首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human activities can lead to a shift in wildlife species’ spatial distribution. Understanding the specific effects of human activities on ranging behavior can improve conservation management of wildlife populations in human‐dominated landscapes. This study evaluated the effects of forest use by humans on the spatial distribution of mammal species with different behavioral adaptations, using sympatric western lowland gorilla and central chimpanzee as focal species. We collected data on great ape nest locations, ecological and physical variables (habitat distribution, permanent rivers, and topographic data), and anthropogenic variables (distance to trails, villages, and a permanent research site). Here, we show that anthropogenic variables are important predictors of the distribution of wild animals. In the resource model, the distribution of gorilla nests was predicted by nesting habitat distribution, while chimpanzee nests were predicted first by elevation followed by nesting habitat distribution. In the anthropogenic model, the major predictors of gorilla nesting changed to human features, while the major predictors of chimpanzee nesting remained elevation and the availability of their preferred nesting habitats. Animal behavioral traits (body size, terrestrial/arboreal, level of specialization/generalization, and competitive inferiority/superiority) may influence the response of mammals to human activities. Our results suggest that chimpanzees may survive in human‐encroached areas whenever the availability of their nesting habitat and preferred fruits can support their population, while a certain level of human activities may threaten gorillas. Consequently, the survival of gorillas in human‐dominated landscapes is more at risk than that of chimpanzees. Replicating our research in other sites should permit a systematic evaluation of the influence of human activity on the distribution of mammal populations. As wild animals are increasingly exposed to human disturbance, understanding the resulting consequences of shifting species distributions due to human disturbance on animal population abundance and their long‐term survival will be of growing conservation importance.  相似文献   

2.
Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.  相似文献   

3.
Abstract: Considering habitat selection at multiple scales is essential to fully understand habitat requirements and management needs for wildlife species of concern. We used a hierarchical information-theoretic approach and variance decomposition techniques to analyze habitat selection using local-scale habitat variables measured in the field and landscape-scale variables derived with a Geographic Information System (GIS) for nesting greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB), Montana and Wyoming, USA, 2003–2007. We investigated relationships between habitat features that can and cannot be mapped in a GIS to provide insights into interpretation of landscape-scale—only GIS models. We produced models of habitat selection at both local and landscape scales and across scales, yet multiscale models had overwhelming statistical and biological support. Variance decomposition showed that local-scale measures explained the most pure variation (50%) in sage-grouse nesting-habitat selection. Landscape-scale features explained 20% of pure variation and shared 30% with local-scale features. Both local- and landscape-scale habitat features are important in sage-grouse nesting-habitat selection because each scale explained both pure and shared variation. Our landscape-scale model was accurate in predicting priority landscapes where sage-grouse nests would occur and is, therefore, useful in providing landscape context for management decisions. It accurately predicted locations of independent sage-grouse nests (validation R2 = 0.99) and showed good discriminatory ability with >90% of nests located within only 40% of the study area. Our landscape-scale model also accurately predicted independent lek locations. We estimated twice the amount of predicted nesting habitat within 3 km of leks compared to random locations in the PRB. Likewise we estimated 1.8 times more predicted nesting habitat within 10 km of leks compared to random locations. These results support predictions of the hotspot theory of lek placement. Local-scale habitat variables that cannot currently be mapped in a GIS strongly influence sage-grouse nest-site selection, but only within priority nesting habitats defined at the landscape scale. Our results indicate that habitat treatments for nesting sage-grouse applied in areas with an unsuitable landscape context are unlikely to achieve desired conservation results.  相似文献   

4.
ABSTRACT Emerging methods in habitat and wildlife population modeling promise new horizons in conservation but only if these methods provide robust population-habitat linkages. We used Breeding Bird Survey (BBS) data to verify and validate newly developed habitat suitability index (HSI) models for 40 priority landbird species in the Central Hardwoods and West Gulf Coastal Plain/Ouachitas Bird Conservation Regions. We considered a species’ HSI model verified if there was a significant rank correlation between mean predicted HSI score and mean observed BBS abundance across the 88 ecological subsections within these Bird Conservation Regions. When we included all subsections, correlations verified 37 models. Models for 3 species were unverified. Rank correlations for an additional 5 species were not significant when analyses included only subsections with BBS abundance >0. To validate models, we developed generalized linear models with mean observed BBS abundance as the response variable and mean HSI score and Bird Conservation Region as predictor variables. We considered verified models validated if the overall model was an improvement over an intercept-only null model and the coefficient on the HSI variable in the model was >0. Validation provided a more rigorous assessment of model performance than verification, and models for 12 species that we verified failed validation. Species whose models failed validation were either poorly sampled by BBS protocols or associated with woodland and shrubland habitats embedded within predominantly open landscapes. We validated models for 25 species. Habitat specialists and species reaching their highest densities in predominantly forested landscapes were more likely to have validated models. In their current form, validated models are useful for conservation planning of priority landbirds and offer both insight into limiting factors at ecoregional scales and a framework for monitoring priority landbird populations from readily available national data sets.  相似文献   

5.
The occurrence of large burnt areas has increased considerably in southern Europe in recent years. In order to design management plans to prevent large wildfires while preserving biodiversity, understanding of the ways in which birds respond to these fires is required. We investigated the spatial variability of both avifauna and habitat structure in three zones: unburnt, burnt in 1982, and burnt in 1994. The habitat structure of the unburnt zone was the most variable spatially. However, bird species composition between sampling points was very homogeneous in space. In contrast, the bird communities inhabiting burnt zones were more spatially heterogeneous. This pattern was caused by distinct specific responses to variations in habitat structure. Open-space species responded to small changes in habitat structure with large changes in local abundance, whereas the response of forest species to these structural variations was much less. We suggest that land managers should select specific zones with limited vegetation recovery within large burnt areas and maintain them as open space to keep combustibility low and provide an appropriate habitat for several open space species that are of conservation concern.  相似文献   

6.
Increasingly large presence‐only survey datasets are becoming available for use in conservation assessments. Potentially, these records could be used to determine spatial patterns of plant species rarity and endemism. We test the integration of a large South Korean species record database with Rabinowitz rarity classes. Rabinowitz proposed seven classes of species rarity using three variables: geographic range, habitat specificity, and local population size. We estimated the range size and local abundance of 2,215 plant species from species occurrence records and habitat specificity as the number of landcover types each species’ records were found in. We classified each species into a rarity class or as common, compared species composition by class to national lists, and mapped the spatial pattern of species richness for each rarity class. Species were classed to narrow or wide geographic ranges using 315 km, the average from a range size index of all species (Dmax), based on maximum distance between observations. There were four classes each within the narrow and wide range groups, sorted using cutoffs of local abundance and habitat specificity. Nationally listed endangered species only appeared in the narrow‐range classes, while nationally listed endemic species appeared in almost all classes. Species richness in most rarity classes was high in northeastern South Korea especially for species with narrow ranges. Policy implications. Large presence‐only surveys may be able to estimate some classes of rarity better than others, but modification to include estimates of local abundance and habitat types, could greatly increase their utility. Application of the Rabinowitz rarity framework to such surveys can extend their utility beyond species distribution models and can identify areas that need further surveys and for conservation priority. Future studies should be aware of the subjectivity of the rarity classification and that regional scale implementations of the framework may differ.  相似文献   

7.
We examined range use by great apes during logging activities and investigated associations between local variations in ape abundance and changes in the structure of the habitat or in the availability of fruits after disturbances. We carried out two annual censuses of western lowland gorilla (G. g. gorilla) and chimpanzee populations (Pan t. troglodytes) in an active logging concession in Southeast Cameroon. The results suggest that gorillas may adapt their range use to avoid most recently logged compartments, while chimpanzees appear to be more spatially resilient to logging. In our study site, selective logging affected 10% of the forest. After logging, gorillas nested in all types of vegetation, while chimpanzees nested exclusively in mixed mature forest. Fruit availability was not affected by logging and did not explain the distribution of ape nests in the study area.  相似文献   

8.
Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500–1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks.  相似文献   

9.
Aim Distribution modelling relates sparse data on species occurrence or abundance to environmental information to predict the population of a species at any point in space. Recently, the importance of spatial autocorrelation in distributions has been recognized. Spatial autocorrelation can be categorized as exogenous (stemming from autocorrelation in the underlying variables) or endogenous (stemming from activities of the organism itself, such as dispersal). Typically, one asks whether spatial models explain additional variability (endogenous) in comparison to a fully specified habitat model. We turned this question around and asked: can habitat models explain additional variation when spatial structure is accounted for in a fully specified spatially explicit model? The aim was to find out to what degree habitat models may be inadvertently capturing spatial structure rather than true explanatory mechanisms. Location We used data from 190 species of the North American Breeding Bird Survey covering the conterminous United States and southern Canada. Methods We built 13 different models on 190 bird species using regression trees. Our habitat‐based models used climate and landcover variables as independent variables. We also used random variables and simulated ranges to validate our results. The two spatially explicit models included only geographical coordinates or a contagion term as independent variables. As another angle on the question of mechanism vs. spatial structure we pitted a model using related bird species as predictors against a model using randomly selected bird species. Results The spatially explicit models outperformed the traditional habitat models and the random predictor species outperformed the related predictor species. In addition, environmental variables produced a substantial R2 in predicting artificial ranges. Main conclusions We conclude that many explanatory variables with suitable spatial structure can work well in species distribution models. The predictive power of environmental variables is not necessarily mechanistic, and spatial interpolation can outperform environmental explanatory variables.  相似文献   

10.
Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.  相似文献   

11.
We studied the pattern of inter-specific association of breeding territories in a passerine assemblage of dry cereal farmland in central Spain and evaluated the role of the presence of heterospecifics in the habitat use patterns exhibited by different species. Bird territories showed a non-random inter-specific spatial aggregation pattern. We studied territory abundance variation in the three more abundant species: the corn bunting, the crested lark, and the fan-tailed warbler. Crested lark and fan-tailed warbler territories were more abundant in plots where corn bunting territories were present and vice versa, while their respective abundances did not vary with the breeding presence of the other species. We used landscape and agricultural management variables to analyze the relationships between habitat and each species?? breeding territories by means of classification trees. While the corn bunting showed a marked pattern of nesting habitat use, the crested lark and the fan-tailed warbler exhibited a much more generalist one. Corn Bunting presence was affected negatively by intensification-related variables, such as field size and percent cover of cereal crops. Similarly, the presence of crested larks was negatively related to high yielding areas. However, when the presence of hetero-specific territories was considered, the presence of corn bunting territories was the most important variable explaining the occurrence of breeding fan-tailed warblers, and the second most important in the case of the crested lark. These results suggest that inter-specific attraction could play a role in the formation of farmland bird assemblages, while adding further evidence for the detrimental effect of agricultural intensification at the community level.  相似文献   

12.
Despite numerous studies on breeding dispersal, it is still unclear how habitat heterogeneity and previous nesting success interact to determine nest-site fidelity at various spatial scales. In this context, we investigated factors affecting breeding dispersal in greater snow geese (Anser caerulescens atlanticus), an Arctic breeding species nesting in two contrasting habitats (wetlands and mesic tundra) with variable pattern of snowmelt at the time of settlement in spring. From 1994 to 2005, we monitored the nesting success and breeding dispersal of individually marked females. We found that snow geese showed a moderate amount of nest-site fidelity and considerable individual variability in dispersal distance over consecutive nesting attempts. This variability can be partly accounted for by the annual timing of snowmelt. Despite this environmental constraint, habitat differences at the colony level consistently affected nesting success and settlement patterns. Females nesting in wetlands had higher nesting success than those nesting in mesic tundra. Moreover, geese responded adaptively to spatial heterogeneity by showing fidelity to their nesting habitat, independently of snowmelt pattern. From year to year, geese were more likely to move from mesic to high-quality wetland habitat, regardless of previous nesting success and without cost on their subsequent nesting performance. The unpredictability of snowmelt and the low cost of changing site apparently favour breeding-site dispersal although habitat quality promotes fidelity at the scale of habitat patches.  相似文献   

13.
Both local and landscape-scale habitat variables influence the abundance of wetland breeding birds. Few studies, however, simultaneously assess the effects of habitat variables at multiple spatial scales or consider effects on reproductive success. Therefore, we examined the effects of wetland and landscape-scale habitat variables on the abundance of nine breeding bird species and the effects of nest, wetland, or landscape-scale habitat variables on the nest success, clutch size, or number of fledglings of four species at 15 cattail (Typha sp.)-dominated wetlands in an agricultural region around Peterborough, Ontario, Canada. The abundance of Least Bittern (Ixobrychus exilis), Common Moorhen (Gallinula chloropus), and Marsh Wren (Cistothorus palustris) increased as wetland water depth increased; the abundance of Common Moorhen and Marsh Wren increased as wetland size increased; and the abundance of Marsh Wren increased as the amount of wetland in the surrounding landscape increased. Red-winged Blackbird (Agelaius phoeniceus) nest success decreased as nest cover increased. Clutch sizes were uninfluenced by the habitat variables that we considered. The number of Red-winged Blackbird fledglings per successful nest increased as wetland size increased and as the amount of wetland in the surrounding landscape increased. We speculate that food limitation in small wetlands may be responsible for the pattern in Red-winged Blackbird fledging success. The abundance and nest success of Virginia Rail (Rallus limicola) and Sora (Porzana carolina) were uninfluenced by the habitat variables we considered. Future research should consider mate attraction and productivity in relation to local and landscape-scale habitat variables for these and other secretive species. Our study suggests that wetland conservation will be most effective if it considers habitat variables at multiple spatial scales.  相似文献   

14.
Determining habitat quality for wildlife populations requires relating a species' habitat to its survival and reproduction. Within a season, species occurrence and density can be disconnected from measures of habitat quality when resources are highly seasonal, unpredictable over time, and patchy. Here we establish an explicit link among dynamic selection of changing resources, spatio‐temporal species distributions, and fitness for predictive abundance and occurrence models that are used for short‐term water management and long‐term restoration planning. We used the wading bird distribution and evaluation models (WADEM) that estimate (1) daily changes in selection across resource gradients, (2) landscape abundance of flocks and individuals, (3) conspecific foraging aggregation, and (4) resource unit occurrence (at fixed 400 m cells) to quantify habitat quality and its consequences on reproduction for wetland indicator species. We linked maximum annual numbers of nests detected across the study area and nesting success of Great Egrets (Ardea alba), White Ibises (Eudocimus albus), and Wood Storks (Mycteria americana) over a 20‐year period to estimated daily dynamics of food resources produced by WADEM over a 7490 km2 area. For all species, increases in predicted species abundance in March and high abundance in April were strongly linked to breeding responses. Great Egret nesting effort and success were higher when birds also showed greater conspecific foraging aggregation. Synthesis and applications: This study provides the first empirical evidence that dynamic habitat selection processes and distributions of wading birds over environmental gradients are linked with reproductive measures over periods of decades. Further, predictor variables at a variety of temporal (daily‐multiannual) resolutions and spatial (400 m to regional) scales effectively explained variation in ecological processes that change habitat quality. The process used here allows managers to develop short‐ and long‐term conservation strategies that (1) consider flexible behavioral patterns and (2) are robust to environmental variation over time.  相似文献   

15.
Riparian zones, as spatially constrained environments, can favor intense competition among similar species and thus the occurrence of spatial segregation. We investigated the spatial pattern of water opossum Chironectes minimus and water rat Nectomys squamipes captures in Atlantic Forest rivers in southeast Brazil. Our goals were to test if the water opossum and water rat are spatially segregated, to describe the habitat selection by these two species and to verify if habitat degradation favors the water rat, at the expense of water opossum. The abundances of water opossum and water rat were negatively correlated. Water opossum abundance was higher in wide rivers with high tree density in the riverbank, while water rat abundance was higher in narrow streams within non-forested areas. The ratio between the water opossum and water rat relative abundances was positively related to the degree of conservation of the riverine habitat. The segregation showed by the water opossum and the water rat was produced by their morphological and ecological differences, rather than by interespecific competition. Based on ours results we predict that deforestation, especially the removal of riparian vegetation, will result in a reduction of the suitable habitat for the water opossum while the water rat will expand its range.  相似文献   

16.
Accurate and precise surveys of primate abundance provide the basis for understanding species ecology and essential information for conservation assessments. Owing to the elusive nature of wild apes and the vast region of dense forest they inhabit, population estimates of central chimpanzees (Pan troglodytes troglodytes) and western lowland gorillas (Gorilla gorilla gorilla) have largely relied on surveys of their nests. Specific information about the nesting behavior of apes permits the estimation of the number of nests built (nest creation rate). Similarly, information on nest characteristics and environmental factors can be used to estimate the time it takes nests to decay (nest decay rate). Nest creation and decay rates are then used to convert nest density estimates to absolute ape densities. Population estimates that use site-specific estimates of nest creation and decay rates are more accurate and precise. However, it is common practice to generalize these conversion factors across sites because of the additional cost of studies required to gather the information to estimate them. Over a 9-mo study period, we detected and monitored the time to decay of gorilla nests (N = 514) and chimpanzee nests (N = 521) in northern Republic of Congo. We investigated the influence of nest characteristics and environmental factors on nest survivorship and estimated the mean time to nest decay (or equivalently survival) using MARK. Key factors influencing nest decay rate included ape species, forest type, nest height, mean rainfall, nest structure, nest type, and primary aspects of nest construction. Our findings highlight the synergistic effect of behavior and environment on great ape nest degradation, as well as providing practical insights for improving measures to monitor remaining populations of these endangered species.  相似文献   

17.
An ecotope (spatial eco-space) map that considers topography and bio-organism-relevant variables emerges as an important basic framework when landscape-scale characteristics for ecosystem management and wildlife conservation are needed. A spatio-geoecological framework based on geographic information systems (GIS) and a vegetation survey were developed for wildlife habitat evaluation of national parks and applied to a representative rugged valley area of Mt. Sorak National Park in Korea. An ecotope map was classified into hundreds of types and dozens of groups by combining biological and geophysical variables. Variables included: forest vegetation type, topographic solar radiation, normalized difference vegetation index (NDVI), elevation, and anthropogenic factors, such as, streams and roads. Layers of GIS variables were produced by field surveys, modeling, satellite images, or digitalization. Vegetation surveys were carried out to identify finer-scale distribution of vegetation types in the rugged valley area. Digital forest vegetation maps from the Forestry Administrator were then modified using the field-surveyed vegetation maps. Topographic solar radiation was predicted with a daily topographic radiation model. The NDVI was calculated from the satellite imagery of a Landsat Thematic Mapper. A digital elevation model (DEM) was used and the other layers were digitized using topographical maps with a scale of 1:25000. The aim of this study is to determine the geoecological factors relating to the spatial pattern of plant community. It was cleared by the spatial pattern of environmental variables and vegetation characteristics by detrended correspondence analysis using plant species and the environmental variables of each plot. The ordination component value of the first axis shows significant regression to some environmental variables. A case study of habitat evaluation was carried out using the resultant ecotope map. The spatial distribution of potential goral habitat and vegetation characteristics were predicted and the impact of human trails on the neighboring vegetation was also examined for restoration planning. The GIS-based framework developed for wildlife habitat evaluation is useful for natural resource management and human activity control in national parks in Korea.  相似文献   

18.
We examined 834 nests built by western lowland gorillas in Cameroon between July 2008 and July 2011 to identify the plant species used in their construction. Preference for each plant species for nesting was assessed using a ‘preference index’ calculated by combining information on the occurrence of each species in the forest and in the nests. Forty-six plant species representing about 15 % of the total number of species in the forest and 26 % of species used for nest building were frequently used by gorillas. Preference levels significantly varied among these species. Nests were mostly built with herbs of the families Marantaceae and Zingiberaceae and woody species such as Manniophyton fulvum (liana) and Alchornea floribunda (shrub). As observed in other gorilla populations, suitability for nest building and availability of gorilla food in stems were the likely determinants of plant selection. The total number of species used per nest ranged from 1 to 11, with an average of 4.9. This is high compared to other sites, emphasizing variability in the availability of nest building materials and habitat differences across the range of the western gorilla. Seasonal changes in the use of different habitat types for nesting did not appear to influence plant use for nest building as there was little variation in plant selection across seasons or the composition of nests. Our findings suggest that gorillas non-randomly select plant species to build nests, and use a particular set of species combined at varying proportions, with no clear seasonal or spatial patterns.  相似文献   

19.
Protected areas are fundamental to biodiversity conservation, but there is growing recognition of the need to extend beyond protected areas to meet the ecological requirements of species at larger scales. Landscape-scale conservation requires an evaluation of management impact on biodiversity under different land-use strategies; this is challenging and there exist few empirical studies. In a conservation landscape in northern Republic of Congo we demonstrate the application of a large-scale monitoring program designed to evaluate the impact of conservation interventions on three globally threatened species: western gorillas, chimpanzees and forest elephants, under three land-use types: integral protection, commercial logging, and community-based natural resource management. We applied distance-sampling methods to examine species abundance across different land-use types under varying degrees of management and human disturbance. We found no clear trends in abundance between land-use types. However, units with interventions designed to reduce poaching and protect habitats - irrespective of land-use type - harboured all three species at consistently higher abundance than a neighbouring logging concession undergoing no wildlife management. We applied Generalized-Additive Models to evaluate a priori predictions of species response to different landscape processes. Our results indicate that, given adequate protection from poaching, elephants and gorillas can profit from herbaceous vegetation in recently logged forests and maintain access to ecologically important resources located outside of protected areas. However, proximity to the single integrally protected area in the landscape maintained an overriding positive influence on elephant abundance, and logging roads – even subject to anti-poaching controls - were exploited by elephant poachers and had a major negative influence on elephant distribution. Chimpanzees show a clear preference for unlogged or more mature forests and human disturbance had a negative influence on chimpanzee abundance, in spite of anti-poaching interventions. We caution against the pitfalls of missing and confounded co-variables in model-based estimation approaches and highlight the importance of spatial scale in the response of different species to landscape processes. We stress the importance of a stratified design-based approach to monitoring species status in response to conservation interventions and advocate a holistic framework for landscape-scale monitoring that includes smaller-scale targeted research and punctual assessment of threats.  相似文献   

20.
Identifying habitat or nesting microhabitat variables associated with high levels of nest success is important to understand nest site preferences and bird–habitat relationships. Little is known about cavity availability and nest site requirements of cavity nesters in southern hemisphere temperate forests, although nest site limitation is suggested. Here we ask which characteristics are selected by the Austral parakeet (Enicognathus ferrugineus) for nesting in Araucaria araucana–Nothofagus pumilio forest in Argentine Patagonia. We compared nest plot and tree characteristics with unused plots and trees among areas of different A. araucana–N. pumilio density. We also examine whether nest plot and tree use and selection, and the associated consequences for fitness of Austral parakeets are spatially related to forest composition. Austral parakeets showed selectivity for nests at different spatial scales, consistently choosing isolated live and large trees with particular nest features in a non‐random way from available cavities. Mixed A. araucana–N. pumilio forests are ideal habitat for the Austral parakeets of northern Patagonia, offering numerous potential cavities, mainly in N. pumilio. We argue that Austral parakeet reproduction and fitness is currently very unlikely to be limited by cavity availability, although this situation may be rapidly changing. Natural and human disturbances are modifying south temperate forests with even‐aged mid‐successional stands replacing old growth forests. Cavity nesting species use and need old growth forests, due to the abundance of cavities in large trees and the abundance of larvae in old wood. Neither of the latter resources is sufficiently abundant in mid‐successional forests, increasing the vulnerability and threatening the survival of the Austral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号