首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrodynamic properties as well as structural dynamics of proteins can be investigated by the well-established experimental method of fluorescence anisotropy decay. Successful use of this method depends on determination of the correct kinetic model, the extent of cross-correlation between parameters in the fitting function, and differences between the timescales of the depolarizing motions and the fluorophore's fluorescence lifetime. We have tested the utility of an independently measured steady-state anisotropy value as a constraint during data analysis to reduce parameter cross correlation and to increase the timescales over which anisotropy decay parameters can be recovered accurately for two calcium-binding proteins. Mutant rat F102W parvalbumin was used as a model system because its single tryptophan residue exhibits monoexponential fluorescence intensity and anisotropy decay kinetics. Cod parvalbumin, a protein with a single tryptophan residue that exhibits multiexponential fluorescence decay kinetics, was also examined as a more complex model. Anisotropy decays were measured for both proteins as a function of solution viscosity to vary hydrodynamic parameters. The use of the steady-state anisotropy as a constraint significantly improved the precision and accuracy of recovered parameters for both proteins, particularly for viscosities at which the protein's rotational correlation time was much longer than the fluorescence lifetime. Thus, basic hydrodynamic properties of larger biomolecules can now be determined with more precision and accuracy by fluorescence anisotropy decay.  相似文献   

2.
L Mouawad  M Desmadril  D Perahia  J M Yon  J C Brochon 《Biopolymers》1990,30(13-14):1151-1160
Horse muscle phosphoglycerate kinase (PGK) is a monomer folded into two widely distant domains. In the glycolytic pathway, this enzyme catalyzes the first reaction that produces ATP. It was suggested, by analogy with yeast hexokinase, that a hinge-bending motion may be induced by the binding of specific substrates to the protein. To analyze such a motion, or any structural changes induced by ligand binding, fluorescence anisotropy decay of tryptophan residues in free and liganded PGK was studied. At 293 K, for the free protein and the binary complex with 3-phosphoglycerate, a single correlation time of 26 ns was observed, corresponding to the rotation of the overall protein, whereas upon addition of MgADP, this correlation time decreased to 10 ns. Such a decrease cannot be merely due to a change of the protein's shape and volume. To explain this, it was suggested that the fluorescence anisotropy decay of the PGK-MgADP complex corresponded to the rotation of the only buried tryptophan (Trp 335). The rotational paths of this tryptophan, in the presence and absence of the nucleotide, were established by potential energy minimization calculations. The results indicated that MgADP induces a displacement of helix alpha-13 that decreases the rotational energy barrier of Trp 335 from 16 kcal/mol in the free protein to 8 kcal/mol in the complex.  相似文献   

3.
We have used fluorescence spectroscopy techniques such as fluorescence correlation spectroscopy and fluorescence anisotropy decay on a wide time range, from nanoseconds to seconds, to investigate the unfolding kinetics induced by guanidinium chloride of GFPMut2 and its point mutation H148G, which has proved to be relevant for GFP photochemistry and photophysics. The mutation affects the unfolding kinetics of GFP leading to a much faster process at alkaline pH values, where protonation dynamics is negligible, that can be ascribed to a twofold role of His148, either as a proton shutter towards the chromophore and as a conformation stabiliser. For both mutants a soft region located near beta-strand 3 is found that starts to gain flexibility in the ns range at denaturant concentrations far lower than those required to turn off the chromophore fluorescence, as derived from the anisotropy decay of an extrinsic probe covalently bound to the proteins.  相似文献   

4.
A reference method for the deconvolution of polarized fluorescence decay data is described. Fluorescence lifetime determinations for p-terphenyl, p-bis[2-(5-phenyloxazolyl)]benzene and N-acetyltryptophanamide (AcTrpNH2) show that with this method more reliable fits of the decays can be made than with the scatterer method, which is most frequently used. Analysis of the AcTrpNH2 decay with p-terphenyl as the reference compound yields an excellent fit with lifetimes of 2.985 ns for AcTrpNH2 and 1.099 ns for p-terphenyl (20 degrees C), whereas the AcTrpNH2 decay cannot be satisfactorily fitted when the scatterer method is used. The frequency of the detected photons is varied to determine the conditions where pulse pile-up starts to affect the measured decays. At detection frequencies of 5 kHz and 15 kHz, which corresponds to 1.7% and 5% respectively of the rate of the excitation photons no effects are found. Decays measured at 30 kHz (10%) are distorted, indicating that pile-up effects play a role at this frequency. The fluorescence and fluorescence anisotropy decays of the tryptophan residues in the proteins human serum albumin, horse liver alcohol dehydrogenase and lysozyme have been reanalysed with the reference method. The single tryptophan residue of the albumin is shown to be characterized by a triple-exponential fluorescence decay. The anisotropy decay of albumin was found to be mono-exponential with a rotational correlation time of 26 ns (20 degrees C). The alcohol dehydrogenase has two different tryptophan residues to which single lifetimes are assigned. It is found that the rotational correlation time for the dehydrogenase changes with excitation wavelength (33 ns for lambda ex = 295 nm and 36 ns for lambda ex = 300 nm at 20 degrees C), indicating a nonspherical protein molecule. Lysozyme has six tryptophan residues, which give rise to a triple-exponential fluorescence decay. A single-exponential decay with a rotational correlation time of 3.8 ns is found for the anisotropy. This correlation time is significantly shorter than that arising from the overall rotation and probably originates from intramolecular, segmental motion.  相似文献   

5.
A method of fluorescence anisotropy decay analysis is described in this work. The transient anisotropy r(ex)(t) measured in a photocounting pulsefluorimeter is fitted by a non linear least square procedure to the ratio of convolutions of the apparatus response function g(t) by sums of appropriate exponential functions. This method takes rigorously into account the apparatus response function and is applicable to any shape of the later as well as to any values of fluorescence decay times and correlation times. The performances of the method have been tested with data simulated from measured response functions corresponding to an air lamp and a high pressure nitrogen lamp. The statistical standard errors of the anisotropy deca parameters have been found to be smaller than the standard errors previously calculated for the moment method. A systematic error delta in the fluorescence decay time entailed an error deltatheta in the correlation time such as Deltatheta/theta < deltatau/tau. By this method, good fitting of experimental data have been achieved very conveniently and accurately.  相似文献   

6.
The interaction of rabbit skeletal muscle enolase and 3-phosphoglycerate mutase was detected by an ELISA test, a batch gel-filtration technique, and fluorescence anisotropy measurements, and the activity of enolase was determined to be a function of mutase concentration. The apparent dissociation constant of this enzyme complex is approximately 1 microM. This value seems to be independent of the presence (in fluorescence anisotropy measurements) or the absence (in activity as well as in ELISA experiments) of fluorescein isothiocyanate used widely as a label for determining the complex formation between enzymes in fluorescence anisotropy measurements.  相似文献   

7.
We have used frequency domain fluorescence techniques to resolve the component emission spectra for several two tryptophan containing proteins (e.g., horse liver alcohol dehydrogenase, sperm whale apomyoglobin, yeast 3-phosphoglycerate kinase, apoazurin from Alcaligenes denitricans). We have first performed multifrequency phase/modulation measurements and have found the fluorescence of each of these proteins to be described by a double exponential. Then, using phase-sensitive detection and the algorithm of Gratton and Jameson [Gratton, E., & Jameson, D. M. (1985) Anal. Chem. 57, 1694-1697], we have determined the emission spectrum associated with each decay time for these proteins. We have compared these phase-resolved spectra with the fractional contributions of the component fluorophores determined by selective solute quenching experiments. Reasonably good agreement is seen in most cases, which argues that the individual Trp residues emit independently. In the case of apoazurin, however, a negative amplitude is seen for the phase-resolved spectrum of the short-lifetime component. This pattern is consistent with the occurrence of energy transfer from the internal Trp residue to the surface Trp of this protein. We also present multifrequency lifetime measurements, phase-resolved spectra, and solute quenching data for a few protein-ligand complexes, to illustrate the utility of this approach for the study of changes in the fluorescence of proteins.  相似文献   

8.
We extended the technique of frequency-domain fluorometry to an upper frequency limit of 2000 MHz. This was accomplished by using the harmonic content of a laser pulse train (3.76 MHz, 5 ps) from a synchronously pumped and cavity-dumped dye laser. We used a microchannel plate photomultiplier as the detector to obtain the 2-GHz bandwidth. This new instrument was used to examine tyrosine intensity and anisotropy decays from peptides and proteins. These initial data sets demonstrate that triply exponential tyrosine intensity decays are easily recoverable, even if the mean decay time is less than 1 ns. Importantly, the extended frequency range provides good resolution of rapid and/or multiexponential tyrosine anisotropy decays. Correlation times as short as 15 ps have been recovered for indole, with an uncertainty of +/- 3 ps. We recovered a doubly exponential anisotropy decay of oxytoxin (29 and 454 ps), which probably reflects torsional motions of the phenol ring and overall rotational diffusion, respectively. Also, a 40-ps component was found in the anisotropy decay of bovine pancreatic trypsin inhibitor, which may be due to rapid torsional motions of the tyrosine residues and/or energy transfer among these residues. The rapid component has an amplitude of 0.05, which is about 16% of the total anisotropy. The availability of 2-GHz frequency-domain data extends the measurable time scale for fluorescence to overlap with that of molecular dynamics calculations.  相似文献   

9.
We have used one- (OPE) and two-photon (TPE) excitation with time-correlated single-photon counting techniques to determine time-resolved fluorescence intensity and anisotropy decays of the wild-type Green Fluorescent Protein (GFP) and two red-shifted mutants, S65T-GFP and RSGFP. WT-GFP and S65T-GFP exhibited a predominant approximately 3 ns monoexponential fluorescence decay, whereas for RSGFP the main lifetimes were approximately 1.1 ns (main component) and approximately 3.3 ns. The anisotropy decay of WT-GFP and S65T-GFP was also monoexponential (global rotational correlation time of 16 +/- 1 ns). The approximately 1.1 ns lifetime of RSGFP was associated with a faster rotational depolarization, evaluated as an additional approximately 13 ns component. This feature we attribute tentatively to a greater rotational freedom of the anionic chromophore. With OPE, the initial anisotropy was close to the theoretical limit of 0.4; with TPE it was higher, approaching the TPE theoretical limit of 0.57 for the colinear case. The measured power dependence of the fluorescence signals provided direct evidence for TPE. The general independence of fluorescence decay times, rotation correlation times, and steady-state emission spectra on the excitation mode indicates that the fluorescence originated from the same distinct excited singlet states (A*, I*, B*). However, we observed a relative enhancement of blue fluorescence peaked at approximately 440 nm for TPE compared to OPE, indicating different relative excitation efficiencies. We infer that the two lifetimes of RSGFP represent the deactivation of two substates of the deprotonated intermediate (I*), distinguished by their origin (i.e., from A* or B*) and by nonradiative decay rates reflecting different internal environments of the excited-state chromophore.  相似文献   

10.
I D Johnson  B S Hudson 《Biochemistry》1989,28(15):6392-6400
The effects of detergent [deoxycholate (DOC) and phospholipid [dimyristoylphosphatidylcholine (DMPC)] environments on the rotational dynamics of the single tryptophan residue 26 of bacteriophage M13 coat protein have been investigated by using time-resolved single photon counting measurements of the fluorescence intensity and anisotropy decay. The total fluorescence decay of tryptophan-26 is complex but rather similar in DOC as compared to DMPC when analyzed in terms of a lifetime distribution (exponential series method). This similarity, in conjunction with the almost identical steady-state fluorescence spectra, indicates only minor differences between the tryptophan environments in DOC and DMPC. The reorientational dynamics of tryptophan-26 are dominated by slow rotation of the entire protein in both detergent and phospholipid environments. The resolved anisotropy decay in DOC can be approximated by a simple hydrodynamic model of protein/detergent micelle rotational diffusion, although the data indicative slightly greater complexity in the rotational motion. The tryptophan fluorescence anisotropy is not sensitive to protein conformational changes in DOC detected by nuclear magnetic resonance on the basis of pH independence in the range 7.5-9.1. In DMPC bilayers, restricted tryptophan motion with a correlation time of approximately 2 ns is observed together with a second very slow reorientational component. Resolution of the time constant for this slow rotation is obscured by the tryptophan fluorescence time window being too short to clearly locate its anisotropic limit. The possible contribution made by axial rotational diffusion of the protein to this slow rotational process is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In many proteins fluorescence from single tryptophan exhibits a nonexponential decay function. To elucidate the origin of this nonexponential decay, we have examined the fluorescence decay function and time-resolved fluorescence anisotropy of a fluorophore covalently bound to a macromolecule by solving a rotational analogue of the Smoluchowski equation. An angular-dependent quenching constant and potential energy for the fluorophore undergoing internal rotation were introduced into the equation of motion for fluorophore. Results of numerical calculations using the equations thus obtained predict that both the fluorescence decay function and time-resolved anisotropy are dependent on rotational diffusion coefficients of fluorophore and potential energy for the internal rotation. The method was applied to the observed fluorescence decay curve of the single tryptophan in apocytochrome c from horse heart. The calculated decay curves fit the observed ones well.  相似文献   

12.
Fluorescence lifetimes, anisotropies and rotational correlation time values of 1,6-diphenyl-1,3,5-hexatriene (DPH) in membranes of normal, transformed, and revertant 3T3 cells were determined by nanosecond (nsec), photon counting spectrofluorimetry. No change in lifetime values with transformation or reversion is observed. Fluorescence anisotropy decay curves show at least two components; an initial relatively fast decay and a non-zero “plateau” level component. The observed changes in the average anisotropy values, which qualitatively follow steady-state fluorescence polarization values, is due primarily to changes in the non-zero “plateau” level component. The anisotropy decay curves suggest that the rotational motion of the probe is restricted to a limited angular range. The present results are compared with model membrane systems.  相似文献   

13.
We discussed the time-dependence of fluorescent emission anisotropy of a cylindrical probe in membrane vesicles. We showed that, if the motion of the probe were described as diffusion in an anisotropic environment, it would be possible to determine not only the second-rank but also the fourth-rank orientational order parameter from the decay of the fluorescence anisotropy. The approximations involved were based on an interpolation of short-time and long-time behavior of the relevant correlation functions. A general expression was derived for the time dependence of the fluorescence anisotropy in closed form, which applies to any particular distribution model. It was shown to be in good agreement with previously reported results for the cone model and the Gaussian model. Finally, the applicability of the theory to time-resolved and differential phase fluorescence depolarization experiments was discussed.  相似文献   

14.
The fluorescence decay of apoazurin derived from Pseudomonas aeruginosa is monoexponential. By this criterion the population of molecules of apoazurin is homogeneous. The emission anisotropy factor and the absorption anisotropy factor at the red edge of the absorption band assume similar values, showing that the tryptophan residue in apoazurin has the same asymmetric environment both in the ground and excited states. This finding suggests tight packing of the protein at the tryptophan environment. Native azurin does not decay monoexponentially. Moreover, comparison between the quantum yield calculated from the decay kinetics and the one measured directly shows that the majority of the azurin molecules are not fluorescent. There is thus variability in the structure of azurin molecules with an equilibration time that is longer than the fluorescence lifetime. Different asymmetric environment was found for the tryptophan residue in oxidized and reduced holoprotein and in apoazurin, as studied by the circular polarization of the fluorescence. D(2)O increases the fluorescence lifetime of apoazurin by 6 percent, compared to the lifetime in H(2)O solution; therefore water molecules may have access to the tryptophan residue, though the latter is situated in a hydrophobic environment.  相似文献   

15.
We used 2 GHz harmonic content frequency-domain fluorescence to measure the intensity and the anisotropy decays from the intrinsic tryptophan fluorescence from human hemoglobin (Hb). The tryptophan intensity decays are dominated by a short-lived component which accounts for 35-60% of the total steady state intensity. The decay time of this short component varies from 9 to 27 ps and this component is sensitive to the ligation state of Hb. Our error analyses indicate the uncertainty is about +/- 3 ps. The intensity decays also show two longer lived components near 0.7 and 8 ns, which are probably due either to impurities or to Hb molecules in conformations which do not permit energy transfer. The anisotropy decays indicate the tryptophan residues in Hb are highly mobile, with apparent correlation times near 55 ps.  相似文献   

16.
We describe a quantitative fluorescence projection tomography technique which measures the 3‐D fluorescence lifetime distribution in optically cleared specimens up 1 cm in diameter. This is achieved by acquiring a series of wide‐field time‐gated images at different relative time delays with respect to a train of excitation pulses, at a number of projection angles. For each time delay, the 3‐D time‐gated intensity distribution is reconstructed using a filtered back projection algorithm and the fluorescence lifetime subsequently determined for each reconstructed horizontal plane by iterative fitting to a mono‐exponential decay. Due to its inherently ratiometric nature, fluorescence lifetime is robust against intensity based artefacts as well as producing a quantitative measure of the fluorescence signal. We present a 3‐D fluorescence lifetime reconstruction of a mouse embryo labelled with an alexa‐488 conjugated antibody targeted to the neurofilament, which clearly differentiates between the extrinsic label and the autofluorescence, particularly from the heart and dorsal aorta. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The experimental and analytical protocols required for obtaining rotational correlation times of biological macromolecules from fluorescence anisotropy decay measurements are described. As an example, the lumazine protein from Photobacterium leiognathi was used. This stable protein (Mr 21 200) contains the noncovalently bound, natural fluorescent marker 6,7-dimethyl-8-ribityllumazine, which has in the bound state a long fluorescence lifetime (tau = 14 ns). Shortening of the fluorescence lifetime to 2.6 ns at room temperature was achieved by addition of the collisional fluorescence quencher potassium iodide. The shortening of tau had virtually no effect on the rotational correlation time of the lumazine protein (phi = 9.4 ns, 19 degrees C). The ability to measure biexponential anisotropy decay was tested by the addition of Photobacterium luciferase (Mr 80 000), which forms an equilibrium complex with lumazine protein. Under the experimental conditions used (2 degrees C) the biexponential anisotropy decay can best be described with correlation times of 20 and 60 ns, representing the uncomplexed and luciferase-associated lumazine proteins, respectively. The unbound 6,7-dimethyl-8-ribityllumazine itself (tau = 9 ns) was used as a model compound for determining correlation times in the picosecond time range. In the latter case rigorous deconvolution from the excitation profile was required to recover the correlation time, which was shorter (100-200 ps) than the measured laser excitation pulse width (500 ps).  相似文献   

18.
Ribose-modified highly-fluorescent sulfoindocyanine ATP and ADP analogs, 2'(3')-O-Cy3-EDA-AT(D)P, with kinetics similar to AT(D)P, enable myosin and actomyosin ATPase enzymology with single substrate molecules. Stopped-flow studies recording both fluorescence and anisotropy during binding to skeletal muscle myosin subfragment-1 (S1) and subsequent single-turnover decay of steady-state intermediates showed that on complex formation, 2'-O- isomer fluorescence quenched by 5%, anisotropy increased from 0.208 to 0.357, and then decayed with turnover rate k(cat) 0.07 s(-1); however, 3'-O- isomer fluorescence increased 77%, and anisotropy from 0.202 to 0.389, but k(cat) was 0.03 s(-1). Cy3-EDA-ADP.S1 complexes with vanadate (V(i)) were studied kinetically and by time-resolved fluorometry as stable analogs of the steady-state intermediates. Upon formation of the 3'-O-Cy3-EDA-ADP.S1.V(i) complex fluorescence doubled and anisotropy increased to 0.372; for the 2'-O- isomer, anisotropy increased to 0.343 but fluorescence only 6%. Average fluorescent lifetimes of 2'-O- and 3'-O-Cy3-EDA-ADP.S1.V(i) complexes, 0.9 and 1.85 ns, compare with approximately 0.7 ns for free analogs. Dynamic polarization shows rotational correlation times higher than 100 ns for both Cy3-EDA-ADP.S1.V(i) complexes, but the 2'-O-isomer only has also a 0.2-ns component. Thus, when bound, 3'-O-Cy3-EDA-ADP's fluorescence is twofold brighter with motion more restricted and turnover slower than the 2'-O-isomer; these data are relevant for applications of these analogs in single molecule studies.  相似文献   

19.
20.
The amphipathic helix plays a key role in many membrane-associating peptides and proteins. The dynamics of helices on membrane surfaces might be of importance to their function. The fluorescence anisotropy decay of tryptophan is a sensitive indicator of local, segmental, and global dynamics within a peptide or protein. We describe the use of frequency domain dynamic depolarization measurements to determine the site-specific tryptophan dynamics of single tryptophan amphipathic peptides bound to a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide that is known to associate at the interface of phospholipid bilayers. The peptides contain a single tryptophan located at positions 2, 3, 7, 12, or 14 in the sequence. Association of the peptides with egg phosphatidylcholine vesicles results in complex behavior of both the tryptophan intensity decay and the anisotropy decay. The anisotropy decays were biphasic and were fitted to an associated model where each lifetime component in the intensity decay is associated with a particular rotational correlation time from the anisotropy decay. In contrast, an unassociated model where all components of the intensity decay share common rotational modes was unable to provide an adequate fit to the data. Two correlation times were resolved from the associated analysis: one whose contribution to the anisotropy decay was dependent on the exposure of the tryptophan to the aqueous phase, and the other whose contribution reflected the position of the tryptophan in the sequence. The results are compared with existing x-ray structural data and molecular dynamics simulations of membrane-incorporated peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号