首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Two approaches to bioremediation of oil-polluted soils are compared: use of active degrader strain Dietzia maris AM3 and stimulation of natural microflora. Introduction of D. maris AM3 to soil freshly polluted with oil accelerated its remediation twofold within the first month in comparison with the stimulation. After three months, the purification degrees were approximately equal. By the end of bioremediation, the soil with the introduced strain had higher dehydrogenase and catalase activities. In soil with aged pollution, introduced strain D. maris AM3 did not affect the rate of oil product degradation, and no significant differences between the two bioremediation methods were detected in purification degree and biological activity of soil after three months.  相似文献   

2.
Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil–seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil–seawater interfaces. Biodegradation of n-alkanes were influenced both by seawater temperature and chain-length. Biotransformation rates of n-alkanes decreased by reduced seawater temperature. Low rate coefficients at a seawater temperature of 0 °C were probably associated with changes in physical–chemical properties of alkanes. The primary bacterial colonization of the interfaces was predominated by the family Oceanospirillaceae at all temperatures, demonstrating the wide temperature range of these hydrocarbonoclastic bacteria. The mesophilic genus Oleibacter was predominant at the seawater temperature of 20 °C, and the psychrophilic genus Oleispira at 5 and 0 °C. Upon completion of n-alkane biotransformation, other oil-degrading and heterotrophic bacteria became abundant, including Piscirickettsiaceae (Cycloclasticus), Colwelliaceae (Colwellia), Altermonadaceae (Altermonas), and Rhodobacteraceae. This is one of a few studies that describe the biodegradation of oil, and the microbial communities associated with the degradation, directly at the oil–seawater interfaces over a large temperature interval.  相似文献   

3.
The process of naphthalene degradation by indigenous, introduced, and transconjugant strains was studied in laboratory soil microcosms. Conjugation transfer of catabolic plasmids was demonstrated in naphthalene-contaminated soil. Both indigenous microorganisms and an introduced laboratory strain BS394 (pNF142::TnMod-OTc) served as donors of these plasmids. The indigenous bacterial degraders of naphthalene isolated from soil were identified as Pseudomonas putida and Pseudomonas fluorescens. The frequency of plasmid transfer in soil was 10?5–10?4 per donor cell. The activity of the key enzymes of naphthalene biodegradation in indigenous and transconjugant strains was studied. Transconjugant strains harboring indigenous catabolic plasmids possessed high salicylate hydroxylase and low catechol-2,3-dioxygenase activities, in contrast to indigenous degraders, which had a high level of catechol-2,3-dioxygenase activity and a low level of salicylate hydroxylase. Naphthalene degradation in batch culture in liquid mineral medium was shown to accelerate due to cooperation of the indigenous naphthalene degrader P. fluorescens AP1 and the transconjugant strain P. putida KT2442 harboring the indigenous catabolic plasmid pAP35. The role of conjugative transfer of naphthalene biodegradation plasmids in acceleration of naphthalene degradation was demonstrated in laboratory soil microcosms.  相似文献   

4.
A polyaromatic hydrocarbon degrading bacterium was isolated from a petroleum contaminated site and designated as Stenotrophomonas sp. strain IITR87. It was found to utilize pyrene, phenanthrene and benzo(a)pyrene as sole carbon source, but not anthracene, chrysene and fluoranthene. Gas chromatography and mass spectroscopy analysis resulted in identification of pyrene metabolites namely monohydroxypyrene, 4-oxa-pyrene-5-one, dimethoxypyrene and monohydroxyphenanthrene. Southern hybridization using naphthalene dioxygenase gene (nidA) as probe against the DNA of strain IITR87 revealed the presence of nidA gene. PCR analysis suggests dispersed occurrence of nid genes in the genome instead of a cluster as reported in a PAH-degrading Mycobacterium vanbaalenii PYR-1. The nid genes in strain IITR87, dioxygenase large subunit (nidA), naphthalene dioxygenase small subunit (nidB) and aldehyde dehydrogenase gene (nidD) showed more than 97 % identity to the reported nid genes from Mycobacterium vanbaalenii PYR-1. Most significantly, the biodegradation of PAHs was enhanced 25–60 % in the presence of surfactants rhamnolipid and Triton X-100 due to increased solubilization and bioavailability. These results could be useful for the improved biodegradation of high-molecular-weight PAHs in contaminated habitats.  相似文献   

5.
6.
We studied the specific growth rate, duration of the lag phase, stability of plasmids, and activities of the key enzymes involved in naphthalene biodegradation in rhizosphere pseudomonades carrying the structurally similar plasmids pOV17 and pBS216. It was demonstrated that these plasmids determined various levels of catechol-2,3-dioxygenase activities. The structural rearrangements in the plasmid pBS216 could “switch off” the genes of the catechol oxidation meta-pathway. It was shown that certain combinations of degradative plasmids and bacterial hosts, such as Pseudomonas chlororaphis PCL1391(pBS216), P. chlororaphis PCL1391(pOV17), and P. putida 53a(pOV17), were considerably more efficient than natural variants in their growth characteristics and the stability of the biodegradation activity, having a potential for bioremediation of soils polluted with polycyclic aromatic hydrocarbons (PAHs).  相似文献   

7.
Prospective methyl tert-butyl ether (MTBE) degrading bacterial strains and/or consortia were identified. The potential for aerobic degradation of MTBE was examined using bacterial isolates from contaminated soils and groundwater. Using the 16S rDNA protocol, two isolates capable of degrading MTBE (Rhodococcus pyridinivorans 4A and Achromobacter xylosoxidans 6A) were identified. The most efficient consortium of microorganisms was acquired from contaminated groundwater. The growth of both strains and the consortium on MTBE was supported by various organic substrates, and monitored using Bioscreen®. The biochemical oxygen demand of the cultures was measured using OxiTop®, and their MTBE concentrations were estimated by gas chromatography. After 3 weeks of aerobic cultivation using n-alkanes as cosubstrate, the concentration of MTBE in R. pyridinivorans 4A was reduced to 62.4 % of its initial amount (50 ppm).  相似文献   

8.
A total of 17 basidiomycete strains causing white rot and growing on oil-contaminated substrates have been screened. Three strains with high (Steccherinum murashkinskyi), average (Trametes maxima), and low (Pleurotus ostreatus) capacities for the colonization of oil-contaminated substrates have been selected. The potential for degrading crude oil hydrocarbons has been assessed with the use of fungi grown on nonsterile soil and peat at low temperatures. Candida sp. and Rhodococcus sp. commercial strains have been used as reference organisms with oil-degrading ability. All microorganisms introduced in oil-contaminated soil have proved to be ineffective, whereas the inoculation of peat with basidiomycetes and oil-degrading microorganisms accelerated the destruction of oil hydrocarbons. The greatest degradation potential of oil-aliphatic hydrocarbons has been found in S. murashlinskyi. T. maxima turned out to be the most successful in degrading aromatic hydrocarbons. It has been suggested that aboriginal microflora contributes importantly to the effectiveness of oil-destructing microorganisms. T. maxima and S. murashkinskyi strains are promising for further study as oil-oxidizing agents during bioremediation of oil-contaminated peat soil under conditions of low temperatures.  相似文献   

9.
Abiotic and biotic processes associated with the degradation of a light petroleum in brines close to the salt-saturation (~31 %) and the effect of labile organic matter (LOM) supply (casaminoacids/citrate; 0.2 and 0.1 % w/v, respectively) were followed during an incubation of 30 days. After 4-week incubation at 40 °C under light/dark cycles, a 24 % of abiotic degradation was observed in untreated brines. The stimulation of native brines community with LOM addition allowed an additional 12.8 % oil attenuation due to biodegradation processes. Successional changes in the active microbial community structure due to the oil contamination (16S rRNA DGGE approach) showed the selection of one phylotype affiliated to Salinibacter and the disappearance of Haloquadratum walsbyi in untreated brines. In LOM-amended microcosms, phylotypes related to Salinibacter, Haloarcula, Haloterrigena and Halorhabdus were selected. An effect of hydrocarbon contamination was only observed in the bacterial community with the inhibition of two dominant proteobacterial phylotypes. This study further confirms that short-term and moderate oil biodegradation is possible in LOM-stimulated brines. Biodegradation should be much more reduced under in situ conditions. Self-cleaning capacities of close to saturation hypersaline lakes appears, therefore very limited compared to non-extreme haline environments.  相似文献   

10.
Bioremediation as a method for removing polycyclic aromatic hydrocarbons (PAHs) from contaminated environments has been criticized for poor removal of potentially carcinogenic but less bioavailable high molecular weight (HMW) compounds. As a partial remedy to this constraint, we studied surfactant addition at sub-micellar concentrations to contaminated soil to enhance the biodegradation of PAHs remaining after conventional aerobic bioremediation. We demonstrated increased removal of four- and five-ring PAHs using two nonionic surfactants, polyoxyethylene(4)lauryl ether (Brij 30) and polyoxyethylene sorbitol hexaoleate (POESH), and analyzed bacterial community shifts associated with those conditions. Eight groups of abundant bacteria were implicated as potentially being involved in increased HMW PAH removal. A group of unclassified Alphaproteobacteria and members of the Phenylobacterium genus in particular showed significantly increased relative abundance in the two conditions exhibiting increased PAH removal. Other implicated groups included members of the Sediminibacterium, Terrimonas, Acidovorax, and Luteimonas genera, as well as uncharacterized organisms within the families Chitinophagaceae and Bradyrhizobiaceae. Targeted isolation identified a subset of the community likely using the surfactants as a growth substrate, but few of the isolates exhibited PAH-degradation capability. Isolates recovered from the Acidovorax and uncharacterized Bradyrhizobiaceae groups suggest the abundance of those groups may have been attributable to growth on surfactants. Understanding the specific bacteria responsible for HMW PAH removal in natural and engineered systems and their response to stimuli such as surfactant amendment may improve bioremediation efficacy during treatment of contaminated environmental media.  相似文献   

11.
Bacterial community and diversity in a long-term petroleum-contaminated soil of an oilfield were characterized using 16S rRNA gene-based Illumina MiSeq high-throughput sequencing. Results indicated that Proteobacteria (49.11%) and Actinobacteria (24.24%) were the most dominant phyla, and the most abundant genera were Pseudoxanthomonas (8.47%), Luteimonas (3.64%), Alkanindiges (9.76%), Acinetobacter (5.26%) and Agromyces (8.56%) in the soil. Meanwhile a series of cultivations were carried out for isolation of alkane degraders from petroleum-contaminated soil with gellan gum and agar as gelling agents. And the isolates were classified by their 16S rRNA genes. Nine of the isolates including Enterobacter, Pseudomonas,Acinetobacter, Rhizobium, Bacillus, Sphingomonas, Paenibacillus, Variovorax and Rhodococcus showed strong biodegradability of alkane mixture (C9–C30) in a wide range of chain-length, which could be potentially applied in enhancement of bioremediation.  相似文献   

12.
From the leaves of three urban trees (Tilia sp., Acer sp., and Fraxinus sp.), 180 strains degrading phenanthrene, naphthalene, and salicylate were isolated by direct plating and enrichment cultures. The leaves of each tree species were characterized by a specific profile of aromatic hydrocarbon-degrading microflora. Members of the type Actinobacteria were predominant in the case of direct plating on media with phenanthrene and naphthalene. Enrichment cultures with phenanthrene and salicylate were shown to yield microbial consortia, the composition of which changed with time. Members of the type Proteobacteria were predominant in these consortia. No plasmids of polycyclic aromatic hydrocarbon degradation of the P-7 and P-9 incompatibility groups were revealed in the studied strains.  相似文献   

13.
The biodegradation potential of insensitive munition melt cast formulations IMX101 and IMX104 was investigated in two unamended training range soils under aerobic and anaerobic growth conditions. Changes in community profiles in soil microcosms were monitored via high-throughput 16S rRNA sequencing over the course of the experiments to infer key microbial phylotypes that may be linked to IMX degradation. Complete anaerobic biotransformation occurred for IMX101 and IMX104 constituents 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one during the 30-day incubation period with Camp Shelby (CS) soil. By comparison, soil from Umatilla chemical depot demonstrated incomplete DNAN degradation with reduced transformation rates for both IMX101 and IMX104. Aerobic soil microcosms for both soils demonstrated reduced transformation rates compared to anaerobic degradation for all IMX constituents with DNAN the most susceptible to biotransformation by CS soil. Overall, IMX constituents hexahydro-1,3,5-trinitro-1,3,5-triazine and 1-nitroguanidine did not undergo significant transformation. In CS soil, organisms that have been associated with explosives degradation, namely members of the Burkholderiaceae, Bacillaceae, and Paenibacillaceae phylotypes increased significantly in anaerobic treatments whereas Sphingomonadaceae increased significantly in aerobic treatments. Collectively, these data may be used to populate fate and transport models to provide more accurate estimates for assessing environmental costs associated with release of IMX101 and IMX104.  相似文献   

14.
In recent years, some marine microbes have been used to degrade diesel oil. However, the exact mechanisms underlying the biodegradation are still poorly understood. In this study, a hypothermophilous marine strain, which can degrade diesel oil in cold seawater was isolated from Antarctic floe-ice and identified and named as Rhodococcus sp. LH. To clarify the biodegradation mechanisms, a gas chromatography-mass spectrometry (GC-MS)-based metabolomics strategy was performed to determine the diesel biodegradation process-associated intracellular biochemical changes in Rhodococcus sp. LH cells. With the aid of partial least squares-discriminant analysis (PLS-DA), 17 differential metabolites with variable importance in the projection (VIP) value greater than 1 were identified. Results indicated that the biodegradation of diesel oil by Rhodococcus sp. LH was affected by many different factors. Rhodococcus sp. LH could degrade diesel oil through terminal or sub-terminal oxidation reactions, and might also possess the ability to degrade aromatic hydrocarbons. In addition, some surfactants, especially fatty acids, which were secreted by Rhodococcus into medium could also assist the strain in dispersing and absorbing diesel oil. Lack of nitrogen in the seawater would lead to nitrogen starvation, thereby restraining the amino acid circulation in Rhodococcus sp. LH. Moreover, nitrogen starvation could also promote the conversation of relative excess carbon source to storage materials, such as 1-monolinoleoylglycerol. These results would provide a comprehensive understanding about the complex mechanisms of diesel oil biodegradation by Rhodococcus sp. LH at the systematic level.  相似文献   

15.
Medical bioremediation is a unique strategy of targeting pathogenic compounds with an exogenous enzyme of microbial origin. The objective of this study was to isolate and screen the microorganisms from diverse environmental samples for their ability to catabolize 7-ketocholesterol. Isolation of bacterial strains was performed and molecular identification was carried out by amplification and sequencing of 16S rDNA for 4 the best degrader isolates. Degradation was confirmed on the basis of UV spectrophotometric and HPLC analysis. Four bacterial isolates, showing high catabolic activity towards 7-ketocholesterol were isolated: Alcanivorax jadensis IP4 (accession number KP309836; sea water sediment), Streptomyces auratus IP2 (accession number KP309837; soil), Serratia marcescens IP3 (accession number KP309838; soil) and Thermobifida fusca IP1 (accession number KM677184; manure piles). All the isolates were capable of utilizing 7-ketocholesterol as the sole organic substrate, resulting in its mineralisation. The most rapid degradation was observed with A. jadensis IP4 followed by T. fusca IP1. The degradation was followed and analyzed by HPLC. A. jadensis IP4 removed 7-ketocholesterol below detection levels within 8 days.  相似文献   

16.
Present study was aimed to select a suitable Trichoderma isolate as candidate antagonist based on its efficacy in producing cell wall degrading enzymes (CWDEs), its mycoparasitism activity and expression of related genes against the red rot pathogen caused by Colletotrichum falcatum in sugarcane. For which, six different isolates of Trichoderma selected from our earlier studies (T. harzianum, T. asperullum) were evaluated based on their capability in releasing cell wall degrading enzymes individually and during antagonism with C. falcatum in dual plate. Amongst T. harzianum (T20) exhibited the greatest mycoparasitic potential against the C. falcatum, by producing higher concentration of  CWDEs viz., chitinase and β-1, 3-glucanase, slightly lower amounts of cellulase and protease with significant reduction in polygalacturonase produced by pathogen. Further microscopic observation on interaction of C. falcatum with the selected isolate of T. harzianum (T20) exhibited the mycoparasitic activity of antagonist over pathogen in dual culture and inhibition of C. falcatum pathogenesis in detached sugarcane leaves. In addition, expression pattern of eight genes coding various enzymes involved in mycoparasitism by T. harzianum over C. falcatum were analyzed using qRT-PCR in vitro and on sugarcane leaves. In in vitro interactions, five genes of  cell wall degrading enzymes viz., chitinase (chit33), endochitinase (endo42), β-1, 3-glucanase (glu), exochitinase 1 (exc1), exochitinase 2 (exc2), were upregulated during and after contact as compared to before contact, while three genes related with proteases such as alkaline proteinase (prb1), trypsin-like protease (Pra1), subtilin-like serine protease (ssp), genes were upregulated during the contact with C. falcatum and slightly down regulated after contact. In detached leaves, seven genes were potentially upregulated except subtilin-like serine protease, which was down regulated during interaction of C. falcatum and T. harzianum as compared to T. harzianum inoculation alone. All these biochemical and molecular results confirm the efficacy of T. harzianum (T20) against C. falcatum and justify the right selection of candidate antagonist for our further studies on identification of antifungal genes/proteins against C. falcatum in sugarcane.  相似文献   

17.
Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R 2 = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.  相似文献   

18.
19.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

20.
Bacillus amyloliquefaciens strain WF02, isolated from soil collected at Wufeng Mountain, Taiwan, has siderophore-producing ability and in vitro antagonistic activity against bacterial wilt pathogen. To determine the impact of plant genotype on biocontrol effectiveness, we treated soil with this strain before infecting susceptible (L390) and moderately resistant (Micro-Tom) tomato cultivars with Ralstonia solanacearum strain Pss4. We also compared the efficacy of this strain with that of commercial Bacillus subtilis strain Y1336. Strain WF02 provided longer lasting protection against R. solanacearum than did strain Y1336 and controlled the development of wilt in both cultivars. To elucidate the genetic responses in these plants under WF02 treatment, we analyzed the temporal expression of defense-related genes in leaves. The salicylic acid pathway-related genes phenylalanine ammonia-lyase and pathogenesis-related protein 1a were up-regulated in both cultivars, whereas expression of the jasmonic acid pathway-related gene lipoxygenase was only elevated in the susceptible tomato cultivar (L390). These results suggest that WF02 can provide protection against bacterial wilt in tomato cultivars with different levels of disease resistance via direct and indirect modes of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号