首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation (IC) reactor in a pilot-scale sequencing batch reactor (SBR) using activated sludge as seeding sludge. N removal was investigated in the start-up of aerobic granulation process. Initially, the phenomenon of partial nitrification was observed and nitrite accumulation rates (NO2 ?-N/NO x ? -N) were between 84.6 and 99.1?%. It was potentially caused by ammonium oxidizing bacteria (AOB) in the seeding activated sludge, high external environmental temperature (~32?°C) and free ammonia (FA) concentration. After 50?days’ running, the aerobic granules-based bioreactor demonstrated perfect performance in simultaneous removal of organic matter and ammonia nitrogen, and average removal efficiencies were maintained above 93 and 96?%, respectively. The maximum nitrogen removal efficiency of 83.1?% was achieved after the formation of aerobic granules. The average diameter of mature aerobic granular sludge mostly ranged from 0.5 to 1.0?mm. Furthermore, one typical cyclic test indicated that pH and DO profiles could be used as effective parameters for biological reactions occurring in the aerobic/anoxic process. The obtained results could provide further information on the cultivation of aerobic granular sludge with practical wastewater, especially with regard to nitrogen-rich industrial wastewater.  相似文献   

2.
The aim of this study was to evaluate the impact of zeolite powders on feasibility of rapid aerobic granulation in the column-type sequencing batch reactors. After 90 days' operation, aerobic granular sludge was formed in both reactors by altering influent chemical oxygen demand/nitrogen (COD/N) ratios. R1 with zeolite powders had better removal capabilities of COD and total nitrogen than R2, which was without zeolite powders. Mixed liquor volatile suspended solid concentrations of the two reactors were 7.36 and 5.45 g/L, while sludge volume index (SVI30) values were 34.9 and 47.9 mg/L, respectively. The mean diameters of aerobic granular sludge in the above two reactors were 2.5 and 1.5 mm, respectively. Both reactors achieved the largest simultaneous nitrification and denitrification (SND) efficiency at an influent COD/N ratio of 8; however, R1 exhibited more excellent SND efficiency than R2. The obtained results could provide a novel technique for rapid aerobic granulation and N removal simultaneously, especially when treating nitrogen-rich industrial wastewater.  相似文献   

3.

Background

Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using aerobic granular sludge is very limited.

Methods

This study investigated the treatment performance of old landfill leachate with different levels of ammonium using two aerobic sequencing batch reactors (SBR): an activated sludge SBR (ASBR) and a granular sludge SBR (GSBR). Aerobic granules were successfully developed using old leachate with low ammonium concentration (136 mg L?1 NH4 +-N).

Results

The GSBR obtained a stable chemical oxygen demand (COD) removal of 70% after 15 days of operation; while the ASBR required a start-up of at least 30 days and obtained unstable COD removal varying from 38 to 70%. Ammonium concentration was gradually increased in both reactors. Increasing influent ammonium concentration to 225 mg L?1 N, the GSBR removed 73 ± 8% of COD; while COD removal of the ASBR was 59 ± 9%. The GSBR was also more efficient than the ASBR for nitrogen removal. The granular sludge could adapt to the increasing concentrations of ammonium, achieving 95 ± 7% removal efficiency at a maximum influent concentration of 465 mg L?1 N. Ammonium removal of 96 ± 5% was obtained by the ASBR when it was fed with a maximum of 217 mg L?1 NH4 +-N. However, the ASBR was partially inhibited by free-ammonia and nitrite accumulation rate increased up to 85%. Free-nitrous acid and the low biodegradability of organic carbon were likely the main factors affecting phosphorus removal.

Conclusion

The results from this research suggested that aerobic granular sludge have advantage over activated sludge in leachate treatment.
  相似文献   

4.
The effect of pH on the efficiency of an SBR processing piggery wastewater   总被引:1,自引:0,他引:1  
To treat piggery wastewater efficiently, the hydrolysis of urea (mainly derived from swine urine) in piggery wastewater with the change of sewage pH must be considered. Using activated sludge, piggery wastewater was treated in a sequencing batch reactor (SBR), and the effects of influent pH on SBR processing efficiency, sludge settle ability, and sludge activity were investigated. The results showed that a high influent pH value contributed to the improvement of the removal rate of ammonia nitrogen and reduction of the chemical oxygen demand (COD). When the influent pH was between 9.0 and 9.5, the removal rate of ammonia nitrogen was higher than 90%, and the reduction of COD from its original value was 80%. The influent pH had a greater influence on sludge concentration and sludge activity. When the influent pH increased from 7.0 to 9.5, the sludge concentration increased from 2,350 to 3,947 mg/L in the reactor, and the activities of ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) first increased and then decreased. When the influent pH was 9.0 and 8.0, the maximum values (0.48 g O2/(g MLSS/day) and 0.080 g O2/(g MLSS/day)) were reached, and the sludge settling ratio was nearly steady between 20 and 35% in each reactor.  相似文献   

5.
Single-stage nitritation–anammox combines the growth of aerobic ammonium-oxidizing bacteria (AOB) and anaerobic ammonium oxidizing bacteria (AnAOB) in one reactor. The necessary compromise of their milieu conditions often leads to the growth of nitrite-oxidizing bacteria (NOB). For this study, a sequencing batch reactor (SBR) for nitritation–anammox was operated for 180 days with sewage sludge reject water (removal capacity, 0.4 kg?N?m?3?day?1). The growth of NOB was favored by enhanced oxygen supply rather than extended aerobic phases. Suspended-type biomass from this SBR was taken regularly and sieved into three size fractions (all of them <1,000 μm). Batch experiments as well as fluorescence in situ hybridization were performed to study the distribution and activity of AnAOB, AOB, and NOB within those size fractions. Both the measured conversion rates and detected abundances decreased with increasing size fraction. The highest anammox conversion rates (15 g NH4 +–N per kilogram VSS per hour) and the highest abundances of Brocadia fulgida were found in the medium size fraction (100–315 μm). The batch experiments proved to be accurate tools for the monitoring of multiple processes in the reactor. The results were representative for reactor performance during the 6 months of reactor operation.  相似文献   

6.
The objective of this study was to analyze the factors affecting the performance of partial nitrification in a sequencing batch reactor. During a 140-day long-term operation, influent pH value, dissolved oxygen (DO), and chemical oxygen demand/nitrogen (COD/N) ratio were selected as operating factors to evaluate the maintenance and recovery of nitrite accumulation. Results showed that high DO concentration (2–4 mg/L) could damage nitrite accumulation immediately. However, nitrite accumulation ratio (NAR) could be increased from 1.68?±?1.51 to 35.46?±?7.86 % when increasing the pH values from 7.5 to 8.3 due to the increased free ammonia concentration. Afterwards, stable partial nitrification and high NAR could be recovered when the reactor operated under low DO concentration (0.5–1.0 mg/L). However, it required a long time to recover the partial nitrification of the reactor when the influent COD/N ratios were altered. Fluorescence in situ hybridization analysis implied that ammonium oxidizing bacteria were completely recovered to the dominant nitrifying bacteria in the system. Meanwhile, sludge volumetric index of the reactor gradually decreased from 115.6 to 56.6 mL/g, while the mean diameter of sludge improved from74.57 to 428.8 μm by using the strategy of reducing settling time. The obtained results could provide useful information between the operational conditions and the performance of partial nitrification when treating nitrogen-rich industrial wastewater.  相似文献   

7.
Aerobic granule was successfully cultivated in SBR (sequencing batch reactor) by struvite carrier (magnesium ammonium phosphate, MgNH4PO4), which can increase polysaccharides to 42.2 mg/gMLVSS (mixed liquor volatile suspended solid) versus only 28.4 mg/gMLVSS of the sludge without it. Meanwhile, it was found that struvite play a positive role in initial granulation and bacterial group distribution in treating pharmaceutical wastewater, involving effect of solid surface and special contents of struvite. The results of fluorescence in situ hybridization technique indicate that ammonia-oxidizing bacteria can dominate over nitrite-oxidizing bacteria in mature granules. COD removal efficiency of 90 % and NO2 ?–N:(NO2 ?–N?+?NO3 ?–N) accumulation efficiency of 89 % were achieved in stable state. Emphasis is placed on that struvite addition can be applied as a new-type carrier to promote formation of partial nitrification granular sludge.  相似文献   

8.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation reactor in a pilot-scale sequencing batch reactor (SBR). Soy protein wastewater was used as an external carbon source for altering the influent chemical oxygen demand/nitrogen (COD/N) ratios of SBR. Initially, the phenomenon of partial nitrification was observed and depressed by increasing the influent COD/N ratios from 3.32 to 7.24 mg/mg. After 90 days of aerobic granulation, the mixed liquor suspended solids concentration of the reactor increased from 2.80 to 7.02 g/L, while the sludge volumetric index decreased from 105.51 to 42.99 mL/g. The diameters of mature aerobic granules vary in the range of 1.2 to 2.0 mm. The reactor showed excellent removal performances for COD and $ {\text{NH}}_4^{ + }{\text{ - N}} $ after aerobic granulation, and average removal efficiencies were over 93% and 98%, respectively. The result of this study could provide further information on the development of aerobic granule-based system for full-scale applications.  相似文献   

9.
Arthrobacter sp. HPC1223 (Genebank Accession No. AY948280) isolated from activated biomass of effluent treatment plant was capable of utilizing 2,4,6 trinitrophenol (TNP) under aerobic condition at 30 °C and pH 7 as nitrogen source. It was observed that the isolated bacteria utilized TNP up to 70 % (1 mM) in R2A media with nitrite release. The culture growth media changed into orange-red color hydride-meisenheimer complex at 24 h as detected by HPLC. Oxygen uptake of Arthrobacter HPC1223 towards various nitro/amino substituted phenols such as dinitrophenol (1.2 nmol/min/mg cells), paranitrophenol (0.9 nmol/min/mg cells), 2-aminophenol (0.75 nmol/min/mg cells), p-aminophenol (0.4 nmol/min/mg cells), phenol (0.56 nmol/min/mg cells) and TNP (2.42 nmol/min/mg cell) was analysed, which showed its additional characteristic of broad substrate catabolic capacity. The present study thus report a novel indigenous bacteria isolated from activated sludge utilized TNP and has broad catabolic potential towards substituted phenols.  相似文献   

10.
A laboratory-scale study was conducted in a 20.0-L sequencing batch reactor (SBR) to explore the feasibility of simultaneous removal of organic carbon and nitrogen from abattoir wastewater. The reactor was operated under three different combinations of aerobic-anoxic sequence, viz., (4+4), (5+3), and (5+4) h of total react period, with influent soluble chemical oxygen demand (SCOD) and ammonia nitrogen (NH4+-N) level of 2200 ± 50 and 125 ± 5 mg L?1, respectively. In (5+4) h cycle, a maximum 90.27% of ammonia reduction corresponding to initial NH4+-N value of 122.25 mg L?1 and 91.36% of organic carbon removal corresponding to initial SCOD value of 2215.25 mg L?1 have been achieved, respectively. The biokinetic parameters such as yield coefficient (Y), endogenous decay constant (kd), and half-velocity constant (Ks) were also determined to improve the design and operation of package effluent treatment plants comprising SBR units. The specific denitrification rate (qDN) during anoxic condition was estimated as 6.135 mg N/g mixed liquor volatile suspended solid (MLVSS)·h on 4-h average contact period. The value of Y, kd and Ks for carbon oxidation and nitrification were found to be in the range of 0.6225–0.6952 mg VSS/mg SCOD, 0.0481–0.0588 day?1, and 306.56–320.51 mg L?1, and 0.2461–0.2541 mg VSS/mg NH4+-N, 0.0324–0.0565 day?1, and 38.28–50.08 mg L?1, respectively, for different combinations of react periods.  相似文献   

11.
Granulation of a propionate-degrading consortia was performed with a mesophilic propionate-acclimatized sludge in an upflow anaerobic sludge blanket (UASB) reactor. The granules formed were relatively small, ranging mainly from 0.3 to 0.6 mm in diameter, but had an excellent sedimentation velocity due to a high specific gravity of 1.355 g/cm3 (ash content, 48.2%). The ash consisted mainly of calcium (30.2%), phosphorus (19.7%), and magnesium (3.95%) forming plate crystals in the granules. The populations of three bacterial trophic groups present in the granules, propionate-degraders, hydrogenotrophic and aceticlastic methanogens were 5.6 × 108, 1.6 × 1010, and 2 × 109 (in most probable number/g mixed-liquor volatile suspended solids [MLVSS]), respectively, while the specific utilization rates of propionate, hydrogen, and acetate of the granules were 9.4, 850, and 20.9 (mmol/g MLVSS·d), respectively. Electron microscopic analysis showed that Methanothrix spp. appeared dominant over the granules. Total granular sludge concentration retained in the UASB reactor during 178 d of operation was 80.0 g mixed-liquor suspended solids (MLSS)/l-reactor, corresponding to 41.4 g MLVSS/l-reactor, which realized a high-rate methanogenic fermentation of propionate of 85 g chemical oxygen demand (COD)/l-reactor·d.  相似文献   

12.
The growth of granules on a phenol synthetic medium and the methanogenic fermentation of industrial phenolic wastewater from a steel factory in an upflow anaerobic sludge blanket (UASB) reactor were investigated. Total granular sludge concentration retained in the UASB reactor was 6.7 g MLSS/l (6.0 g MLVSS/l) during the 10 months' operation on the phenol synthetic medium. This realized a maximum phenol removal rate of 2.2 g/l·d (phenol concentration of influent = 500 mg/l), which corresponded to 5.2 g COD/l·d at space velocity (SV) of 4.4 d−1. The granules formed were of relatively small size ranging from 0.61 to 0.77 mm, and had a relatively low density of 0.013–0.023 g MLVSS/cm3 and low specific gravity (1.11) due to very low ash content (8.7–11.9%). Electron microscopic analysis showed that Methanothrix spp. appeared dominantly on the granule surface as well as within it. The specific metabolic activities of bacterial trophic groups were the highest for H2 followed by acetate, benzoate, phenol, and propionate. In the case of industrial phenolic wastewater, although phenol efficiency was only 50% at SV of 0.4 d−1, when the wastewater was diluted twofold and the treated wastewater was recycled at SV of 7.3 d−1, the removal efficiencies of phenol and CODcr were restored to 90% (influent=400 mg/l) and 80% (influent=5,000 mg/l), respectively. It was suggested that recycling of the treated wastewater might be improved by partly degrading unknown toxic compounds contained in phenolic wastewater.  相似文献   

13.
Aerobic granular sludge is a new type of microbe auto-immobilization technology; in this paper, short-cut nitrification and denitrification were effectively combined with the granular sludge technology. Simultaneous nitrification and denitrification granules were developed in a sequencing batch reactor (SBR) using synthetic wastewater with a high concentration of ammonia nitrogen at 25 °C with a dissolved oxygen concentration above 2.0 mg/L and a 15 days sludge retention time. The characteristics of the sludge and the removal efficiency were studied, and the removal mechanisms of the pollutants and the process of short-cut nitrification were analyzed. The average granule diameter of the granular sludge was 704.0 μm. The removal rates of pollutants and the accumulation rate of nitrite in the SBR were studied. During treatment of wastewater with a high concentration of ammonia nitrogen, simultaneous nitrification, and denitrification and the stripping process could contribute to the removal of total nitrogen. The high pH value, the high concentration of free ammonia, and the delamination of granular sludge were the main factors contributing to the short-cut nitrification property of granular sludge in the reaction process.  相似文献   

14.
Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m3/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption.  相似文献   

15.
A new bioflocculant was produced by culturing Rhodococcus erythropolis in a cheap medium. When culture pH was 7.0, inoculum size was 2 % (v/v), Na2HPO4 concentration was 0.5 g L?1, and the ratio of sludge/livestock wastewater was 7:1 (v/v), a maximum flocculating rate of 87.6 % could be achieved. Among 13 different kinds of pretreatments for sludge, the optimal one was the thermal-alkaline pretreatment. Different from a bioflocculant produced in a standard medium, this bioflocculant was effective over a wide pH range from 2 to 12 with flocculating rates higher than 98 %. Approximately, 1.6 g L?1 of crude bioflocculant could be harvested using cold ethanol for extraction. This bioflocculant showed color removal rates up to 80 % when applied to direct and disperse dye solutions, but only 23.0 % for reactive dye solutions. Infrared spectrum showed that the bioflocculant contained functional groups such as –OH, –NH2, and –CONH2. Components in the bioflocculant consisted of 91.2 % of polysaccharides, 7.6 % of proteins, and 1.2 % of DNA. When the bioflocculant and copper sulfate (CuSO4) were used together for decolorization in actual dye wastewater, the optimum decolorization conditions were specified by the response surface methodology as pH 11, bioflocculant dosage of 40 mg/L, and CuSO4 80 mg/L, under which a decolorization rate of 93.9 % could be reached.  相似文献   

16.
Understanding spatio-temporal patterns of grassland evapotranspiration (ET) and water use efficiency (WUE) in arid areas is important for livestock production and ecological conservation. Xinjiang, China, was used as an example in the Biome-BGC model to explore spatio-temporal patterns of grassland ET and WUE from 1979 to 2012 in arid areas. The ET ranked from high to low as follows: among seasons, summer (142.4 mm), spring (49.7 mm), autumn (45.9 mm) and winter (7.7 mm); among regions, the Tianshan Mountains (357.9 mm), northern Xinjiang (221.3 mm) and southern Xinjiang (183.2 mm); among grassland types, mid-mountain meadow (387.7 mm), swamp meadow (358.3 mm), typical grassland (343.9 mm), desert grassland (236.2 mm), alpine meadow (229.7 mm), and saline meadow (154.7 mm). The WUE ranked from high to low as follows: among seasons, summer (0.60 g C kg H2O?1), autumn (0.48 g C kg H2O?1) and spring (0.43 g C kg H2O?1); among regions, northern Xinjiang (0.73 g C kg H2O?1), the Tianshan Mountains (0.69 g C kg H2O?1) and southern Xinjiang (0.26 g C kg H2O?1); among grassland types, mid-mountain meadow (0.86 g C kg H2O?1), typical grassland (0.84 g C kg H2O?1), swamp meadow (0.77 g C kg H2O?1), saline meadow (0.52 g C kg H2O?1), alpine grassland (0.37 g C kg H2O?1) and desert grassland (0.34 g C kg H2O?1). In Xinjiang grasslands, the spatio-temporal ET patterns were more strongly influenced by precipitation than by temperature, whereas most high WUE values occurred when precipitation and temperature were relatively conducive to grass growth.  相似文献   

17.
To alleviate the fouling of a filter, simple substrates, dynamic filtration, and granular sludge were applied in an anaerobic membrane bioreactor (AnMBR). The results showed that under a transmembrane pressure < 20 kPa, the filter flux ranged between 15 and 20 l (m?2 h)?1 for a period of 30 days. The flux was higher than the typical flux of AnMBRs with conventional membranes and most current dynamic filters. In addition, the low cost of the filter avoided the need for a higher flux. Moreover, a stable granular sludge bed, which consumed all volatile fatty acids, was maintained. A compact fouling/filtration layer formed on the filter, which contributed to low effluent chemical oxygen demand concentrations and turbidity. In addition, substrate scarcity in the filtration zone resulted in the evolution of diverse bacteria on the filter.  相似文献   

18.
Activated sludge obtained from two municipal wastewater treatment facilities (WWTF) was used as seed sludge for enriched nitrifiers, which were later entrapped in polyvinyl alcohol. Seed sludge from one WWTF was acclimated to high ammonia level (1813 mg NH3-N l?1) through the return of sludge digester supernatant back to primary clarifier while seed sludge from the other WWTF was un-acclimated. To elucidate on how to control partial nitrification by entrapped cells, which could be different from suspended cells, kinetics of entrapped enriched nitrifiers were studied using a respirometric assay. The community of nitrifiers within the entrapment matrix, which was observed by fluorescence in situ hybridization (FISH) technique, was related to the nitritation and nitratation kinetics based on oxygen uptake rate. Maximum oxygen uptake rate, and substrate and oxygen affinities of both ammonia oxidizing bacteria (AOB) for nitritation and nitrite oxidizing bacteria (NOB) for nitratation in entrapped cells were lower than those of corresponding suspended cells. Under dissolved oxygen (DO) limiting conditions, nitratation was more suppressed than nitritation for suspended cells, while for the entrapped cells, the results were the contrary. A free ammonia (FA) inhibition affected only the un-acclimated sludge. Either FA inhibition or DO limitation might not be a sole effective control parameter to achieve partial nitrification by entrapped cells. FISH results revealed that Nitrosomonas europaea was the dominant AOB while Nitrobacter species was the dominant NOB in all cases. Heterotrophs were also present in the entrapment at 22.8 ± 18.6% and 41.5 ± 4.3% of total bacteria for acclimated and un-acclimated originated sludge. The availability of substrate and oxygen governed the distributions of AOB, NOB and heterotrophs within the entrapment and nitritation kinetics of entrapped nitrifiers.  相似文献   

19.
In this study, effluent sludge from a high-rate Anammox reactor was used to re-start new Anammox reactors for the reactivation of Anammox granular sludge. Different start-up strategies were evaluated in six upflow anaerobic sludge blanket (UASB) reactors (R1–R6) for their effect on nitrogen removal performance. Maximal nitrogen removal rates (NRRs) greater than 20 kg N/m3/day were obtained in reactors R3–R5, which were seeded with mixed Anammox sludge previously stored for approximately 6 months and 1 month. A modified Boltzmann model describing the evolution of the NRR fit the experimental data well. An amount of sludge added to the UASB reactor or decreasing the loading rate proved effective in relieving the substrate inhibition and increasing the NRR. The modified Stover–Kincannon model fit the nitrogen removal data in the Anammox reactors well, and the simulation results showed that the Anammox process has great nitrogen removal potential. The observed inhibition in the Anammox reactors may have been caused by high levels of free ammonia. The sludge used to seed the reactors did not settle well; sludge flotation was observed even after the reactors were operated for a long time at a floating upward velocity (Fs) of greater than 100 m/h. The settling sludge, however, exhibited good settling properties. Scanning electron microscopy showed that the Anammox granules consisted mainly of spherical and elliptical bacteria with abundant filaments on their surface. Hollows in the granules were also present, which may have contributed to sludge floatation.  相似文献   

20.
An environmentally friendly chemical, tetrakis(hydroxymethyl)phosphonium sulfate (THPS), was used as a metabolic uncoupler to reduce sludge production in a pilot-scale anaerobic/anoxic/oxic process. The results show that the addition of THPS (1.08–1.86 mL/m3 influent) in the sludge return section could reduce waste activated sludge by about 22.5 %, and decrease the sludge yield by about 14.7 % at the end of a run. At the same time, the addition of THPS slightly lowered the removal of chemical oxygen demand (COD), soluble COD and NH4 +–N, and slightly improved removal of total nitrogen. The effects of THPS addition on two characteristics of activated sludge in oxic tank are discussed in detail and the results suggest that the settleability of sludge was reduced by addition of THPS, while the specific oxygen uptake rate was increased. Molecular biology analysis shows that the addition of THPS had little effect on the microbial communities of sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号