共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrea Hrovat Markus Blümel Frank Löhr Stephen G. Mayhew and Heinz Rüterjans 《Journal of biomolecular NMR》1997,10(1):53-62
Recombinant Desulfovibrio vulgaris flavodoxin was produced inEscherichia coli. A complete backbone NMR assignment for the two-electronreduced protein revealed significant changes of chemical shift valuescompared to the oxidized protein, in particular for the flavinemononucleotide (FMN)-binding site. A comparison of homo- and heteronuclearNOESY spectra for the two redox states led to the assumption that reductionis not accompanied by significant changes of the global fold of the protein.The backbone dynamics of both the oxidized and reduced forms of D. vulgarisflavodoxin were investigated using two-dimensional15N-1H correlation NMR spectroscopy.T1, T2 and NOE data are obtained for 95%of the backbone amide groups in both redox states. These values wereanalysed in terms of the model-free approach introduced by Lipari andSzabo [(1982) J. Am. Chem. Soc., 104, 4546-;4559, 4559-;4570]. Acomparison of the two redox states indicates that in the reduced speciessignificantly more flexibility occurs in the two loop regions enclosing FMN.Also, a higher amplitude of local motion could be found for the N(3)H groupof FMN bound to the reduced protein compared to the oxidized state. 相似文献
2.
High-resolution solution structure of reduced French bean plastocyanin and comparison with the crystal structure of poplar plastocyanin 总被引:3,自引:0,他引:3
J M Moore C A Lepre G P Gippert W J Chazin D A Case P E Wright 《Journal of molecular biology》1991,221(2):533-555
The three-dimensional solution structure of reduced (CuI) plastocyanin from French bean leaves has been determined by distance geometry and restrained molecular dynamics methods using constraints obtained from 1H n.m.r. (nuclear magnetic resonance) spectroscopy. A total of 1244 experimental constraints were used, including 1120 distance constraints, 103 dihedral angle constraints and 21 hydrogen bond constraints. Stereospecific assignments were made for 26 methylene groups and the methyls of 11 valines. Additional constraints on copper co-ordination were included in the restrained dynamics calculations. The structures are well defined with average atomic root-mean-square deviations from the mean of 0.45 A for all backbone heavy atoms and 1.08 A for side-chain heavy atoms. French bean plastocyanin adopts a beta-sandwich structure in solution that is similar to the X-ray structure of reduced poplar plastocyanin; the average atomic root-mean-square difference between 16 n.m.r. structures and the X-ray structure is 0.76 A for all backbone heavy atoms. The conformations of the side-chains that constitute the hydrophobic core of French bean plastocyanin are very well defined. Of 47 conserved residues that populate a single chi 1 angle in solution, 43 have the same rotamer in the X-ray structure. Many surface side-chains adopt highly preferred conformations in solution, although the 3J alpha beta coupling constants often indicate some degree of conformational averaging. Some surface side-chains are disordered in both the solution and crystal structures of plastocyanin. There is a striking correlation between measures of side-chain disorder in solution and side-chain temperature factors in the X-ray structure. Side-chains that form a distinctive acidic surface region, believed to be important in binding other electron transfer proteins, appear to be disordered. Fifty backbone amide protons form hydrogen bonds to carbonyls in more than 60% of the n.m.r. structures; 45 of these amide protons exchange slowly with solvent deuterons. Ten hydrogen bonds are formed between side-chain and backbone atoms, eight of which are correlated with decreased proton exchange. Of the 60 hydrogen bonds formed in French bean plastocyanin, 56 occur in the X-ray structure of the poplar protein; two of the missing hydrogen bonds are absent as a result of mutations. It appears that molecular dynamics refinement of highly constrained n.m.r. structures allows accurate prediction of the pattern of hydrogen bonding. 相似文献
3.
T Inoue M Gotowda H Sugawara T Kohzuma F Yoshizaki Y Sugimura Y Kai 《Biochemistry》1999,38(42):13853-13861
The X-ray crystal structures of oxidized and reduced plastocyanin obtained from the fern Dryopteris crassirhizoma have been determined at 1.7 and 1.8 A resolution, respectively. The fern plastocyanin is unique in the longer main chain composed of 102 amino acid residues and in the unusual pH dependence due to the pi-pi stacking interaction around the copper site [Kohzuma, T., et al. (1999) J. Biol. Chem. 274, 11817-11823]. Here we report the structural comparison between the fern plastocyanin and other plastocyanins from cyanobacteria, green algae, and other higher plants, together with the structural changes of fern plastocyanin upon reduction. Glu59 hydrogen bonds to the OH of Tyr83, which is thought to be a possible conduit for electrons, in the oxidized state. However, it moves away from Tyr83 upon reduction like poplar plastocyanin. 相似文献
4.
The crystal structures of oxidized and reduced plastocyanins from Synechococcus sp. PCC 7942 have been determined at 1.9 and 1.8 A resolution, respectively, at pH 5.0. The protein consists of only 91 amino acid residues, the smallest number known for a plastocyanin, and apparently lacks the mostly conserved acidic patch that is believed to be important for recognition with electron-transfer partners. The protein has two acidic residues, Glu42 and Glu85, around Tyr83, which is thought to be a possible conduit for electrons, but these are neutralized by Arg88 and Lys58. Residue Arg88 interacts with Tyr83 through a pi-pi interaction in which the guanidinium group of the former completely overlaps the aromatic ring of the tyrosine. Reduction of the protein at pH 5.0 causes a lengthening of one Cu-N(His) bond by 0.36 A, despite the small rms deviation of 0.08 A calculated for the backbone atoms. Moreover, significant conformational changes of Arg88 and Lys58, along with the movement of a water molecule adjacent to the OH group of Tyr83, were observed on reduction; the guanidinium group of Arg88 rotates by more than 11 degrees, and the water molecule moves by 0.42 A. The changes around the copper site and the alterations around Tyr83 may be linked to the reduction of the copper. 相似文献
5.
Coudevylle N Antoine M Bouguet-Bonnet S Mutzenhardt P Boschi-Muller S Branlant G Cung MT 《Journal of molecular biology》2007,366(1):193-206
Methionine sulfoxide reductases (Msr) reduce methionine sulfoxide (MetSO)-containing proteins, back to methionine (Met). MsrAs are stereospecific for the S epimer whereas MsrBs reduce the R epimer of MetSO. Although structurally unrelated, the Msrs characterized so far display a similar catalytic mechanism with formation of a sulfenic intermediate on the catalytic cysteine and a concomitant release of Met, followed by formation of at least one intramolecular disulfide bond (between the catalytic and a recycling cysteine), which is then reduced by thioredoxin. In the case of the MsrA from Escherichia coli, two disulfide bonds are formed, i.e. first between the catalytic Cys51 and the recycling Cys198 and then between Cys198 and the second recycling Cys206. Three crystal structures including E. coli and Mycobacterium tuberculosis MsrAs, which, for the latter, possesses only the unique recycling Cys198, have been solved so far. In these structures, the distances between the cysteine residues involved in the catalytic mechanism are too large to allow formation of the intramolecular disulfide bonds. Here structural and dynamical NMR studies of the reduced wild-type and the oxidized (Cys51-Cys198) forms of C86S/C206S MsrA from E. coli have been carried out. The mapping of MetSO substrate-bound C51A MsrA has also been performed. The data support (1) a conformational switch occurring subsequently to sulfenic acid formation and/or Met release that would be a prerequisite to form the Cys51-Cys198 bond and, (2) a high mobility of the C-terminal part of the Cys51-Cys198 oxidized form that would favor formation of the second Cys198-Cys206 disulfide bond. 相似文献
6.
Quinternet M Tsan P Neiers F Beaufils C Boschi-Muller S Averlant-Petit MC Branlant G Cung MT 《Biochemistry》2008,47(33):8577-8589
The secreted form of the PilB protein was proposed to be involved in pathogen survival fighting against the defensive host's oxidative burst. PilB protein is composed of three domains. The central and the C-terminal domains display methionine sulfoxide reductase A and B activities, respectively. The N-terminal domain, which possesses a CXXC motif, was recently shown to regenerate in vitro the reduced forms of the methionine sulfoxide reductase domains of PilB from their oxidized forms, as does the thioredoxin 1 from E. coli, via a disulfide bond exchange. The thioredoxin-like N-terminal domain belongs to the cytochrome maturation protein structural family, but it possesses a unique additional segment (99)FLHE (102) localized in a loop. This segment covers one edge of the active site in the crystal structure of the reduced form of the N-terminal domain of PilB. We have determined the solution structure and the dynamics of the N-terminal domain from Neisseria meningitidis, in its reduced and oxidized forms. The FLHE loop adopts, in both redox states, a well-defined conformation. Subtle conformational and dynamic changes upon oxidation are highlighted around the active site, as well as in the FLHE loop. The functional consequences of the cytochrome maturation protein topology and those of the presence of FLHE loop are discussed in relation to the enzymatic properties of the N-terminal domain. 相似文献
7.
The dynamics of the backbone of the electron-transfer protein plastocyanin from the cyanobacterium Anabaena variabilis were determined from the (15)N and (13)C(alpha) R(1) and R(2) relaxation rates and steady-state [(1)H]-(15)N and [(1)H]-(13)C nuclear Overhauser effects (NOEs) using the model-free approach. The (13)C relaxation studies were performed using (13)C in natural abundance. Overall, it is found that the protein backbone is rigid. However, the regions that are important for the function of the protein show moderate mobility primarily on the microsecond to millisecond time scale. These regions are the "northern" hydrophobic site close to the metal site, the metal site itself, and the "eastern" face of the molecule. In particular, the mobility of the latter region is interesting in light of recent findings indicating that residues also on the eastern face of plastocyanins from prokaryotes are important for the function of the protein. The study also demonstrates that relaxation rates and NOEs of the (13)C(alpha) nuclei of proteins are valuable supplements to the conventional (15)N relaxation measurements in studies of protein backbone dynamics. 相似文献
8.
Coelho C González PJ Moura JG Moura I Trincão J João Romão M 《Journal of molecular biology》2011,408(5):932-948
The periplasmic nitrate reductase (NapAB) from Cupriavidus necator is a heterodimeric protein that belongs to the dimethyl sulfoxide reductase family of mononuclear Mo-containing enzymes and catalyzes the reduction of nitrate to nitrite. The protein comprises a large catalytic subunit (NapA, 91 kDa) containing the molybdenum active site plus one [4Fe-4S] cluster, as well as a small subunit (NapB, 17 kDa), which is a diheme c-type cytochrome involved in electron transfer. Crystals of the oxidized form of the enzyme diffracted beyond 1.5 Å at the European Synchrotron Radiation Facility. This is the highest resolution reported to date for a nitrate reductase, providing true atomic details of the protein active center, and this showed further evidence on the molybdenum coordination sphere, corroborating previous data on the related Desulfovibrio desulfuricans NapA. The molybdenum atom is bound to a total of six sulfur atoms, with no oxygen ligands or water molecules in the vicinity. In the present work, we were also able to prepare partially reduced crystals that revealed two alternate conformations of the Mo-coordinating cysteine. This crystal form was obtained by soaking dithionite into crystals grown in the presence of the ionic liquid [C4mim]Cl−. In addition, UV-Vis and EPR spectroscopy studies showed that the periplasmic nitrate reductase from C. necator might work at unexpectedly high redox potentials when compared to all periplasmic nitrate reductases studied to date. 相似文献
9.
M Roncel M Hervás J A Navarro M A De la Rosa G Tollin 《European journal of biochemistry》1990,191(3):531-536
In order to compare the oxidation and reduction reactions of c-type cytochromes (cytochrome c552 from the green alga Monoraphidium braunii and horse heart cytochrome c) by different flavins (lumiflavin, riboflavin and FMN), laser flash photolysis studies have been carried out using either reduced or oxidized protein in the presence of triplet or semiquinone flavin, respectively. The reaction kinetics clearly demonstrate that cytochrome oxidation is mediated by the flavin triplet state. The rate constants for reduction are 20-100 times smaller than those for oxidation, indicating that the triplet state is a more effective reactant than is the semiquinone. This is attributed to its excited state nature and correspondingly high free energy content. The rate constants for both the reduction and oxidation of cytochrome c552 by riboflavin are significantly smaller than those obtained with lumiflavin, suggesting a steric interference of the ribityl side chain in the flavin-cytochrome interaction. The comparison between oxidation and reduction indicates that the former process is less affected by steric hindrance than the latter. Both reduction and oxidation of cytochrome c552 by FMN show an ionic strength dependence with the same sign, consistent with a negatively charged reaction site on the cytochrome. The magnitude of the electrostatic effect is slightly smaller for reduction than it is for oxidation. A pattern quite similar to that observed with cytochrome c552 was obtained when parallel experiments were carried out with horse cytochrome c, although differences were observed in the steric and electrostatic properties of the electron transfer site(s) in these two cytochromes. These results suggest that the same or closely adjacent sites on the proteins are involved in the oxidation and reduction reactions. The biochemical implications of this are discussed. 相似文献
10.
Reincke B Pérez C Pristovsek P Lücke C Ludwig C Löhr F Rogov VV Ludwig B Rüterjans H 《Biochemistry》2001,40(41):12312-12320
A soluble and fully functional 10.5 kDa fragment of the 18.2 kDa membrane-bound cytochrome c(552) from Paracoccus denitrificans has been heterologously expressed and (13)C/(15)N-labeled to study the structural features of this protein in both redox states. Well-resolved solution structures of both the reduced and oxidized states have been determined using high-resolution heteronuclear NMR. The overall protein topology consists of two long terminal helices and three shorter helices surrounding the heme moiety. No significant redox-induced structural differences have been observed. (15)N relaxation rates and heteronuclear NOE values were determined at 500 and 600 MHz. Several residues located around the heme moiety display increased backbone mobility in both oxidation states, while helices I, III, and V as well as the two concatenated beta-turns between Leu30 and Arg36 apparently form a less flexible domain within the protein structure. Major redox-state-dependent differences of the internal backbone mobility on the picosecond-nanosecond time scale were not evident. Hydrogen exchange experiments demonstrated that the slow-exchanging amide proton resonances mainly belong to the helices and beta-turns, corresponding to the regions with high order parameters in the dynamics data. Despite this correlation, the backbone amide protons of the oxidized cytochrome c(552) exchange considerably faster with the solvent compared to the reduced protein. Using both differential scanning calorimetry as well as temperature-dependent NMR spectroscopy, a significant difference in the thermostabilities of the two redox states has been observed, with transition temperatures of 349.9 K (76.8 degrees C) for reduced and 307.5 K (34.4 degrees C) for oxidized cytochrome c(552). These results suggest a clearly distinct backbone stability between the two oxidation states. 相似文献
11.
Annika Wagner Erika Diehl R. Luise Krauth-Siegel Ute A. Hellmich 《Biomolecular NMR assignments》2017,11(2):193-196
Tryparedoxin (Tpx) is a pivotal protein in the redox-metabolism of trypanosomatid parasites. Tpx has previously been identified as a potential target for drug development in the fight against human African sleeping sickness caused by Trypanosoma brucei. Tpx belongs to the thioredoxin superfamily and acts as an oxidoreductase in the parasite’s cytoplasm. It contains a WCPPC active site motif, which enables the protein to undergo thiol-disulfide exchange. To promote future protein-drug interaction analyses, we report the 1H, 13C and 15N backbone chemical shift assignments for both the oxidized and reduced states of Tpx. The redox state of the protein has a significant impact on the chemical shifts of the residues at the active site of the protein, especially on the two redox active site cysteines. The NMR assignments presented here will be a prerequisite for investigating drug binding to Tpx in molecular detail and to drive further drug optimization. 相似文献
12.
F Arnesano L Banci I Bertini I C Felli D Koulougliotis 《European journal of biochemistry》1999,260(2):347-354
Cytochrome b5 in solution has two isomers (A and B) differing by a 180 degrees rotation of the protoporphyrin IX plane around the axis defined by the alpha and gamma meso protons. Homonuclear and heteronuclear NMR spectroscopy has been employed in order to solve the solution structure of the minor (B) form of the oxidized state of the protein and to probe its backbone dynamics in the microsecond--ms timescale in both oxidation states. A family of 40 conformers has been obtained using 1302 meaningful NOEs and 220 pseudocontact shifts and is characterized by high quality and good resolution (rmsd to the mean structure of 0.055 +/- 0.009 nm and 0.103 +/- 0.011 nm for backbone and heavy atoms, respectively). Extensive comparisons of the structural and dynamics changes associated with the A-to-B form interconversion for both oxidation states were subsequently performed. Propionate 6 experiences a redox-state-dependent reorientation as does propionate 7 in the A form. Significant insights are obtained into the role of the protein frame for efficient biological function and backbone mobility is proposed to be one of the factors that could control the reduction potential of the heme. 相似文献
13.
A covalently bound adduct of nicotinamide adenine dinucleotide (NAD) with alginic acid has been found to be enzymatically active and to undergo electrochemical oxidation or reduction without significant loss of its enzymatic activity. The preparation of the adduct itself (from NAD+, alginic acid, and 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate) is also accomplished with substantially complete retention of enzymatic activity. This adduct has been converted from the oxidized to the reduced form by controlled potential electrolysis using mercury and stainless-steel electrodes. This electrolytically produced NADH complex could be oxidized again to the enzymatically active NAD+ complex by enzymatic reaction with the proton acceptor, 2,6-dichlorophenol indophenol, as catalyzed by diaphorase. Using this electrolytic method with immobilized NAD, it is now possible to carry out redox reactions in which NADH is enzymatically oxidized to NAD+, with the simultaneous electrolytic regeneration of the reduced form, NADH, from the oxidized form, NAD+, produced in the enzymatic reaction. 相似文献
14.
NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins. 下载免费PDF全文
T. H. Xia J. H. Bushweller P. Sodano M. Billeter O. Bjrnberg A. Holmgren K. Wüthrich 《Protein science : a publication of the Protein Society》1992,1(3):310-321
The determination of the NMR structure of oxidized Escherichia coli glutaredoxin in aqueous solution is described, and comparisons of this structure with that of reduced E. coli glutaredoxin and the related proteins E. coli thioredoxin and T4 glutaredoxin are presented. Based on nearly complete sequence-specific 1H-NMR assignments, 804 nuclear Overhauser enhancement distance constraints and 74 dihedral angle constraints were obtained as the input for the structure calculations, for which the distance geometry program DIANA was used followed by simulated annealing with the program X-PLOR. The molecular architecture of oxidized glutaredoxin is made up of three helices and a four-stranded beta-sheet. The three-dimensional structures of oxidized and the recently described reduced glutaredoxin are very similar. Quantitative analysis of the exchange rates of 34 slowly exchanging amide protons from corresponding series of two-dimensional [15N,1H]-correlated spectra of oxidized and reduced glutaredoxin showed close agreement, indicating almost identical hydrogen-bonding patterns. Nonetheless, differences in local dynamics involving residues near the active site and the C-terminal alpha-helix were clearly manifested. Comparison of the structure of E. coli glutaredoxin with those of T4 glutaredoxin and E. coli thioredoxin showed that all three proteins have a similar overall polypeptide fold. An area of the protein surface at the active site containing Arg 8, Cys 11, Pro 12, Tyr 13, Ile 38, Thr 58, Val 59, Pro 60, Gly 71, Tyr 72, and Thr 73 is proposed as a possible site for interaction with other proteins, in particular ribonucleotide reductase. It was found that this area corresponds to previously proposed interaction sites in T4 glutaredoxin and E. coli thioredoxin. The solvent-accessible surface area at the active site of E. coli glutaredoxin showed a general trend to increase upon reduction. Only the sulfhydryl group of Cys 11 is exposed to the solvent, whereas that of Cys 14 is buried and solvent inaccessible. 相似文献
15.
Weixia Liu Jon N. Rumbley S. Walter Englander A. Joshua Wand 《Protein science : a publication of the Protein Society》2009,18(3):670-674
The sub‐nanosecond structural dynamics of reduced and oxidized cytochrome c were characterized. Dynamic properties of the protein backbone measured by amide 15N relaxation and side chains measured by the deuterium relaxation of methyl groups change little upon change in the redox state. These results imply that the solvent reorganization energy associated with electron transfer is small, consistent with previous theoretical analyses. The relative rigidity of both redox states also implies that dynamic relief of destructive electron transfer pathway interference is not operational in free cytochrome c. 相似文献
16.
P Pristovsek C Lücke B Reincke B Ludwig H Rüterjans 《European journal of biochemistry》2000,267(13):4205-4212
In order to determine the solution structure of Paracoccus denitrificans cytochrome c552 by NMR, we cloned and isotopically labeled a 10.5-kDa soluble fragment (100 residues) containing the functional domain of the 18.2-kDa membrane-bound protein. Using uniformly 15N-enriched samples of cytochrome c552 in the reduced state, a variety of two-dimensional and three-dimensional heteronuclear double-resonance NMR experiments was employed to achieve complete 1H and 15N assignments. A total of 1893 distance restraints was derived from homonuclear 2D-NOESY and heteronuclear 3D-NOESY spectra; 1486 meaningful restraints were used in the structure calculations. After restrained energy minimization a family of 20 structures was obtained with rmsd values of 0.56 +/- 0. 10 A and 1.09 +/- 0.09 A for the backbone and heavy atoms, respectively. The overall topology is similar to that seen in previously reported models of this class of proteins. The global fold consists of two long helices at the N-terminus and C-terminus and three shorter helices surrounding the heme moiety; the helices are connected by well-defined loops. Comparison with the X-ray structure shows some minor differences in the positions of the Trp57 and Phe65 side-chain rings as well as the heme propionate groups. 相似文献
17.
An optimized g-tensor for Rhodobacter capsulatus cytochrome c2 in solution: a structural comparison of the reduced and oxidized states. 下载免费PDF全文
D. Zhao H. M. Hutton M. A. Cusanovich N. E. MacKenzie 《Protein science : a publication of the Protein Society》1996,5(9):1816-1825
The optimized g-tensor parameters for the oxidized form of Rhodobacter capsulatus cytochrome c2 in solution were obtained using a set (50) of backbone amide protons. Dipolar shifts for more than 500 individual protons of R. capsulatus cytochrome c2 have been calculated by using the optimized g-tensor and the X-ray crystallographic coordinates of the reduced form of R. capsulatus cytochrome c2. The calculated results for dipolar shifts are compared with the observed paramagnetic shifts. The calculated and the observed data are in good agreement throughout the entire protein, but there are significant differences between calculated and experimental results localized to the regions in the immediate vicinity of the heme ligand and the region of the front crevice of the protein (residues 44-50, 53-57, and 61-68). The results not only indicate that the overall solution structures are very similar in both the reduced and oxidized states, but that these structures in solution are similar to the crystal structure. However, there are small structural changes near the heme and the rearrangement of certain residues that result in changes in their hydrogen bonding concomitant with the change in the oxidation states; this was also evident in the data for the NH exchange rate measurements for R. capsulatus cytochrome c2. 相似文献
18.
E L Gross J E Draheim A S Curtiss B Crombie A Scheffer B Pan C Chiang A Lopez 《Archives of biochemistry and biophysics》1992,298(2):413-419
The thermal stability of plastocyanin (PC) was determined as a function of oxidation state of the copper center and the presence of oxidants, reductants, oxygen, and EDTA. It was found that the copper center and its ligands play a crucial role in maintaining the stability of PC. Thermal denaturation was monitored by using far-uv circular dichroism (CD) spectra to monitor changes in secondary structure, the near-uv CD ellipticity at 280 nm to monitor changes in tertiary structure, and the absorbance at 597 nm and the 255-nm CD transition to monitor changes in the copper center. Reduced PC (Tm = 71 degrees C) was found to be more stable than the oxidized form (Tm = 61 degrees C). The Tm was increased by addition of reductants, removal of oxygen, or addition of EDTA. Two distinct denatured forms (designated D1 and D2) were separated by anion exchange fast protein liquid chromatography. Neither form contained a native copper center. Form D2 retained the characteristic 280-nm CD band but showed an altered far-uv CD spectrum. Its formation was inhibited by the addition of reductants or the removal of oxygen. It could be refolded to form native, Cu-PC upon incubation with copper plus a reductant such as dithionite. These results suggest that its formation involves the reversible oxidation of a group on the PC molecule, possibly a ligand to the copper such as Cys 84 or Met 92. Form D1 occurred in the presence of ferricyanide or at high temperatures in the presence of oxygen. EDTA inhibited its formation. Form D1 lost the 280-nm CD transition and its far-uv CD spectrum was altered. No renaturation was observed suggesting that Form D1 is the product of an irreversible oxidation step possibly involving a histidine ligand to the copper. Forms D1 and D2 are not interconvertible and represent the endpoints of two different denaturation pathways. 相似文献
19.
Shareef Shaheen Kayleigh F. Barrett Sandhya Subramanian Samuel L. M. Arnold Joseph A. Laureanti Peter J. Myler Wesley C. Van Voorhis Garry W. Buchko 《Protein science : a publication of the Protein Society》2020,29(3):809-817
Encephalitozoon cuniculi is a unicellular, obligate intracellular eukaryotic parasite in the Microsporidia family and one of the agents responsible for microsporidosis infections in humans. Like most Microsporidia, the genome of E. cuniculi is markedly reduced and the organism contains mitochondria‐like organelles called mitosomes instead of mitochondria. Here we report the solution NMR structure for a protein physically associated with mitosome‐like organelles in E. cuniculi, the 128‐residue, adrenodoxin‐like protein Ec‐Adx (UniProt ID Q8SV19) in the [2Fe‐2S] ferredoxin superfamily. Oxidized Ec‐Adx contains a mixed four‐strand β‐sheet, β2‐β1‐β4‐β3 (↓↑↑↓), loosely encircled by three α‐helices and two 310‐helices. This fold is similar to the structure observed in other adrenodoxin and adrenodoxin‐like proteins except for the absence of a fifth anti‐parallel β‐strand next to β3 and the position of α3. Cross peaks are missing or cannot be unambiguously assigned for 20 amide resonances in the 1H‐15N HSQC spectrum of Ec‐Adx. These missing residues are clustered primarily in two regions, G48‐V61 and L94‐L98, containing the four cysteine residues predicted to ligate the paramagnetic [2Fe‐2S] cluster. Missing amide resonances in 1H‐15N HSQC spectra are detrimental to NMR‐based solution structure calculations because 1H‐1H NOE restraints are absent (glass half‐empty) and this may account for the absent β‐strand (β5) and the position of α3 in oxidized Ec‐Adx. On the other hand, the missing amide resonances unambiguously identify the presence, and immediate environment, of the paramagnetic [2Fe‐2S] cluster in oxidized Ec‐Adx (glass half‐full). 相似文献
20.
Superoxide reductase (SOR) is a blue non-heme iron protein that functions in anaerobic microbes as a defense mechanism against reactive oxygen species by catalyzing the reduction of superoxide to hydrogen peroxide [Jenney, F. E., Jr., Verhagen, M. F. J. M., Cui, X. , and Adams, M. W. W. (1999) Science 286, 306-309]. Crystal structures of SOR from the hyperthermophilic archaeon Pyrococcus furiosus have been determined in the oxidized and reduced forms to resolutions of 1.7 and 2.0 A, respectively. SOR forms a homotetramer, with each subunit adopting an immunoglobulin-like beta-barrel fold that coordinates a mononuclear, non-heme iron center. The protein fold and metal center are similar to those observed previously for the homologous protein desulfoferrodoxin from Desulfovibrio desulfuricans [Coelho, A. V., Matias, P., Fül?p, V., Thompson, A., Gonzalez, A., and Carrondo, M. A. (1997) J. Bioinorg. Chem. 2, 680-689]. Each iron is coordinated to imidazole nitrogens of four histidines in a planar arrangement, with a cysteine ligand occupying an axial position normal to this plane. In two of the subunits of the oxidized structure, a glutamate carboxylate serves as the sixth ligand to form an overall six-coordinate, octahedral coordinate environment. In the remaining two subunits, the sixth coordination site is either vacant or occupied by solvent molecules. The iron centers in all four subunits of the reduced structure exhibit pentacoordination. The structures of the oxidized and reduced forms of SOR suggest a mechanism by which superoxide accessibility may be controlled and define a possible binding site for rubredoxin, the likely physiological electron donor to SOR. 相似文献