首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forskolin, a reversible stimulator of the catalytic subunit of adenylate cyclase, has been used to determine: whether an increase in hamster cumulus cell cyclic adenosine monophosphate (cAMP) results in an elevation of intraoocyte cAMP and an accompanying increase in the maintenance of meiotic arrest (%GV where GV is germinal vesicle) when heterologous coupling is maintained, whether the hamster oolemma possesses the catalytic subunit of adenylate cyclase in an amount adequate to stimulate sufficient cAMP synthesis to maintain arrest, and whether release from meiotic arrest is accompanied by a decrease in the content of intraoocyte cAMP. Intracellular cAMP was determined by RIA, functional metabolic coupling was assessed by determination of the fraction of radiolabeled uridine marker transferred from the cumulus mass to the oocyte, and meiotic stage was determined cytogenetically. While the %GV of both cumulus-enclosed (intact) and cumulus-free (denuded) oocytes was dose-dependent upon forskolin, that of intact oocytes was much more sensitive to the drug (intact: ID50 3.4 microM; denuded: ID50 65.0 microM, where ID50 is the dose of forskolin that inhibits the maturation of 50% of cultured oocytes). Forskolin stimulated a significant, dose-dependent increase in the amount of cAMP within the cumulus mass [(r) = 0.789, P less than 0.001)], the intact oocyte [(r) = 0.715, P less than 0.001], and the denuded oocyte [(r) = 0.673, P less than 0.01)]. The cAMP content of intact oocytes was significantly greater than that of denuded oocytes above 6.25 microM forskolin (25 microM forskolin: 9.28 +/- 1.01 vs. 3.98 +/- 0.15 fmol cAMP, intact and denuded oocytes, respectively; P less than 0.001, paired t test). A highly significant positive correlation was established between the amount of cAMP in groups of cumulus masses and that in the corresponding enclosed oocytes [(r) = 0.635, P less than 0.001]. The enhanced sensitivity of meiotic arrest in intact, as compared to denuded, oocytes was due to the presence of adherent cumulus cells but was not attributable to a significant increase in the cAMP content of intact oocytes (at 6.25 microM forskolin; %GV intact = 73.0 +/- 10.7, denuded = 20.3 +/- 7.4; fmol cAMP intact = 5.02 +/- 1.50; denuded = 4.63 +/- 0.81). The arresting action of forskolin on intact oocytes was transient and fully reversible, but release from arrest was not accompanied by a decrease in either intraoocyte cAMP or heterologous metabolic coupling.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Forskolin induced biphasic responses of cumulus progesterone secretion (determined by RIA) and cumulus mass expansion, with maximal increases occurring at 6.25 microns, and subsequent dose-dependent declines observed up to 10 microns-forskolin. The diterpene induced dose-dependent responses in the % germinal vesicle (GV) of cumulus-enclosed and denuded oocytes (0.23 and 4.84 microns maintained 50% GV, respectively), it increased the cAMP content of cumulus masses, cumulus-enclosed oocytes and denuded oocytes, and increased heterologous metabolic coupling (determined by measuring transfer of radiolabelled uridine marker from the cumulus mass to the oocyte). A significant correlation was established between the amount of cAMP within the cumulus mass and that in the corresponding oocyte (r = 0.58). Above 10 microns-forskolin, the cAMP content of cumulus-enclosed oocytes was significantly greater than that of denuded oocytes (100 microns-forskolin: 0.118 +/- 0.082 and 0.006 +/- 0.001 pmol/oocyte respectively; P less than 0.001, paired t test), and the enhanced arresting action of forskolin upon cumulus-enclosed oocytes was correlated with an increase in intra-oocyte cAMP. Maintenance of meiotic arrest and stimulation of oocyte-cumulus cAMP were reversible. During 48 h of culture, the arresting action of forskolin (50 microns) was maintained on denuded and cumulus-enclosed oocytes but heterologous metabolic coupling significantly declined. The cAMP content of the cumulus mass and corresponding oocyte significantly declined, while that of the denuded oocyte remained unchanged. The cAMP content of arrested cumulus-enclosed oocytes cultured for 48 h in 50 microns-forskolin was significantly greater than that of maturing oocytes cultured for 24 h in 50 microns-forskolin and then for 24 h in control medium. These results show that (1) forskolin stimulates progesterone secretion and expansion of pig cumuli, but at high doses the drug inhibits these functions while cumulus cAMP remains elevated; (2) when heterologous metabolic coupling is maintained, cumulus cAMP may be transferred to the oocyte; (3) the pig oocyte can synthesize cAMP; and (4) forskolin-maintenance of meiotic arrest of pig oocytes is correlated with elevated intra-oocyte cAMP but a 'factor' other than cAMP is also involved in maintenance of meiotic arrest.  相似文献   

3.
We have recently reported that the adenylate cyclase activator, forskolin, induces in the rat ovarian follicle both cAMP accumulation and oocyte maturation. We demonstrate here, on the other hand, that the spontaneous maturation in vitro of isolated rat cumulus-enclosed oocytes is inhibited by forskolin. The inhibitory effect of forskolin is dose dependent with an ED50 at 15 microM. Forskolin inhibition decreases gradually with time, being completely relieved by 20 h of culture. Methylisobutylxanthine significantly prolongs the duration of the inhibitory action of forskolin. In addition to its inhibitory effect on oocyte maturation, forskolin triggers the cumulus-oocyte complex to generate cAMP. Cyclic AMP accumulation is maximally stimulated by 100 microM of forskolin with an ED50 at 60 microM. The potency of the cumulus-oocyte complex to respond to forskolin in terms of cAMP accumulation decreases with time. The pattern of the decrease in the potency of the cumulus-oocyte complexes to generate cAMP corresponds with the relief of its inhibitory influence on the oocyte. These results indicate that inhibition of maturation of the cumulus-enclosed oocyte may be coupled to elevation of cAMP levels in the cumulus-oocyte complex. As isolated cumulus-free oocytes are not inhibited by forskolin, we suggest that in the cumulus-enclosed oocyte system, cAMP generated by the cumulus cells is apparently transferred to the oocyte and maintains it in a meiotically arrested state. Maturation in this system occurs upon relief of inhibition which results from cessation of cAMP generation by the cumulus cells.  相似文献   

4.
The effect of increasing cytoplasmic calcium on cyclic adenosine monophosphate (cAMP)-dependent meiotic arrest (%GV where GV is germinal vesicle) in hamster oocytes was investigated. The hypotheses tested were that calcium is required for the spontaneous maturation of hamster oocytes, elevation of calcium in the oocyte-cumulus complex can antagonize cAMP-dependent meiotic arrest, and the intraoocyte level of cAMP remains unchanged, but heterologous metabolic coupling decreases, concomitant with calcium-stimulation of germinal vesicle breakdown (GVBD). Levels of cAMP were elevated by culturing cells in the presence of dibutyryl cAMP (dbcAMP), isobutylmethylxanthine (IBMX) or forskolin and intracellular levels of calcium were manipulated by altering the CaCl2 concentration in the medium and/or by utilizing EGTA or A23187. Intracellular cAMP was determined by RIA, functional metabolic coupling was assessed by determination of the fraction of radiolabeled uridine marker transferred from the cumulus mass to the oocyte, and meiotic stage was determined cytogenetically. Compared with the proportion of oocytes that underwent meiotic maturation in control medium containing 1.53 mM CaCl2, that of cumulus-free (denuded) oocytes was unaffected by culture in the absence of added CaCl2, while that of cumulus-enclosed (intact) oocytes was significantly decreased (%GV = 59.5 +/- 4.8 and 4.2 +/- 0.9 in 0 and 1.53 mM CaCl2, respectively, P less than 0.001, where GV is germinal vesicle). EGTA prevented, in a dose-dependent manner, the spontaneous maturation of denuded oocytes that occurred in 0 mM CaCl2 (ID50 = 0.05 mM, where ID50 is the dose of EGTA that inhibited GVBD in 50% cultured oocytes). In contrast, compared with the control, less than 1 mM EGTA failed to increase the %GV of intact oocytes, although 5 mM EGTA significantly increased meiotic arrest. The %GVBD of oocytes cultured in medium containing 0 mM CaCl2 was dose-dependent on A23187 for both intact oocytes (ID50 = 3.0 microM) and for denuded oocytes cultured in the presence of 0.5 mM EGTA (ID50 = 2.7 microM). Elevated extracellular calcium significantly antagonized dbcAMP-maintained meiotic arrest in both types of oocyte and the %GV was significantly correlated with the pH of the medium [(r) = -0.78 and -0.60 for intact and denuded oocytes, respectively, P less than 0.001 in both cases]. Both CaCl2 and A23187 induced dose-dependent antagonistic effects on forskolin-maintained meiotic arrest in intact oocytes but neither antagonism was accompanied by significant dose-dependent decreases in either the intraoocyte content of cAMP or the extent of heterologous metabolic coupling.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Stimulation and inhibition of rat oocyte meiosis by forskolin   总被引:2,自引:0,他引:2  
The adenylate cyclase activator forskolin was used to study the role of cAMP for oocyte meiosis and follicular steroid secretion. Follicular and cumulus cAMP production was stimulated dose-dependently by forskolin, as was the follicular secretion of progesterone, testosterone and estradiol. Forskolin induced meiosis in follicle-enclosed oocytes with a maximal effect at 1 microM, with lower and higher concentrations being less effective. The spontaneous resumption of meiosis in isolated cumulus-enclosed oocytes was dose-dependently retarded by forskolin. Meiosis of cumulus-free oocytes was also retarded but only slightly. These data support the earlier hypothesis that a limited increase in follicular cAMP levels triggers meiosis, whereas sustained levels of cAMP in the oocyte itself prevent meiosis.  相似文献   

6.
Sirard MA 《Theriogenology》1990,33(4):757-767
This experiment was designed to analyze the effect of adenylate cyclase stimulation on cumulus-enclosed immature oocytes. More than 1400 selected (complete and unexpanded cumulus) oocytes from follicles 1 to 5 mm in diameter were recovered from ovaries obtained at slaughter and cultured for 24 h in TCM-199+10% fetal calf serum (FCS), with or without the adenylate cyclase stimulator, and in the presence or absence of bovine follicular fluid (BFF, 50%), or in complete BFF. In a second set of experiments, oocytes treated for 24 h were further cultured for a second 24 h with TCM-FCS alone. Oocytes were classified as germinal vesicle (G); intermediate (I; up to Metaphase I); matured (M; Anaphase I to Metaphase II); or degenerated (D), and cumulus expansion was evaluated. Products used were sodium fluoride (NaF), isobutylmethylxanthine (IBMX), adenosine (ADE) and forskolin (FK), all known to stimulate accumulation of cAMP in cells without the involvement of a hormone receptor except for adenosine, which acts as a substrate or as an agonist. The results indicate that NaF (0.01 M), IBMX (0.2 mM), FK (0.1 mM) and complete BFF can significantly reduce the proportion of oocytes reaching the mature state. Combination of NaF or FK to BFF (50%) are also effective at the significant level. Cumulus expansion was always limited when meiotic progress was affected or when adenosine was present in the culture media. When oocytes were cultured for a second 24 h in the control media, only NaF had a significant residual effect, but many oocytes were showing degenerative changes after the second incubation period. This method provides a new means to block oocyte nuclear maturation.  相似文献   

7.
Forskolin and mouse oocyte maturation in vitro   总被引:1,自引:0,他引:1  
Oocytes isolated from mature follicles undergo spontaneous maturation when cultured in vitro. Forskolin, an adenylate cyclase stimulator, inhibited resumption of meiosis of cumulus-free mouse oocytes in vitro. Germinal vesicle breakdown (GVBD) was prevented in more than 85% of the oocytes treated by forskolin at concentrations of 20 micrograms/ml and higher. The inhibiting effect of forskolin was dose-dependent and reversible. FSH, LH, FSH plus LH, estrogen, progesterone, and estrogen plus progesterone did not reverse the block induced by forskolin in cumulus-free and cumulus-enclosed oocytes. The present results suggest that intracellular cAMP may play a role in the regulation of oocyte maturation.  相似文献   

8.
Bovine oocytes are arrested at the prophase of first meiotic cell cycle. Meiosis resumes in oocytes of pre-ovulatory follicles upon LH surge. However, oocytes from secondary follicles spontaneously resume meiosis in the absence of hormones if removed from the follicle and cultured in vitro. The nature of meiotic arrestor in bovine follicles is poorly understood. In this study we investigated the role of cell-cell interactions between granulosa and cumulus cells and the oocyte in mediating maintenance of meiotic arrest by cAMP. We sorted oocytes as granulosa-cumulus oocyte complexes (GCOC) if surrounded with cumulus cells attached to a large granulosa investment or cumulus oocytes complexes (COC) if surrounded with cumulus cells only and investigated the role cAMP in maintenance of meiotic arrest in these oocytes under various conditions. In hormone- and serum-free medium both GCOC and COC enclosed oocytes resumed meiosis. When [cAMP](i) was elevated with addition of invasive adenylate cyclase (iAC) GCOC enclosed oocytes were maintained in the prophase with intact germinal vesicle (GV) while COC enclosed oocytes underwent GV breakdown (GVBD). iAC elevated [cAMP](i) in both types of oocytes to the same level. If oocytes were liberated from the cumulus and granulosa cells, they re-initiated meiosis in serum and hormone free medium, but remained in the GV stage if iAC was added to the medium. Untreated GCOC and COC enclosed oocytes extruded first polar body at the same frequency in hormone-supplemented media. GCOC and COC enclosed oocytes but not denuded oocytes (DO) cultured without somatic cells acquired developmental competence if cultured in hormone-containing medium. It is concluded that maintenance of meiotic arrest is regulated by the interplay of [cAMP](i), and cumulus and granulosa cells.  相似文献   

9.
The rate of spontaneous meiotic maturation and the period of commitment to this process were determined in bovine oocytes devoid of surrounding cumulus cells, cultured in chemically defined medium with bovine serum albumin in the absence of serum. The effects of compounds that are known to elevate levels of intracellular cyclic adenosine monophosphate (cAMP) on the resumption and progression of meiosis were investigated. Bovine oocytes were mass-harvested, denuded of cumulus cells, and cultured in 2A-BMOC medium supplemented with 0.5% bovine serum albumin. Intracellular cAMP levels were indirectly modified using 8-bromo-cAMP, dibutyryl cAMP (dbcAMP), forskolin, or 3-isobutyl-1-methyl xanthine (IBMX). Meiotic maturation was scored cytogenetically. Ninety percent of denuded bovine oocytes mature after 24 h, with 65% progressing beyond anaphase I. These oocytes remain at the germinal vesicle (GV) stage for up to 8 h in culture. GV breakdown (GVBD) occurs in 40.5% of oocytes at 9 h. The peak times for the different meiotic stages were 12 h for diakinesis, 15 h for late diakinesis to metaphase I, 20 h for metaphase I, and 24 h for telophase I. By 48 h, most had reached metaphase II. There is a 2-h lag period between the time at which they become irreversibly committed to mature (at 7 h) and when they demonstrate GVBD (at 9 h). Incubation for 12 h with high concentrations of 8-bromo-cAMP and forskolin significantly inhibited GVBD, while the effect of dbcAMP was similar but less pronounced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The time course of in vitro red deer nuclear oocyte maturation was determined. Ovaries were obtained at slaughter and oocytes were aspirated from follicles greater than 2mm in diameter. Oocytes with compact cumulus cells were matured in 50 microl microdrops (10 per drop) under mineral oil containing TCM 199 supplemented with 0.33 mM pyruvate, 10 microg LH and FSH, 1 microg oestradiol and 10% foetal bovine serum. Oocytes were matured at 39 degrees C and 5% CO(2) in air. At 3h intervals (0-27 h) oocytes were removed from incubation, cumulus expansion scored and removed, and fixed oocytes in ethanol:acetic acid (3:1) for 48 h. Oocytes were stained with lacmoid (1%) and nuclear maturation assessed. Oocytes were arrested in the germinal vesicle (GV) stage at aspiration and up to 6h of incubation. The nuclear membrane began to disperse after 6h and by 10.6+/-0.6h of incubation 75% of the oocytes exhibited germinal vesicle breakdown (GVBD). The mean time for 50% of the oocytes to reach metaphase one (MI) and metaphase two (MII) was 11.7+/-0.4 and 24.8+/-0.9h, respectively. Cumulus oophorus were tightly compacted at aspiration and did not begin expansion until 12h of culture. Full expansion was complete by 18 h of culture. Corona radiata cells did not begin expansion until 15 h and were fully expanded by 24h. Results indicate that in vitro red deer oocyte maturation follows a similar time course of nuclear maturation as reported for bovine and ovine oocytes.  相似文献   

11.
12.
The maturation of brittle-star (Amphipholis kochii) oocytes, i.e., the reinitiation of meiosis accompanied by germinal vesicle breakdown (GVBD) and the acquisition of fertilizability, was induced by acid (pH 3.0) seawater containing 10 mM cAMP. Oocyte maturation was also induced by seawater of normal pH (pH 8.0) that contained either an inhibitor of cyclic nucleotide phosphodiesterase (25 mM theophylline, 25 mM caffeine) or an activator of adenylate cyclase (100 microM forskolin, 0.6 microM cholera toxin). Experiments in which the oocytes were treated with forskolin or theophylline for various periods of time demonstrated that there was a positive correlation between the oocyte cAMP level measured by radioimmunoassay and the extent of GVBD induced in each treatment: both increased as the treatment period became longer and about a threefold increase in cAMP level induced 50% GVBD. These results indicate that an increase in cAMP level initiates maturation of the brittle-star oocytes.  相似文献   

13.
cAMP synthesis by the rat oocyte and cumulus-oocyte complex was studied using direct labeling techniques. Cumulus-oocyte complexes synthesized cAMP in response to luteinizing hormone, follicle-stimulating hormone, cholera toxin, and forskolin. However, naked oocytes prepared from cumulus-oocyte complexes by mechanically removing the cumulus cells synthesized cAMP only in response to forskolin and follicle-stimulating hormone; cholera toxin and luteinizing hormone did not stimulate cAMP synthesis. Cholera toxin could augment the response of the oocytes to FSH, indicating an intact, though atypical, adenylate cyclase system. Forskolin was found to inhibit the onset of oocyte maturation in both cumulus-oocyte complexes and naked oocytes. The implications of these findings for the relationship between cAMP synthesis and oocyte maturation in the rat are discussed.  相似文献   

14.
We have reported that in vitro treatment with follicle-stimulating hormone (FSH) delays by about 3 h spontaneous meiotic resumption in cumulus cell-enclosed mouse oocytes. In the present paper we show that the temporary meiotic block is accompanied by a transient increase of cAMP concentration in the oocyte. In cumulus cell-oocyte complexes stimulated with 1 microgram/ml FSH, cAMP significantly increases within 1 h both in the whole complex (from a basal value of 1.9 +/- 0.2 to 169 +/- 13 fmol) and in the enclosed oocyte (from 0.9 +/- 0.2 to 2.4 +/- 0.2 fmol), then progressively decreases to basal values. Stimulation by FSH does not cause any cAMP increase in denuded oocytes. As the concentration of cAMP in the cells decreases, the percentage of oocytes escaping the meiotic block imposed by FSH increases. If the complexes are cultured in the presence of 1 microgram/ml FSH plus 1 mM isobutyl-1-methylxanthine (1BMX), cAMP concentration increases approximately 250-fold in the complex, and 10-fold in the enclosed oocyte; the level of cAMP in the oocyte drops very rapidly (50% degradation in less than 2 min) if the oocyte is then transferred to IBMX-free medium. The data are discussed in terms of the possible role of cAMP transfer from cumulus cells to the oocyte in the regulation of meiotic progression in mouse oocytes.  相似文献   

15.
To determine if newly synthesized protein is imperative for the resumption of meiosis in bovine follicular oocytes collected from small antral follicles, cumulus-enclosed and denuded oocytes were cultured in TCM-199 both with and without various concentrations of the protein synthesis inhibitor, cycloheximide. After 11 h of culture in inhibitor-free medium, all oocytes had undergone germinal vesicle breakdown (GVBD). However, when concentrations of more than 1.0 mug/ml cycloheximide were added to the medium, the meiotic resumption of bovine oocytes was completely blocked. This inhibitory effect of cycloheximide was fully reversible after removal of the inhibitor from maturation media. Germinal vesicle breakdown following removal of cycloheximide occurred twice as fast as in the control medium. Nevertheless, when oocytes were arrested at the germinal vesicle (GV) stage by cycloheximide, a significantly higher proportion of chromatin condensation (40 to 57%) was observed in denuded oocytes than in cumulus-enclosed oocytes (11 to 22%). Thus the cycloheximide treatment could not prevent the chromatin condensation in only denuded oocytes. We conclude that protein synthesis is a prerequisite for GVBD in bovine follicular oocytes and that cumulus cells are responsible for the complementary regulation of the chromatin condensation at the GV stage, regardless of protein synthesis in the oocytes.  相似文献   

16.
The role of cyclic AMP (cAMP) in ovarian follicular functions in Rana pipiens was investigated with the use of the adenylate cyclase stimulator, forskolin, which is thought to elevate intracellular level of cAMP. Effects of forskolin on oocyte germinal vesicle breakdown (GVBD) and on progesterone production by the follicles were assessed during the course of in vitro culture. Addition of forskolin to culture medium suppressed both progesterone-and frog pituitary homogenate (FPH)-induced meiotic maturation of the oocytes. Inhibitory effects of forskolin were essentially reversible and forskolin completely inhibited GVBD when added during the first four hours of incubation following exposure to progesterone. Forskolin alone stimulated a low level progesterone production by isolated follicles, but markedly stimulated progesterone production when it was supplemented with a low dose of FPH (0.005 pituitary equivalent/ml). Thus, forskolin acts synergistically with FPH on follicle cells to stimulate progesterone production. A higher dose of FPH (0.05 pitui. eq./ml) produced no additional synergistic effect of forskolin. Therefore, forskolin appears to have two contradictory functions in ovarian follicles: it augments FPH induced follicle secretion of meiosis initiator, progesterone, and simultaneously suppresses the maturation of the oocytes triggered by exogenous progesterone or FPH. The data presented indicate that there are two independent adenylate cyclase systems in the ovarian follicles which have separate functions: one in the follicle cells and the other in the oocyte. The two enzyme systems are thus compartmentalized and regulate different biological functions using the same messenger, cAMP. The data provide evidence that in amphibians, as in mammals, pituitary hormones regulate steroid hormone production by follicle cells via a cyclic AMP system. Thus, control of oocyte maturation induction appears to be determined by the relative levels of cAMP present in the follicle cells and oocytes.  相似文献   

17.
Phosphodiesterase (PDE)‐mediated reduction of cyclic adenosine monophosphate (cAMP) activity can initiate germinal vesicle (GV) breakdown in mammalian oocytes. It is crucial to maintain oocytes at the GV stage for a long period to analyze meiotic resumption in vitro. Meiotic resumption can be reversibly inhibited in isolated oocytes by cAMP modulator forskolin, cAMP analog dibutyryl cAMP (dbcAMP), or PDE inhibitors, milrinone (Mil), Cilostazol (CLZ), and 3‐isobutyl‐1‐methylxanthine (IBMX). However, these chemicals negatively affect oocyte development and maturation when used independently. Here, we used ICR mice to develop a model that could maintain GV‐stage arrest with minimal toxic effects on subsequent oocyte and embryonic development. We identified optimal concentrations of forskolin, dbcAMP, Mil, CLZ, IBMX, and their combinations for inhibiting oocyte meiotic resumption. Adverse effects were assessed according to subsequent development potential, including meiotic resumption after washout, first polar body extrusion, early apoptosis, double‐strand DNA breaks, mitochondrial distribution, adenosine triphosphate levels, and embryonic development. Incubation with a combination of 50.0 μM dbcAMP and 10.0 μM IBMX efficiently inhibited meiotic resumption in GV‐stage oocytes, with low toxicity on subsequent oocyte maturation and embryonic development. This work proposes a novel method with reduced toxicity to effectively arrest and maintain mouse oocytes at the GV stage.  相似文献   

18.
The fertilisability and developmental capacity of mouse oocytes matured in vitro were examined by in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI). While more than 50% of cumulus-enclosed oocytes were fertilised by IVF after maturation in serum-supplemented medium, none were fertilised when the oocytes matured without serum. By ICSI, the majority (78-94%) of the oocytes were fertilised regardless of the presence or absence of serum in oocyte maturation media. Although the majority (88-92%) of cumulus-free germinal vesicle oocytes underwent nuclear maturation in both serum-free and serum-containing media, those matured in the presence of serum were more readily fertilised by ICSI (43%) than those matured without it (3-5%). The cumulus-free oocytes co-cultured with cumulus cells but without serum were fertilised at 36%, suggesting some secreted factor promotes the oocyte's cytoplasmic maturation. The oocytes fertilised by ICSI developed into normal-term fetuses regardless of the presence or absence of serum or cumulus cells in oocyte maturation medium. These results lead us to conclude that (a) the cytoplasm of the oocytes can mature in serum-free medium and (b) the presence of both the serum and the cumulus cells in the medium surrounding maturing oocytes is beneficial for the development of the fertilisation- and development-competence of oocyte cytoplasm.  相似文献   

19.
20.
Ovine cumulus-enclosed oocytes collected from antral follicles (3-5 mm in diameter) were cultured in vitro with 2 x 10(6) granulosa cells/ml in the presence or absence of gonadotropins or in the presence of cytochalasin D (CD). The maturation rate was assessed after 24 h of culture. In the control group, in the presence of gonadotropins (follicle-stimulating hormone-luteinizing hormone (FSH-LH; -10 micrograms/ml) 100% of the oocytes reached metaphase II. Whereas intercellular junctions were no longer present after 6-7 h of culture, germinal vesicle breakdown (GVBD) occurred by the same time. In contrast, in the absence of gonadotropin, the majority of the oocytes (59%) remained blocked in GV stage. The inhibition exerted by the granulosa cells on meiotic resumption was overcome when the cumulus-oocyte complexes (COCs) were incubated in CD (5 micrograms/ml) for 6 h at the beginning of the culture. Under these conditions, 85% of the oocytes matured with extrusion of the first polar body. Cytological analysis by cytofluorescence (NBD phallacidin) and electron microscopy showed that, after 6 h of treatment, CD provoked a redistribution of the microfilaments, mainly in the cumulus cells and to a lesser extent in the oocyte cortex. Intercellular junctions disappeared concomitantly with a significant decrease of the intercellular transport of tritiated uridine. The initiation of GVBD occurred at the same time. These results indicate that the resumption of meiosis was correlated with a loss of both junctional complexes (intermediate and gap junctions) between the cumulus cells and the oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号