首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Plant-parasitic nematodes are not only an important constraint on agricultural crop production, but also cause both direct and indirect damage to turfgrass, which is a ground cover plant. However, studies on plant-parasitic nematodes of turfgrass in Korea are scarce. A survey for plant-parasitic nematodes was carried out on 13 golf courses in Korea. The results yielded 28 species/taxa belonging to 16 genera and 12 families of plant-parasitic nematodes. Among the isolated species, Helicotylenchus microlobus, Mesocriconema nebraskense, Tylenchorhynchus claytoni, Mesocriconema sp., and Meloidogyne graminicola were the most prevalent species in all management zones. Twelve species were new records of plant-parasitic nematodes in Korea. Highest maximum densities were showed by T. claytoni, Paratylenchus nanus, M. nebraskense, M. graminicola, and H. microlobus. Diversity (H′), was significantly higher in fairways compared to tees and greens, though species evenness (J′) and dominance (D) showed no statistically significant differences. This information is crucial in nematode problem diagnosis, and the subsequent formulation of management strategies.  相似文献   

2.
The susceptibility of pupating larvae of pollen beetles, Meligethes spp. Stephens (Coleoptera: Nitidulidae) and brassica pod midges, Dasyneura brassicae Winnertz (Diptera: Cecidomyidae) to entomopathogenic nematodes (Nematoda: Rhabditida) was studied in the laboratory. The results showed that brassica pod midge larvae were almost unaffected by the tested nematodes (Steinernema bicornutum, S. feltiae and Heterorhabditis bacteriophora) whereas successful pupation of pollen beetle larvae was reduced with increasing number of nematodes (S. bicornutum, S. carpocapsae, S. feltiae and H. bacteriophora). The exposed larvae had been collected in the field and some of the pollen beetle larvae were parasitised by parasitoid wasps. It appeared that parasitised larvae were less affected by nematodes than non-parasitised larvae.  相似文献   

3.
A survey was conducted to determine the assemblage and abundance of plant-parasitic nematodes and their associations with soil factors in organically farmed fields in Minnesota. A total of 31 soil samples were collected from southeast (SE), 26 samples from southwest (SW), 28 from west-central (WC), and 23 from northwest (NW) Minnesota. The assemblage and abundance of plant-parasitic nematodes varied among the four regions. The soybean cyst nematode, Heterodera glycines, the most destructive pathogen of soybean, was detected in 45.2, 88.5, 10.7, and 0% of organically farmed fields with relative prominence (RP) values of 10.3, 26.5, 0.6, and 0 in the SE, SW, WC, and NW regions, respectively. Across the four regions, other common genera of plant-parasitic nematodes were Helicotylenchus (42.6, RP value, same below), Pratylenchus (26.9), Tylenchorhynchus and related genera (9.4), Xiphinema (5.6), and Paratylenchus (5.3). Aphelenchoides, Meloidogyne, Hoplolaimus, Mesocriconema, and Trichodorus were also detected at low frequencies and/or low population densities. The similarity index of plant-parasitic nematodes between two regions ranged from 0.44 to 0.71 and the similarity increased with decreasing distance between regions. The densities of most plant-parasitic nematodes did not correlate with measured soil factors (organic matter, pH, texture). However, the densities of Pratylenchus correlated negatively with % sand, and Xiphinema was correlated negatively with soil pH.  相似文献   

4.
Studying the mode of infection of a biocontrol agent is important in order to assess its efficiency. The mode and severity of infection of nematodes by a soil saprophyte Paecilomyces lilacinus (Thom) Samson and a knob-producing nematode trapping fungus Monacrosporium lysipagum (Drechsler) Subram were studied under laboratory conditions using microscopy. Infection of stationary stages of nematodes by P. lilacinus was studied with three plant-parasitic nematodes Meloidogyne javanica (Treub) Chitwood, Heterodera avenae Wollenweber and Radopholus similis (Cobb) Thorne. Paecilomyces lilacinus infected eggs, juveniles and females of M. javanica by direct hyphal penetration. The early developed eggs were more susceptible than the eggs containing fully developed juveniles. As observed by transmission electron microscopy, fungal hypha penetrated the M. javanica female cuticle directly. Paecilomyces lilacinus also infected immature cysts of H. avenae including eggs in the cysts and the eggs of R. similis. Trapping and subsequent killing of mobile stages of nematodes by M. lysipagum were studied with the above three nematodes. In addition, plant-parasitic nematodes Pratylenchus neglectus (Rensch) Chitwood and Oteifa and Ditylenchus dipsaci (Kuhn) Filipjev were tested with M. lysipagum. This fungus was shown to infect mobile stages of all the plant-parasitic nematodes. In general, juveniles except those of P. neglectus, were more susceptible to the attack than adults.  相似文献   

5.
The most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards are Meloidogyne hapla, Mesocriconema xenoplax, Pratylenchus spp., Xiphinema americanum, and Paratylenchus sp.; however, little is known about their distribution in the soil profile. The vertical and horizontal spatial distribution of plant-parasitic nematodes was determined in two Washington V. vinifera vineyards. Others variables measured in these vineyards included soil moisture content, fine root biomass, and root colonization by arbuscular mycorhizal fungi (AMF). Meloidogyne hapla and M. xenoplax were aggregated under irrigation emitters within the vine row and decreased with soil depth. Conversely, Pratylenchus spp. populations were primarily concentrated in vineyard alleyways and decreased with depth. Paratylenchus sp. and X. americanum were randomly distributed within the vineyards. Soil water content played a dominant role in the distribution of fine roots and plant-parasitic nematodes. Colonization of fine roots by AMF decreased directly under irrigation emitters; in addition, galled roots had lower levels of AMF colonization compared with healthy roots. These findings will help facilitate sampling and management decisions for plant-parasitic nematodes in Washington semi-arid vineyards.  相似文献   

6.
The sensitivity of acetylcholinesterases (ACHE) isolated from the plant-parasitic nematodes Meloidogyne arenaria, M. incognita, and Heterodera glycines and the free-living nematode Caenorhabditis elegans to carbamate and organophosphate nematicides was examined. The AChE from plant-parasitic nematode species were more sensitive to carbamate inhibitors than was AChE from C. elegans, but response to the organophosphates was approximately equivalent. The sulfur-containing phosphate nematicides were poor inhibitors of nematode acetylcholinesterase, but treatment with an oxidizing agent greatly improved inhibition. Behavioral bioassays with living nematodes revealed a poor relationship between enzyme inhibition and expression of symptoms in live nematodes.  相似文献   

7.
Aphelenchoides fragariae was isolated from the phylloclades of the ornamental plant Ruscus hypophyllum (Liliaceae). Rotylenchus buxophilus, Scutellonema brachyurum, and Meloidogyne were identified as the most common plant-parasitic nematodes in the soil near the roots. The pathology and life history of A. fragariae were closely related to the climate. To our knowledge, this is the first report of R. hypophyllum as a host of plant-parasitic nematodes.  相似文献   

8.
Chemical composition, origin, and biological role of the surface coat (SC) of plant-parasitic nematodes are described and compared with those of animal-parasitic and free-living nematodes. The SC of the plant-parasitic nematodes is 5-30 nm thick and is characterized by a net negative charge. It consists, at least in part, of glycoproteins and proteins with various molecular weights, depending upon the nematode species. The lability of its components and the binding of human red blood cells to the surface of many tylenchid plant-parasitic nematodes, as well as the binding of several neoglycoproteins to the root-knot nematode Meloidogyne, suggest the presence of carbohydrate-recognition-domains for host plants and parasitic or predatory soil microorganisms (Pasteuria penetrans and Dactylaria spp., for example). These features may also assist in nematode adaptations to soil environments and to plant hosts with defense mechanisms that depend on reactions to nematode surfaces. Surface coat proteins can be species and race specific, a characteristic with promising diagnostic potential.  相似文献   

9.
The study aimed to determine the optimum density of free‐living nematodes in feeding bighead carp, Aristichthys nobilis, larvae. In the first experiment, carp stocked at 25 larvae L?1 were fed varying levels of nematodes (50, 75, 100, 125 and 150 per ml) twice a day for 21 days from the start of exogenous feeding. Final body weight was significantly higher (P < 0.05) in larvae fed 125 and 150 nematodes per ml than in those fed 50 and 75 per ml, but survival was low (61.8 and 63.6%, respectively). Survival rate was highest in larvae fed 100 nematodes ml?1 (81.3%). Carcass analysis showed that larvae fed 125 and 150 nematodes ml?1 had significantly lower body protein and higher body lipid than those fed other nematode densities. Carcass ash was similar for larvae fed 50–100 nematodes ml?1 but it decreased significantly at the higher nematode densities. Carp larvae in a subsequent experiment were given 50, 75 and 100 nematodes ml?1 per feeding. Newly hatched Artemia was the control feed. Nematode consumption and growth of the larvae were determined. Larvae were sampled at intervals of 2–4 days and the nematodes in the gut were counted and measured. At each nematode density, the number of nematodes present in the gut of the larvae increased significantly with time. At each sampling day, the number of nematodes in the gut did not differ significantly among treatments (P > 0.05) although it tended to increase with nematode density at day 2 and day 4 but decrease at day 7 onward. The carp larvae consumed significantly shorter nematodes on day 2 and day 4 than on the succeeding sampling days regardless of nematode density. However, the length of nematodes in the gut of the larvae did not differ significantly among the nematode densities. The final body weight of larvae increased with increasing nematode density. The body weight of larvae fed 100 nematodes ml?1 did not differ significantly from that of larvae given Artemia nauplii. Results show that bighead carp larvae should be fed 100 free‐living nematodes per ml at each feeding time.  相似文献   

10.
Four entomopathogenic nematode species, Steinernema carpocapsae, S. feltiae, Heterorhabditis bacteriophoraand H. megidis, were tested in a petri dish assay against larvae and adults of the hairy fungus beetle Typhaea stercorea. In general, adults were less susceptible than larvae and the LC50 decreased with the duration of the exposure to nematodes. S. carpocapsae was the most effective species against adult beetles (LC50 after 96 hours exposure =67 nematodes/adult). Against larvae S.carpocapsae and H. megidis were comparablyeffective with an LC50 of 30 and 55nematodes/larvae, respectively. S. carpocapsaewas tested at 70 and 100% RH against adults in baits of either chicken feed or crushed wheat, both supplemented with horticultural capillary matting pieces in order to obtain a wet weight of 50–60%. At70% RH no significant effect of the nematodes was obtained due to desiccation of the bait. In chickenfeed at 100% RH the mortality reached 80% with 500nematodes/adult. In wheat significant mortality was obtained only at 5000 nematodes/adult. Heavy growth of mould probably limited the nematode infection. When the bait was used in tube traps, desiccation and growth of mould was prevented, but nematode efficacy dropped to 4.4% in the traps and 12% in the surrounding litter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Mustard green manures or seed meal high in glucosinolates, which produce a natural biofumigant upon incorporation into the soil, form an alternative to synthetic fumigants. However, the non-target impacts of these biofumigants in the field are unclear. We examined the effectiveness of soil incorporation of Brassica carinata seed meal both in controlling the plant-parasitic Columbia root-knot nematode (Meloidogyne chitwoodi), and on the biological control exerted by the entomopathogenic nematodes Steinernema feltiae and Steinernema riobrave on root-knot nematodes and the Colorado potato beetle (Leptinotarsa decemlineata). Singly, both the seed meal and Steinernema spp. reduced root-knot nematode damage to potato tubers and increased marketable tuber yields. However, there was a negative interaction between the two bioagents such that their combination did not further improve suppression of plant-parasitic nematodes. Thus, mustard seed meal applications harmful to the target root-knot nematode also disrupted the ability of Steinernema spp. to act as biocontrol agents. Further, we observed modest disruption of the biological control of potato beetles following biofumigation. But, the potato beetles were less likely to lay eggs on potato plants grown in mustard-amended soil, suggesting a counteracting benefit of mustard application. Multiple, complementary controls must be integrated to replace the very effective pest suppression typical of synthetic soil fumigants. Our study suggests significant interference between biofumigation and biocontrol agents in the soil, presenting challenges in combining these two environmentally friendly approaches to managing plant-parasitic nematodes and other pests.  相似文献   

12.

Background  

Published accounts of horizontally acquired genes in plant-parasitic nematodes have not been the result of a specific search for gene transfer per se, but rather have emerged from characterization of individual genes. We present a method for a high-throughput genome screen for horizontally acquired genes, illustrated using expressed sequence tag (EST) data from three species of root-knot nematode, Meloidogyne species.  相似文献   

13.
Seventy-three Ohio fields comprising ca. 440 ha of cv Superior potatoes were surveyed in 1977 for plant-parasitic nematodes. Of eight genera of plant-parasitic nematodes, Pratylenchus was found most frequently, occurring in 65% of the soil samples and 84% of the root samples. Populations of Pratylenchus were consistently higher than populations of the other nematode genera. The six species of Pratylenchus extracted from potato roots, in descending order of frequency, were P. crenatus, P. penetrans, P. scribneri, P. alleni, P. thornei, and P. neglectus. Prevalence of these Pratylenchus species in Ohio potato fields suggests that they could be involved with vascular wilt fungi in premature death of cv Superior potato vines known in Ohio as "early dying."  相似文献   

14.
Field study was conducted between January and June 2011 to determine the plant-parasitic and non-parasitic nematodes associated with three indigenous leafy vegetables (Amaranthus viridis, Celosia argentea and Corchorus olitorius) commonly grown in inland valley by farm practical year students’ trainees at the Federal University of Agriculture, Abeokuta. The 1.76-ha land was laid out in randomised complete block design with four replicates. Six soil cores were taken per replicate and bulked. Two sub-samples weighing 250?g per replicate were assayed for nematodes using WhiteHead and Hemming Tray method. Results revealed the presence of five genera of plant-parasitic nematodes, namely Tylenchus, Pratylenchus, Helicotylenchus, Meloidogyne and Rotylenchulus. Populations of Tylenchus differed statistically (p?=?0.05) from all others in C. olitorius. The non-parasitic nematodes varied significantly (p?=?0.05) among the vegetable types. Galls incited by Meloidogyne spp. were more (p?=?0.05) in C. argentea and C. olitorius than A. viridis.  相似文献   

15.
The insect-parasitic rhabditoid nematodes,Steinernema feltiae andHeterorhabditis bacteriophora, released a compound/s/ toxic to larvae of the greater wax moth,Galleria mellonella, that caused paralysis and death of the insect. Larvicidal substances appeared in wax moth larvae during parasitism and after inoculation with the primary form of the bacterial associates of the nematodes. The nematodeS. feltiae and its associate,Xenorhabdus nematophilus, excreted much less toxic activity within larval body thanH. bacteriophora. The secondary form ofXenohabdus did not produce toxin in parasitized larvae, butX. luminescens, the bacterium associated withH. bacteriophora, released detectable titer of toxin activity in broth cultures. Both nematode toxins were sensitive to heat and produced a specific type of proteolytic activity. Preliminary identification of the compounds responsible for larval toxicity revealed similarities to immune inhibitors produced by some bacterial pathogens of insects.   相似文献   

16.
Numbers of plant-parasitic nematodes on corn growing under seven tillage regimes were monitored. Differences among treatments occurred for Helicotylenchus pseudorobustus, Pratylenchus spp., Xiphinema americanum, dorylaimids, and total numbers of nematodes. Except with members of the Tylenchinae, highest densities occurred in no-till ridge plots and lowest numbers occurred in spring- and fall-plowed pots.  相似文献   

17.
Plant-parasitic nematodes can be very damaging to turfgrasses. The projected cancellation of the registration for fenamiphos in the near future has generated a great deal of interest in identifying acceptable alternative nematode management tactics for use on turfgrasses. Two field experiments were conducted to evaluate the effectiveness of repeated applications of several commercially available nematicides and root biostimulants for reducing population densities of plant-parasitic nematodes and (or) promoting health of bermudagrass in nematode-infested soil. One experimental site was infested with Hoplolaimus galeatus and Trichodorus obtusus, the second with Belonolaimus longicaudatus. In both trials, none of the experimental treatments reduced population densities (P ≤ 0.1) of plant-parasitic nematodes, or consistently promoted turf visual performance or turf root production. Nematologists with responsibility to advise turf managers regarding nematode management should thoroughly investigate the validity of product claims before advising clientele in their use.  相似文献   

18.
Sequencing of expressed genes has shown that nematodes, particularly the plant-parasitic nematodes, have genes purportedly acquired from other kingdoms by horizontal gene transfer. The prevailing orthodoxy is that such transfer has been a driving force in the evolution of niche specificity, and a recent paper in BMC Evolutionary Biology that presents a detailed phylogenetic analysis of cellulase genes in the free-living nematode Pristionchus pacificus at the species, genus and family levels substantiates this hypothesis.  相似文献   

19.
A survey was conducted to determine the prevalence of plant-parasitic nematodes associated with vegetable crops grown in organic and conventional farms in Laguna province, Philippines. Seven nematode genera (Aphelenchoides, Aphelenchus, Helicotylenchus, Meloidogyne, Pratylenchus, Rotylenchulus and Tylenchus) from organic farms and five (all those found in organic except Aphelenchoides and Pratylenchus) from conventional farms were isolated using modified Baermann tray method. Among these taxa, Meloidogyne and Rotylenchulus were the most prevalent and abundant in both organic and conventional farms. Pratylenchus was also prevalent in organic farms and Helicotylenchus in conventional farms. Rotylenchulus was found associated with every vegetable in both organic and conventional farms and Meloidogyne was also observed with all vegetables in conventional farms. Organic vegetable farms were more diverse in terms of genera of plant-parasitic nematodes than conventional farms.  相似文献   

20.
The lepidopteran, Cydia splendana, and the coleopteran, Curculio elephas, are the most serious pests of chestnut fruit in Turkey. We evaluated the biological control potential of three Turkish entomopathogenic nematode species, Steinernema feltiae, S. weiseri and Heterorhabditis bacteriophora, against the last instar larvae of C. splendana and C. elephas, both of which occur in the soil from fall (October–November) until mid-summer (August). The optimal temperature for infection, time to death of the hosts, and reproductive potential of the nematodes were determined at 10, 15, 20 and 25°C for both pest species. Cydia splendana was more susceptible to nematode infection than C. elephas. Temperature had a significant effect on the infectivity and development of entomopathogenic nematodes. The cold-adapted S. weiseri and S. feltiae were the most virulent species at 10 and 15°C, whereas the warm-adapted H. bacteriophora was the most effective at 20 and 25°C. In soil pot experiments conducted at 15°C, S. weiseri was the most virulent species against C. elephas and C. splendana. However, our data show that C. elephas larvae had a lower and C. splendana larvae had a higher susceptibility to the nematode species tested. Accordingly, we recommend that future efforts of using entomopathogenic nematodes, especially S. weiseri, be directed against C. splendana and that there be a continued effort to find more virulent nematode isolates against larvae of C. elephas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号