首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly purified plasma membrane (PM) preparations of pig myometrium were found to contain 0.91 +/- 0.22 microgram calmodulin per mg of PM protein. Treatment of membranes with 1 mM EGTA in the presence of 0.2 M NaCl causes the diminution of the calmodulin content down to 3% of the original level. The activity of Ca, Mg-ATPase is thereby decreased by 40%. Exogenous calmodulin restores the enzyme activity up to 1.94 +/- +/- 0.30 mumol Pi/mg protein/hour. The maximal activation of Ca, Mg-ATPase is observed with 10(-7) M calmodulin. Calmodulin increases the total ATPase activity of myometrium PM without affecting the Mg-ATPase activity. Trifluoroperazine (20 microM) diminishes the activating effect of exogenous calmodulin on Ca, Mg-ATPase. Calmodulin stimulates Ca, Mg-ATPase at low concentrations of Ca2+(10(-8)-10(-6) M) by decreasing Km for Ca2+ from 0.4.10(-6) M to 2.10(-8) M as well as by increasing Vmax--from 0,8 to 1.42 mumol Pl/mg protein/hour. It is supposed that the activating effect of calmodulin on Ca, Mg-ATPase is based on electrostatic interactions of Ca2+-free calmodulin with the enzyme.  相似文献   

2.
Bovine thyroid tissue exhibited cAMP-dependent and Ca2+-dependent protein kinase activities as well as a basal (cAMP- and Ca2+-independent) one, and phosphoprotein phosphatase activity. Although the former two protein kinase activities were not clearly demonstrated using endogenous protein as substrate, they were clearly shown in soluble, particulate and plasma membrane fractions using exogenous histones as substrate. The highest specific activities were in the plasma membrane. The apparent Km values of cAMP and Ca2+ for the membrane-bound protein kinase were 5 . 10(-8) M and 8.3 . 10(-4) M in the presence of 1 Mm EGTA), respectively. The apparent Km values of Mg2+ were 7.10-4M (without (in the cAMP and Ca2+), 5 . 10(-4) M (with cAMP) and 1.3 . 10(-3) M (with Ca2+), and those of ATP were 3.5 . 10(-5)M (with or without cAMP) and 8.5 . 10(-5) M (with Ca2+). The Ca2+-dependent protein kinase could be dissociated from the membrane by EGTA-washing. The enzyme activity so released was further activated by added phospholipid (phosphatidylserine/1,3-diolein), but not by calmodulin. Phosphoprotein phosphatase activity was also clearly demonstrated in all of the fractions using 32P-labeled mixed histones as substrate. The activity was not modified by either cAMP or Ca2+, but was stimulated by a rather broad range (5-25 mM) of Mg2+ and Mn2+. NaCl and substrate concentrations also influenced the activity. Pyrophosphate, ATP, inorganic phosphate and NaF inhibited the activity in a dose-dependent manner. Trifluoperazine, chlorpromazine, dibucaine and Triton X-100 (above 0.05%, w/v) specifically inhibited the Ca2+-dependent protein kinase in plasma membranes. Repetitive phosphorylation of intrinsic and extrinsic proteins by the membrane-bound enzyme activities clearly showed an important co-ordination of them at the step of protein phosphorylation. These findings suggest that these enzyme activities in plasma membranes may contribute to regulation of thyroid function in response to external stimuli.  相似文献   

3.
The various protein components of a reversible phosphorylating system regulating smooth muscle actomyosin Mg-ATPase activity have been purified. The enzyme catalyzing phosphorylation of smooth muscle myosin, myosin-kinase, requires Ca2+ and the Ca2+-binding protein calmodulin for activity and binds calmodulin in a ratio of 1 mol calmodulin to 1 mol of myosin kinase. Myosin kinase can be phosphorylated by the catalytic subunit of cyclic AMP (cAMP)-dependent protein kinase, and phosphorylation of myosin kinase that does not have calmodulin bound results in a marked decrease in the affinity of this enzyme for Ca2+-calmodulin. This effect is reversed when myosin kinase is dephosphorylated by a phosphatase purified from smooth muscle. When the various components of the smooth muscle myosin phosphorylating-dephosphorylating system are reconstituted, a positive correlation is found between the state of myosin phosphorylation and the actin-activated Mg-ATPase activity of myosin. Unphosphorylated and dephosphorylated myosin cannot be activated by actin, but the phosphorylated and rephosphorylated myosin can be activated by actin. The same relationship between phosphorylation and enzymatic activity was found for a chymotryptic peptide of myosin, smooth muscle heavy meromyosin. The findings reported here suggest one mechanism by which Ca2+ and calmodulin may act to regulate smooth muscle contraction and how cAMP may modulate smooth muscle contractile activity.  相似文献   

4.
Cardiac sarcoplasmic reticulum plays a critical role in the excitation-contraction cycle and hormonal regulation of heart cells. Catecholamines exert their ionotropic action through the regulation of calcium transport into the sarcoplasmic reticulum. Cyclic 3'-5'-adenosine monophosphate (cAMP) causes the cAMP-dependent protein kinase to phosphorylate the regulatory protein phospholamban, which results in the stimulation of calcium transport. Calmodulin also phosphorylates phospholamban by a calcium-dependent mechanism. We have reported the isolation and purification of phospholamban with low deoxycholate (DOC) concentrations (5 X 10(-6) M). We have also reported the isolation and purification of Ca2+ + Mg2+-ATPase with a similar procedure. Both phospholamban and Ca2+ + Mg2+-ATPase retained their native properties associated with sarcoplasmic reticulum vesicles. Further, we have shown that the removal of phospholamban from membranes of sarcoplasmic reticulum vesicles uncouples Ca2+-uptake from ATPase without any effect on Ca2+ + Mg2+-ATPase activity or Ca2+ efflux. Phospholamban appears to be the substrate for both the Ca2+-calmodulin system and the cAMP-dependent protein kinase system. It is found that the phosphorylation of phospholamban by the Ca2+-calmodulin system is required for the normal basal level of Ca2+ transport, and that the phosphorylation of phospholamban at another site by the cAMP-dependent protein kinase system causes the stimulation of Ca2+-transport above the basal level. The functional effects of the phosphorylation of phospholamban by cAMP-dependent protein kinase system are expressed only after the phosphorylation of phospholamban with Ca2+-calmodulin system. We propose a model for the cardiac Ca2+ + Mg2+-ATPase, whereby the enzyme is normally uncoupled from Ca2+ uptake. The enzyme becomes coupled to Ca2+ transport after the first site of phospholamban is phosphorylated with the Ca2+-calmodulin system. When the second site of phospholamban is phosphorylated with cAMP-dependent protein kinase both Ca2+ transport and ATPase are stimulated and phospholamban becomes inaccessible to DOC solubilization and trypsin.  相似文献   

5.
E G Kranias  F Mandel  T Wang  A Schwartz 《Biochemistry》1980,19(23):5434-5439
Canine cardiac sarcoplasmic reticulum (SR) is known to be phosphorylated by adenosine 3',5'-monophosphate (cAMP) dependent protein kinase on a 22 000-dalton protein. Phosphorylation enhances the initial rate of Ca2+ uptake and Ca2+-ATPase activity. To determine the molecular mechanism by which phosphorylation regulates the calcium pump in SR, we examined the effect of cAMP-dependent protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Cardiac sarcoplasmic reticulum was preincubated with cAMP and cAMP-dependent protein kinse in the presence (phosphorylated SR) and absence (control) of adenosine 5'-triphosphate (ATP). Control and phosphorylated SR were subsequently assayed for formation (4-200 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase in media containing 100 microM [ATP] and various free [Ca2+]. cAMP-dependent phosphorylation of SR resulted in pronounced stimulation of initial rates and levels of E approximately P formed at low free [Ca2+] (less than or equal to 7 microM), but the effect was less at high free Ca2+ (greater than or equal to 10 microM). This stimulation was associated with a decrease in the dissociation constant for Ca2+ binding and a possible increase in Ca2+ sites. The observed rate constant for E approximately P formation of calcium-preincubated SR was not significantly altered by phosphorylation. Phosphorylation also increased the initial rate of E approximately P decomposition. These findings indicate that phosphorylation of cardiac SR by cAMP-dependent protein kinase regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the calcium pump observed at steady state.  相似文献   

6.
Studies were undertaken to determine whether factors which affect insulin secretion may exert their effects by altering the activity of an islet-cell plasma membrane Ca2+ extrusion pump. The insulin secretagogue, D-glucose, and a variety of phosphorylated hexoses, glucose 6-P, glucose 1,6-P, fructose 6-P, and fructose 2,6-P, were evaluated for their effect on an islet-cell plasma membrane (Ca2+ + Mg2+)-ATPase and were found to be ineffective in altering enzyme activity. D-Glucose also did not alter the rate of ATP-dependent Ca2+ uptake into plasma membrane vesicles. Similarly, cAMP, the catalytic subunit of cAMP-dependent protein kinase, arachidonic acid, or prostaglandin E2 did not affect either the plasma membrane (Ca2+ + Mg2+)-ATPase or the rate of ATP-dependent Ca2+ uptake into plasma membrane vesicles. Whereas previous studies have suggested that D-glucose and/or cAMP may inhibit ATPase activities in islets, these results indicate that the agents, i.e., D-glucose and cAMP, which stimulate and/or potentiate insulin secretion from the islet cell, do not modify Ca2+ fluxes by directly regulating the islet-cell plasma membrane (Ca2+ + Mg2+)-ATPase. In contrast, the acidic phospholipids, phosphatidic acid and phosphatidylserine, stimulated the enzyme activity in a concentration-dependent manner whereas phosphatidylcholine had only a minimal effect. The diacylglycerol, dilinolein, stimulated the (Ca2+ + Mg2+)-ATPase activity in the presence of phosphatidylserine, but not in the absence of phospholipids. These effects were independent of phospholipid-stimulated protein phosphorylation in the islet-cell plasma membrane under the conditions of the ATPase assay.  相似文献   

7.
Studies were made on the mechanism of the effect of parathyroid hormone (PTH) on the activity of (Ca2++Mg2+)-ATPase, a membrane bound Ca2+-extrusion pump enzyme from the basolateral membranes (BLM) of canine kidney (Km for free Ca2+ = 1.3 X 10(-7) M, Vmax = 200 nmol Pi/mg/min). At 1 X 10(-7) M free Ca2+, both PTH (10(-7)-10(-6) M) and cAMP (10(-6)-10(-4) M) stimulated (Ca2++Mg2+)-ATPase activity dose-dependent and their stimulatory effects were inhibited completely by 5 microM H-8, an inhibitor of cAMP-dependent protein kinase. PTH (10(-7) M) also caused 40% increase in 32P incorporation into the BLM and 5 microM H-8 inhibited this increase too. PTH (10(-7) M) was found to stimulate phosphorylation of a protein of Mr 9000 by cAMP dependent protein kinase and 5 microM H-8 was found to block this stimulation also. From these results, it is proposed that PTH stimulates (Ca2++Mg2+)-ATPase activity by enhancing its affinity for free Ca2+ via cAMP-dependent phosphorylation of a BLM protein of Mr 9000.  相似文献   

8.
The effect of regucalcin, a calcium-binding protein, on ATP-dependent Ca2+ transport in the basolateral membranes isolated from rat kidney cortex was investigated. The prepared membranes were in inside-out oriented and membrane vesicles. Ca2+-ATPase activity in the basolateral membranes was progressively elevated by increasing concentrations of regucalcin (10-8 to 10-6 M) in the reaction mixture. This increase was dependent on Ca2+ addition. The activatory effect of regucalcin on the enzyme is inhibited by the presence of digitonin (5 × 10-6%) which can solubilize the membranous lipids. Moreover, the regucalcin effect was clearly abolished by the presence of vanadate (0.1 mM) or N-ethylmaleimide (5.0 mM). However, the effect of calmodulin (6 × 10-7 M) to increase Ca2+-ATPase activity was not significantly inhibited by vanadate or N-ethylmaleimide, indicating that the action mode of regucalcin differs from that of calmodulin. Also, the activatory effect of regucalcin on Ca2+-ATPase was appreciably inhibited by addition of dibutyryl cAMP (10-5 and 10-3 M), while inositol 1,4,5-trisphosphate (10-7 and 10-5 M) had no effect. Dibutyryl cAMP itself did not have an effect on the enzyme activity. Furthermore, the 45Ca2+ uptake by the basolateral membranes was clearly increased by the presence of regucalcin (10-7 and 10-6 M). This increase was completely blocked by the presence of vanadate (0.1 mM), N-ethylmaleimide (5.0 mM) or dibutyryl cAMP (10-4 and 10-3 M) in the reaction mixture. These results clearly demonstrate that regucalcin, which is expressed in rat kidney cortex, can increase Ca2+-ATPase activity and Ca2+ uptake in the basolateral membranes. Regucalcin may play a cell physiologic role as an activator in the ATP-dependent Ca2+ pumps in the basolateral membranes from rat kidney cortex.  相似文献   

9.
The Ca2+-ATPase of dog heart sarcolemma (1, 2) is affected by phosphorylation. As normally prepared, sarcolemmal vesicles are phosphorylated to a high degree, resulting in a relatively low additional incorporation of hydroxylamine resistant [32P]phosphate from [gamma-32P]ATP. The 32P incorporation is increased up to 20-fold by pretreating the vesicles with phosphorylase phosphatase and is inhibited by an inhibitor of cAMP-dependent protein kinases. The phosphatase treatment inhibits markedly the Ca2+-ATPase and the ATP-dependent Ca2+ uptake. The inhibition is more evident at relatively higher levels of free Ca2+ and is reversed by preincubation with ATP. The Ca2+-pumping activity is stimulated markedly by phosphorylase b kinase and inhibited by the (cAMP-dependent) protein kinase inhibitor. Both the protein kinase inhibitor and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid prevent the rephosphorylation of sarcolemmal vesicles, but the effects are not additive. The Ca2+ dependence curve of the Ca2+ uptake in phospho- and dephosphorylated vesicles suggests that the phosphorylation might affect the efficiency of the enzyme (turnover rate) rather than its affinity for Ca2+.  相似文献   

10.
In the preceding papers, we demonstrated that the endogenous phosphorylation of a 29,000-dalton protein is stimulated in response to secretagogue application to intact cells from the rat exocrine pancreas and parotid and dephosphorylated upon termination of secretagogue action. One- and two-dimensional gel analysis of 32Pi-labeled pancreatic and parotid lobules as well as their respective subcellular fractions revealed that the same protein was covalently modified in both tissues and was localized to the ribosomal fraction. To identify the intracellular second messengers which may mediate or modulate the phosphorylation of the 29,000-dalton protein in intact cells, the effects of Ca2+, cAMP, and cGMP on the endogenous phosphorylation of this protein were assessed in subcellular fractions from the rat pancreas and parotid. Our results demonstrate that the phosphorylation of the 29,000-dalton polypeptide may be regulated by both Ca2+ and cAMP in the pancreas and in the parotid. No cGMP-dependent protein phosphorylation was found in either tissue. As in the in situ phosphorylation studies, the Ca2+- and cAMP-dependent phosphorylation of this same protein was localized to the ribosomal fraction. The cAMP-dependent protein kinase activity was found primarily in the postmicrosomal supernatant in contrast to the Ca2+-dependent protein kinase that appeared to be tightly associated with the substrate in addition to being present in the postmicrosomal supernatant. The data suggest that, in cells from the exocrine pancreas and parotid, secretagogues may regulate the phosphorylation of the 29,000-dalton protein through Ca2+ and/or cAMP.  相似文献   

11.
The membrane-bound protein kinase activity in plasma membranes (PM) and sarcoplasmic reticulum (SR) of rabbit myometrium was revealed, which catalyzes the synthesis of protein phosphoester products. cAMP had no effect on the phosphorylation of membrane substrates by soluble protein kinases I and II as well as by the membrane-bound enzyme of SR. At the same time, cAMP (10(-8) stimulated by 200% the phosphorylation of sarcolemmal components at functional rest (FR). In preparations obtained from pregnant animals, cAMP (10(-8) and 10(-5) M) stimulated the phosphorylation of PM 7- and 3-fold, respectively. cGMP had no effect on the phosphorylation of PM and SR proteins at FR. At 10(-5) and 10(-8) M, cGMP stimulated endogenous phosphorylation of PM and SR 7- and 4-fold, respectively. In pregnancy, the degree of endogenous phosphorylation of PM and SR increased by 70% and 260% as compared to that at FR; the activity of soluble protein kinases decreased two times under these conditions. At FR, the sarcolemmal proteins with Mr 35 000, 57 000, 89 000 and 174 000 underwent phosphorylation. The phosphorylation of the proteins with Mr 35 000 and 57 000 was cAMP-dependent. In pregnant animals sarcolemma, the phosphorylation affected the proteins with Mr 47 000, 57 000 and 174 000 and was cAMP-dependent for the former two proteins and cGMP-dependent for the latter protein. At FR, two SR proteins with Mr 47 000 and 168 000, while in pregnant animals the proteins with Mr 47 000, 132 000 and 168 000 were phosphorylatable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Sarcolemmal vesicles were prepared from bovine cardiac muscle by differential and discontinuous sucrose density gradient centrifugation. Na+/K+-ATPase was purified 33-fold to a specific activity of 53 +/- 0.5 (12) mumol Pi X mg-1 X h-1, binding sites for strophantin 20-fold to a density of 56.3 +/- 5.3 (14) pmol/mg and that for the calcium antagonist nitrendipine 5.5-fold to a density of 0.72 +/- 0.07 (6) pmol/mg. The specific activity of the Na+/Ca2+ exchanger was 61.1 +/- 3.7 (6) nmol/mg. The vesicles had an intravesicular volume of 20 +/- 4 (4) microliter/mg and 56.9 +/- 6 (4)% of the vesicles were right-side-out oriented. Several peptides of the purified membranes were phosphorylated in the presence of Mg . ATP and EGTA. Most of the radioactive phosphate was incorporated into a peptide with an apparent molecular mass of 22 kDa. Denaturation of the membranes at 100 degrees C changed the mobility of this peptide to 15 kDa and 11 kDa. This peptide could not be distinguished from a sarcoplasmic reticulum peptide of similar molecular mass. The phosphorylation of the sarcolemmal peptide was stimulated by Ca2+/calmodulin, cAMP and the catalytic subunit of cAMP-dependent protein kinase. A comparison of the phosphorylation of sarcolemmal membranes with that of sarcoplasmic reticulum showed that Ca2+/calmodulin stimulated in each membrane, the phosphorylation of the 22-kDa peptide and a 44-kDa peptide, and in the sarcoplasmic reticulum the phosphorylation of an additional peptide of 55-kDa. Ca2+/calmodulin-dependent phosphorylation of a 55-kDa peptide could not be demonstrated in sarcolemma, regardless if sarcolemmal membranes were incubated together with sarcoplasmic reticulum or if the phosphorylation was carried out in the presence of purified cardiac myosin light chain kinase or phosphorylase kinase. 'Depolarization' induced Ca2+ uptake which was measured according to Bartschat, D.K., Cyr, D.L. and Lindenmayer, G.E. [(1980) J. Biol. Chem. 255, 10044-10047] was 5 nmol/mg protein. This uptake was not enhanced after preincubation of the vesicles with Mg . ATP or Mg . ATP and cAMP-dependent protein kinase. The value of 5 nmol/mg protein is in agreement with the theoretical amount of Ca2+ which can be accumulated by the bovine cardiac sarcolemma in the absence of a driving force other than the Ca2+ gradient. The potassium-stimulated Ca2+ uptake was not blocked by the organic Ca2+ channel blockers. Prolonged incubation of Mg . ATP with sarcolemmal vesicles in the presence of various ATPase inhibitors led to the hydrolysis of ATP. The liberated phosphate precipitated with Ca2+ in the presence of LaCl3. These precipitates amounted to an apparent Ca2+ uptake ranging from 50 to over 1000 nmol/mg. The results suggest that potassium-stimulated Ca2+ uptake of bovine cardiac sarcolemmal vesicles is not enhanced in the presence of ATP or by phosphorylation of a 22-kDa peptide.  相似文献   

13.
cAMP-mediated stimulation of hepatic bile acid uptake is associated with dephosphorylation and translocation of Na+-taurocholate (TC) cotransporting peptide (NTCP) to the plasma membrane. Although translocation of NTCP may be facilitated by dephosphorylation, the mechanism of dephosphorylation is unknown. The ability of cAMP to translocate and dephosphorylate NTCP is, in part, dependent on cAMP-mediated increases in cytosolic Ca2+ concentration ([Ca2+]), indicating that a Ca2+/calmodulin-dependent protein phosphatase (PP2B) may be involved. Thus we studied the role of PP2B using the inhibitor cypermethrin (CM). Freshly isolated hepatocytes were pretreated with 1-5 nM CM for 30 min followed by 15 min incubation with 10 microM 8-(4-chlorophenylthio)cAMP. CM (5 nM) and FK-506 (5 microM) inhibited cAMP-stimulated TC uptake by 80 and 75%, respectively, without affecting basal TC uptake. CM also reversed cAMP-mediated NTCP dephosphorylation and translocation to 80 and 15% of the basal level, respectively. cAMP stimulated PP2B activity by 60%, and this effect was completely inhibited by 5 nM CM. PP2B dephosphorylated NTCP immunoprecipitated from control but not from cAMP-treated hepatocytes. The effect of CM was not due to any changes in cAMP-mediated increases in cytosolic [Ca2+] or decreases in mitogen-activated protein kinase (extracellular regulated kinases 1 and 2) activity. Taken together, these results suggest that cAMP dephosphorylates NTCP by activating PP2B in hepatocytes, and PP2B-mediated dephosphorylation of NTCP may be involved in cAMP-mediated NTCP translocation to the plasma membrane.  相似文献   

14.
Adenylate cyclase of plasma membranes from the nonpregnant rabbit myometrium shows the maximum activity at pH 7.7-7.9, is characterized by apparent Km for ATP amounting to 0.38 +/- 0.09 mM, V--125 +/- 34.4 pmol min/mg protein, is activated at most by 15-20 mM Mg2+ and F-. Adenylate cyclase of plasma membranes from the pregnant rabbit myometrium is characterized by apparent Km for ATP amounting to 0.74 +/- 0.06 mM, V--77.3 +/- 6.0 pmol/min/mg protein, is activated at most by 5-10 mM Mg2+ and 10-15 mM F-; the pH optimum for the adenylate cyclase in this functional state is 7.3. Adenylate cyclase in the state of labour is characterized by apparent Km for ATP amounting to 0.46 +/- 0.11 mM, V--34.8 +/- 4.6 pmol/min/mg protein, is activated at most by 10-15 mM Mg2+ and F-, shows the same activity at pH 7.3-8.5. Adenylate cyclase of myometrium in three investigated states is activated by 2 mM EGTA; 10(-7) M Ca2+ decreases activation caused by EGTA; higher concentrations of Ca2+ decrease the basal activity of the enzyme.  相似文献   

15.
In the present study, we investigated the role of cAMP-dependent protein kinase in the process of Ca2+ uptake and release from platelet-derived membrane vesicles enriched in the dense tubular system. It was found that these membrane vesicles contain endogenous cAMP-dependent protein kinase and that stimulation of protein kinase by cAMP resulted in the phosphorylation of a single protein band (22 kDa). Addition of cAMP-dependent protein kinase produced effects on vesicle Ca2+ accumulation which were dependent on the Ca2+ concentration in the incubation medium. Specifically, at low extravesicular Ca2+ concentrations, cAMP-dependent protein kinase (10-100 micrograms/ml) produced a dose-dependent stimulation of Ca2+ uptake, however, a similar stimulation was not observed at high extravesicular Ca2+ concentrations. When endogenous protein kinase was blocked by the addition of protein kinase inhibitor, (2-160 nM) there was a dose-dependent inhibition of Ca2+ uptake at both low and high concentrations of extravesicular Ca2+. Furthermore, the addition of protein kinase inhibitor at steady state caused a rapid and dose-dependent release of vesicle-accumulated Ca2+. Studies on the phosphorylation profile of vesicle protein indicated that protein kinase inhibitor (80 and 160 nM) was capable of inhibiting the phosphorylation of the 22-kDa protein within 15 s. Finally, the ability of thromboxane A2 to cause Ca2+ release was inhibited by the addition of cAMP-dependent protein kinase (1 mg/ml). These findings suggest that cAMP-dependent protein kinase is not only a major determinant in the accumulation of Ca2+ by the dense tubular system, but may play an important role in the process of intraplatelet Ca2+ release by physiologic agents such as thromboxane A2.  相似文献   

16.
The purpose of this study was to examine activity of adenylate cyclase (AC) and its cAMP-dependent phosphorylation by cAMP-dependent protein kinase (PKA) in the membrane of rabbit myometrium. Isoproterenol (IP) significantly increased AC activity of nonpregnant rabbits myometrium plasma membranes. However, during pregnancy AC of myometrium plasma membranes did not respond to IP. Phosphorylation of the myometrium membrane by PKA was followed by significantly decreased response of AC to IP.  相似文献   

17.
We have examined the effects of added cAMP-dependent protein kinase and endogenous calmodulin-dependent kinase on Ca2+ transport in purified internal membranes from human platelets. Both Ca2+ uptake and Ca2+-ATPase activity were maximally stimulated about 2-fold by addition of cAMP-dependent protein kinase. Cyclic AMP-dependent protein kinase inhibitor reduced both Ca2+ uptake and Ca2+-ATPase activities at concentrations which also inhibited cAMP-dependent protein phosphorylation. In addition, concerted stimulation of Ca2+-ATPase by exogenous calmodulin and added catalytic subunit of cAMP-dependent protein kinase was observed. A 22-kDa protein was phosphorylated by both cAMP-dependent and calmodulin-dependent kinases at the same rate as stimulation of the Ca2+-ATPase. Cyclic AMP-dependent phosphorylation of the 22-kDa polypeptide was inhibited by the protein kinase inhibitor and calmodulin-dependent phosphorylation was inhibited by chlorpromazine and EGTA. These results are consistent with the hypothesis that one mode of control of Ca2+ homeostasis in platelets may be similar to the phospholamban system in cardiac muscle.  相似文献   

18.
Phospholamban, a putative regulator of cardiac sarcoplasmic reticulum Ca2+ transport, has been shown to be phosphorylated in vitro by cAMP-dependent protein kinase and an intrinsic Ca2+-calmodulin-dependent protein kinase activity. This study was conducted to determine if Ca2+-calmodulin-dependent phosphorylation of phospholamban occurs in response to physiologic increases in intracellular Ca2+ in intact myocardium. Isolated guinea pig and rat ventricles were perfused with 32Pi after which membrane vesicles were isolated from individual hearts by differential centrifugation. Administration of isoproterenol (10 nM) to perfused hearts stimulated 32P incorporation into phospholamban, Ca2+-ATPase activity, and Ca2+ uptake of sarcoplasmic reticulum isolated from these hearts. These biochemical changes were associated with increases in contractility and shortening of the t 1/2 of relaxation. Elevated extracellular Ca2+ produced comparable increases in contractility but failed to stimulate phospholamban phosphorylation or Ca2+ transport and did not alter the t 1/2 of relaxation. Inhibition of trans-sarcolemmal Ca2+ influx by perfusing the ventricles with reduced extracellular Ca2+ (50 microM) attenuated the increases in 32P incorporation produced by 10 nM isoproterenol. Trifluoperazine (10 microM) also attenuated isoproterenol-induced increases in 32P incorporation into phospholamban. In both cases, Ca2+ transport was reduced to a degree comparable to the reduction in phospholamban phosphorylation. These results suggest that direct physiologic increases in intracellular Ca2+ concentration do not stimulate phospholamban phosphorylation in intact functioning myocardium. Ca2+-calmodulin-dependent phosphorylation of phospholamban may occur in response to agents which stimulate cAMP-dependent mechanisms in intact myocardium.  相似文献   

19.
The interaction of vanadate ions with the Ca-ATPase from sarcoplasmic reticulum vesicles was studied in a native and a fluorescein-labeled ATPase preparation (Pick, U., and Karlish, S. J. D. (1980) Biochim. Biophys. Acta 626, 255-261). Vanadate induced a fluorescence enhancement in a fluorescein-labeled enzyme, indicating that it shifts the equilibrium between the two conformational states of the enzyme by forming a stable E2-Mg-vanadate complex (E2 is the low affinity Ca2+ binding conformational state of the sarcoplasmic reticulum Ca-ATPase). Indications for tight binding of vanadate to the enzyme (K1/2 = 10 microM) in the absence of Ca2+ and for a slow dissociation of vanadate from the enzyme in the presence of Ca2+ are presented. The enzyme-vanadate complex was identified by the appearance of a time lag in the onset of Ca2+ uptake and by a slowing of the fluorescence quenching response to Ca2+. Ca2+ prevented the binding of vanadate to the enzyme. Pyrophosphate (Kd = 2 mM) and ATP (Kd = 25 microM) competitively inhibited the binding of vanadate, indicating that vanadate binds to the low affinity ATP binding site. Binding of vanadate inhibited the high affinity Ca2+ binding to the enzyme at 4 degrees C. Vanadate also inhibited the phosphorylation reaction by inorganic phosphate (Ki = 10 microM) but had no effect on the phosphorylation by ATP. It is suggested that vanadate binds to a special region in the low affinity ATP binding site which is exposed only in the E2 conformation of the enzyme in the absence of Ca2+ and which controls the rate of the conformation transition in the dephosphorylated enzyme. The implications of these results to the role of the low affinity ATP binding sites are discussed.  相似文献   

20.
We have examined the phosphorylation of the cyclic adenosine 3':5' monophosphate (cAMP) cell surface chemotactic receptor and a 36 kDa membrane-associated protein (p36) in Dictyostelium discoideum. The activity of CAR-kinase, the enzyme responsible for the phosphorylation of the cAMP receptor, was studied in plasma membrane preparations. It was found that, as in intact cells, the receptor was rapidly phosphorylated in membranes incubated with [gamma 32P] adenosine triphosphate (ATP) but only in the presence of cAMP. This phosphorylation was not observed in membranes prepared from cells which did not display significant cAMP binding activity. cAMP could induce receptor phosphorylation at low concentrations, while cyclic guanosine 3':5' monophosphate (cGMP) could elicit receptor phosphorylation only at high concentrations. Neither ConA, Ca2+, or guanine nucleotides had an effect on CAR-kinase. It was also observed that 2-deoxy cAMP but not dibutyryl cAMP induced receptor phosphorylation. The data suggest that the ligand occupied form of the cAMP receptor is required for CAR-kinase activity. Although the receptor is rapidly dephosphorylated in vivo, we were unable to observe its dephosphorylation in vitro. In contrast, p36 was rapidly dephosphorylated. Also, unlike the cAMP receptor, the phosphorylation of p36 was found to be regulated by the addition of guanine nucleotides. Guanosine diphosphate (GDP) enhanced the phosphorylation while guanosine triphosphate (GTP) decreased the radiolabeling of p36 indicating that GTP can compete with ATP for the nucleotide triphosphate binding site of p36 kinase. Thus was verified using radiolabeled GTP as the phosphate donor. Competition experiments with GTP gamma S, ATP, GTP, CTP, and uridine triphosphate (UTP) indicated that the phosphate donor site of p36 kinase is relatively non-specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号