP1-Nd/WsB- and RPP13-Nd-dependent resistance, respectively, in Arabidopsis thaliana. To better understand the functions of these effectors during compatible and incompatible interactions of H. parasitica isolates on Arabidopsis accessions, we developed a novel delivery system using Pseudomonas syringae type III secretion via fusions of ATRs to the N terminus of the P. syringae effector protein, AvrRPS4. ATR1 and ATR13 both triggered the hypersensitive response (HR) and resistance to bacterial pathogens in Arabidopsis carrying RPP1-Nd/WsB or RPP13-Nd, respectively, when delivered from P. syringae pv tomato (Pst) DC3000. In addition, multiple alleles of ATR1 and ATR13 confer enhanced virulence to Pst DC3000 on susceptible Arabidopsis accessions. We conclude that ATR1 and ATR13 positively contribute to pathogen virulence inside host cells. Two ATR13 alleles suppressed bacterial PAMP (for Pathogen-Associated Molecular Patterns)-triggered callose deposition in susceptible Arabidopsis when delivered by DC3000 DeltaCEL mutants. Furthermore, expression of another allele of ATR13 in plant cells suppressed PAMP-triggered reactive oxygen species production in addition to callose deposition. Intriguingly, although Wassilewskija (Ws-0) is highly susceptible to H. parasitica isolate Emco5, ATR13Emco5 when delivered by Pst DC3000 triggered localized immunity, including HR, on Ws-0. We suggest that an additional H. parasitica Emco5 effector might suppress ATR13-triggered immunity.  相似文献   

9.
The bacterial plant pathogen Pseudomonas syringae possesses a type III protein secretion system that delivers many virulence proteins into plant cells. A subset of these proteins (called Avr proteins) is recognized by the plant's innate immune system and triggers defences. One defence-associated response is the hypersensitive response (HR), a programmed cell death (PCD) of plant tissue. We have previously identified HopPtoD2 as a type III secreted protein from P. s. pv. tomato DC3000. Sequence analysis revealed that an N-terminal domain shared homology with AvrPphD and a C-terminal domain was similar to protein tyrosine phosphatases (PTPs). We demonstrated that purified HopPtoD2 possessed PTP activity and this activity required a conserved catalytic Cys residue (Cys(378)). Interestingly, HopPtoD2 was capable of suppressing the HR elicited by an avirulent P. syringae strain on Nicotiana benthamiana. HopPtoD2 derivatives that lacked Cys(378) no longer suppressed the HR indicating that HR suppression required PTP activity. A constitutively active MAPK kinase, called NtMEK2DD, is capable of eliciting an HR-like cell death when transiently expressed in tobacco. When NtMEK2DD and HopPtoD2 were co-delivered into plant cells, the HR was suppressed indicating that HopPtoD2 acts downstream of NtMEK2DD. DC3000 hopPtoD2 mutants were slightly reduced in their ability to multiply in planta and displayed an enhanced ability to elicit an HR. The identification of HopPtoD2 as a PTP and a PCD suppressor suggests that the inactivation of MAPK pathways is a virulence strategy utilized by bacterial plant pathogens.  相似文献   

10.
Pseudomonas syringae strains use a type III secretion system (TTSS) to translocate effector proteins that assist in the parasitism of host plant cells. Some genes for effector proteins are clustered in the exchangeable effector locus (EEL) associated with the hrp pathogenicity island. A polymerase chain reaction-based screen was developed to amplify the EEL from P. syringae strains. Of the 86 strains screened, the EEL was successfully amplified from 30 predominately North American P. syringae pv. syringae strains using hrpK and queA-derived primers and from an additional three strains using hrpL and queA-derived primers. Among the amplified EEL, ten distinct types of EEL were identified that could be classified into six families distinguishable by genetic composition, but other types of EEL may be present in strains isolated in other geographical regions. No linkage with the host range of the source strain was apparent. Gene cassettes carrying conserved flanking, coding, and intergenic sequences, present in different combinations, were identified in the characterized EEL. Six new alleles of known effectors were identified that differed from the homolog in sequence, size, or both of the gene. One of these apparently novel effector proteins, HopPsyB, retained a strongly conserved amino terminus similar to that of HopPsyA, but other regions of the two polypeptides were only weakly similar. hopPsyB was expressed from an apparent operon that included hrpK and a shcA homolog, shcB. Escherichia coli MC4100 expressing the hrp TTSS, ShcB, and HopPsyB elicited the hypersensitive response (HR) in tobacco, consistent with effector production. Indicative of translocation as an effector, P. syringae pv. tomato DC3000 expressing a HopPsyB':'AvrRpt2 fusion elicited the HR in RPS2+ Arabidopsis thaliana. P. syringae pv. tomato DC3000 carrying HopPsyB exhibited slightly enhanced virulence in several Brassica spp. These results are consistent with the hypotheses that the EEL is a source of disparate effectors functioning in pathogenicity of P. syringae strains and that it evolved independently of the hrp pathogenicity island central conserved region, most likely through integron-like assembly of transposed gene cassettes.  相似文献   

11.
The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In an attempt to identify genes induced during infection of host plants, we identified and cloned a putative effector gene, avrRpt2EA. The deduced amino-acid sequence of the translated AvrRpt2EA protein is homologous to the effector protein AvrRpt2 previously reported in Pseudomonas syringae pv. tomato. These two proteins share 58% identity (70% similarity) in the functional domain; however, the secretion and translocation signal domain varied. The avrRpt2EA promoter region contains a typical 'hrp box,' which suggests that avrRpt2EA is regulated by the alternative sigma factor, HrpL. avrRpt2EA was detected in all E. amylovora strains tested but not in other closely related Erwinia species. An avrRpt2EA deletion mutant was reduced in its ability to cause systemic infection on immature pear fruits as compared with the wild-type strain, indicating that avrRpt2EA acts as a virulence factor on its native host. Growth of P. syringae pv. tomato DC3000 expressing avrRpt2EA was 10-fold higher than that of P. syringae pv. tomato DC3000 in an Arabidopsis rps2 mutant, indicating that avrRpt2EA promotes virulence of P. syringae pv. tomato DC3000 on Arabidopsis similar to P. syringae pv. tomato avrRpt2. When avrRpt2EA was expressed in P. syringae pv. tomato DC3000 in its native form, a weak hypersensitive response (HR) was induced in Arabidopsis; however, a hybrid protein containing the P. syringae pv. tomato avrRpt2 signal sequence, when expressed from the P syringae pv. tomato avrRpt2 promoter, caused a strong HR. Thus, the signal sequence and promoter of avrRpt2EA may affect its expression, secretion, or translocation, singly or in combination, in P. syringae pv. tomato DC3000. These results indicated that avrRpt2EA is genetically recognized by the RPS2 disease resistance gene in Arabidopsis when expressed in P. syringae pv. tomato DC3000. The results also suggested that although distinct pathogens such as E. amylovora and P. syringae may contain similar effector genes, expression and secretion of these effectors can be under specific regulation by the native pathogen.  相似文献   

12.
Pseudomonas syringae pv. tomato (Pst) strain DC3000 infects the model plants Arabidopsis thaliana and tomato, causing disease symptoms characterized by necrotic lesions surrounded by chlorosis. One mechanism used by Pst DC3000 to infect host plants is the type III protein secretion system, which is thought to deliver multiple effector proteins to the plant cell. The exact number of type III effectors in Pst DC3000 or any other plant pathogenic bacterium is not known. All known type III effector genes of P. syringae are regulated by HrpS, an NtrC family protein, and the HrpL alternative sigma factor, which presumably binds to a conserved cis element (called the "hrp box") in the promoters of type III secretion-associated genes. In this study, we designed a search motif based on the promoter sequences conserved in 12 published hrp operons and putative effector genes in Pst DC3000. Seventy-three predicted genes were retrieved from the January 2001 release of the Pst DC3000 genome sequence, which had 95% genome coverage. The expression of the 73 genes was analysed by microarray and Northern blotting, revealing 24 genes/operons (including eight novel genes), the expression of which was consistently higher in hrp-inducing minimal medium than in nutrient-rich Luria-Bertani broth. Expression of all eight genes was dependent on the hrpS gene. Most were also dependent on the hrpL gene, but at least one was dependent on the hrpS gene, but not on the hrpL gene. An AvrRpt2-based type III translocation assay provides evidence that some of the hrpS-regulated novel genes encode putative effector proteins.  相似文献   

13.
14.
15.
Pseudomonas syringae pv. tomato DC3000 causes bacterial speck disease in tomato, and it elicits the hypersensitive response (HR) in non-host plants such as Nicotiana tabacum and Nicotiana benthamiana. The compatible and incompatible interactions of DC3000 with tomato and Nicotiana spp., respectively, result in plant cell death, but the HR cell death occurs more rapidly and is associated with effective plant defense. Both interactions require the Hrp (HR and pathogenicity) type III secretion system (TTSS), which injects Hop (Hrp outer protein) effectors into plant cells. Here, we demonstrate that HopPtoN is translocated into tomato cells via the Hrp TTSS. A hopPtoN mutant produced eightfold more necrotic 'speck' lesions on tomato leaves than did DC3000, but the mutant and the wild-type strain grew to the same level in infected leaves. In non-host N. tabacum leaves, the hopPtoN mutant produced more cell death, whereas a DC3000 strain overexpressing HopPtoN produced less cell death and associated electrolyte leakage in comparison with wild-type DC3000. Transient expression of HopPtoN via infection with a PVX viral vector enabled tomato and N. benthamiana plants to tolerate, with reduced disease lesions, challenge infections with DC3000 and P. syringae pv. tabaci 11528, respectively. HopPtoN showed cysteine protease activity in vitro, and hopPtoN mutants altered in the predicted cysteine protease catalytic triad (C172S, H283A and D299A) lost HR suppression activity. These observations reveal that HopPtoN is a TTSS effector that can suppress plant cell death events in both compatible and incompatible interactions.  相似文献   

16.
Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis). We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs) were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS) of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX) and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70%) of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL) showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether candidate effectors from eukaryotic pathogens can suppress/trigger plant defense mechanisms and to rank their effectiveness prior to subsequent mechanistic investigation.  相似文献   

17.
Pseudomonas syringae strains translocate large and distinct collections of effector proteins into plant cells via the type III secretion system (T3SS). Mutations in T3SS-encoding hrp genes are unable to elicit the hypersensitive response or pathogenesis in nonhost and host plants, respectively. Mutations in individual effectors lack strong phenotypes, which has impeded their discovery. P. syringae effectors are designated Hop (Hrp outer protein) or Avr (avirulence) proteins. Some Hop proteins are considered to be extracellular T3SS helpers acting at the plant-bacterium interface. Identification of complete sets of effectors and related proteins has been enabled by the application of bioinformatic and high-throughput experimental techniques to the complete genome sequences of three model strains: P. syringae pv. tomato DC3000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a. Several recent papers, including three in this issue of Molecular Plant-Microbe Interactions, address the effector inventories of these strains. These studies establish that active effector genes in P. syringae are expressed by the HrpL alternative sigma factor and can be predicted on the basis of cis Hrp promoter sequences and N-terminal amino-acid patterns. Among the three strains analyzed, P. syringae pv. tomato DC3000 has the largest effector inventory and P. syringae pv. syringae B728a has the smallest. Each strain has several effector genes that appear inactive. Only five of the 46 effector families that are represented in these three strains have an active member in all of the strains. Web-based community resources for managing and sharing growing information on these complex effector arsenals should help future efforts to understand how effectors promote P. syringae virulence.  相似文献   

18.
The ability of Pseudomonas syringae pv. phaseolicola to cause halo blight of bean is dependent on its ability to translocate effector proteins into host cells via the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To identify genes encoding type III effectors and other potential virulence factors that are regulated by the HrpL alternative sigma factor, we used a hidden Markov model, weight matrix model, and type III targeting-associated patterns to search the genome of P. syringae pv. phaseolicola 1448A, which recently was sequenced to completion. We identified 44 high-probability putative Hrp promoters upstream of genes encoding the core T3SS machinery, 27 candidate effectors and related T3SS substrates, and 10 factors unrelated to the Hrp system. The expression of 13 of these candidate HrpL regulon genes was analyzed by real-time polymerase chain reaction, and all were found to be upregulated by HrpL. Six of the candidate type III effectors were assayed for T3SS-dependent translocation into plant cells using the Bordetella pertussis calmodulin-dependent adenylate cyclase (Cya) translocation reporter, and all were translocated. PSPPH1855 (ApbE-family protein) and PSPPH3759 (alcohol dehydrogenase) have no apparent T3SS-related function; however, they do have homologs in the model strain P. syringae pv. tomato DC3000 (PSPTO2105 and PSPTO0834, respectively) that are similarly upregulated by HrpL. Mutations were constructed in the DC3000 homologs and found to reduce bacterial growth in host Arabidopsis leaves. These results establish the utility of the bioinformatic or candidate gene approach to identifying effectors and other genes relevant to pathogenesis in P. syringae genomes.  相似文献   

19.
AvrRpt2, a Pseudomonas syringae type III effector protein, functions from inside plant cells to promote the virulence of P. syringae pv. tomato strain DC3000 (PstDC3000) on Arabidopsis thaliana plants lacking a functional copy of the corresponding RPS2 resistance gene. In this study, we extended our understanding of AvrRpt2 virulence activity by exploring the hypothesis that AvrRpt2 promotes PstDC3000 virulence by suppressing plant defenses. When delivered by PstDC3000, AvrRpt2 suppresses pathogen-related (PR) gene expression during infection, suggesting that AvrRpt2 suppresses defenses mediated by salicylic acid (SA). However, AvrRpt2 promotes PstDC3000 growth on transgenic plants expressing the SA-degrading enzyme NahG, indicating that AvrRpt2 does not promote bacterial virulence by modulating SA levels during infection. AvrRpt2 general virulence activity does not depend on the RPM1 resistance gene, as mutations in RPM1 had no effect on AvrRpt2-induced phenotypes. Transgenic plants expressing AvrRpt2 displayed enhanced susceptibility to PstDC3000 strains defective in type III secretion, indicating that enhanced susceptibility of these plants is not because of suppression of defense responses elicited by other type III effectors. Additionally, avrRpt2 transgenic plants did not exhibit increased susceptibility to Peronospora parasitica and Erysiphe cichoracearum, suggesting that AvrRpt2 virulence activity is specific to P. syringae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号