首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipid-deacylating enzymes of rat stomach mucosa   总被引:3,自引:0,他引:3  
1. Rat stomach mucosa exhibited three distinguishable phospholipid-deacylating enzyme activities: lysophospholipase, phospholipase A1 and phospholipase A2. 2. The lysophospholipase hydrolyzed 1-palmitoyl lysophosphatidylcholine to free fatty acid and glycerophosphorylcholine. This enzyme had an optimum pH of 8.0, was heat labile, did not require Ca2+ for maximum activity and was not inhibited by bile salts or buffers of high ionic strength. 3. Phospholipase A2 and phospholipase A1 deacylated dipalmitoyl phophatidylcholine to the corresponding lyso compound and free fatty acid. The specific activity of phospholipase A2 was 2--4-fold higher than that of phospholipase A1 under all the conditions tested. Both activities were enhanced 4--7.5-fold in the presence of bile salts at alkaline pH and 11-18-fold at acidic pH. 4. In the absence of bile salts, phospholipase A1 exhibited pH optima at 6.5 and 9.5 and phospholipase A2 at pH 6.5, 8.0 and 9.5. The pH optima for phospholipase A1 were shifted to pH 3.0, 6.0 and 9.0 in presence of sodium taurocholate; the activity was detected only at a single pH of 9.5 in the presence of sodium deoxycholate and at pH 10.0 in the presence of sodium glycocholate. Phospholipase A2 optimum activity was displayed at pH 3.0, 6.0 and 8.0 in presence of taurocholage, pH 7.5 and 9.0, in presence of glycocholate and only at pH 9.0 in presence of deoxycholate. 5. Ca2+ was essential for optimum activity of phospholipases A1 and A2. But phospholipase A1 lost complete activity in presence of 0.5 mM ethyleneglycolbis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) at pH 6.0, whereas phospholipase A2 lost only 50%. 6. Phospholipases A1 and A2 retained about 50% of their activities by heating at 75 degrees for 10 min. At 100 degrees, phospholipase A1 retained 22% of its activity, whereas phospholipase A2 retained only 7%.  相似文献   

2.
In mammalian cells the catabolism of membrane phosphoglycerides proceeds probably entirely through a deacylation pathway catalysed by phospholipase A and lysophospholipase (Wise & Elwyn, 1965). In the initial attack of diacylphosphoglycerides by phospholipase A two enzymatic activities with different positional specificities have been distinguished: phospholipase A1 (phosphatidate 1-acyl hydrolase EN 3.1.1.32) and phospholipase A2 (phosphatidate 2-acyl hydrolase EN 3.1.1.4) (Van Deenen & De Haas, 1966). Studies on these intracellular phospholipases were mainly concerned with their subcellular localization. Only occasionally more detailed enzymatic investigations have been conducted on them, in contrast to export phospholipases e.g. from snake venom, bee venom and porcine pancreas, which have been extensively investigated (Brockerhoff & Jensen 1974a). In a previous paper (De Wolf et al., 1976a), the presence of phospholipase A1 and phospholipase A2 activities in bovine thyroid was demonstrated, using 1-[9, 10-3H] stearoyl-2-[1-14C] linoleyl-sn-glycero-3-phosphocholine as a substrate. Optimal activity was observed in both instances at pH 4. Addition of the anionic detergent sodium taurocholate increased the A2 type activity and decreased the A1 type activity suggesting the presence of different enzymes. The lack of influence of Ca2+-ions and EDTA and the acid pH optima could suggest lysosomal localization. In this paper the subcellular distribution of both acid phospholipase activities is described as well as a purification scheme for phospholipase A1. Some characteristics of the purified enzyme preparation are discussed.  相似文献   

3.
The release of arachidonate was stimulated by lipopolysaccharides (LPS) from phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) in a murine macrophage-like cell line, RAW264.7. We measured phospholipase activities in cell-free homogenates of macrophages with 2-arachidonyl PC, PE, and PI as substrates. The activities of two phospholipases A2, catalyzing cleavage of arachidonate preferentially either from PC or PE, were detected. These two phospholipase A2 activities showed different pH optima and Ca2+ requirements; the cleavage of arachidonate from PC showed an optimal pH of 7.0 and was Ca2+-dependent, while that from PE showed an optimal pH of 7.5 but was Ca2+-independent. The cleavage of arachidonate from PI showed a different pH profile and was Ca2+-dependent, and diglyceride (DG) was detected as well as arachidonate, suggesting that both phospholipase C and DG lipase participate in this reaction. We next examined these phospholipase activities in homogenates of macrophages pretreated with LPS. All of the phospholipase activities increased at 0.5 h after LPS treatment, and this level was retained for more than 2 h in 2-arachidonyl PC degradation, continued up to 1 h and then dropped to the control level in 2-arachidonyl PE degradation, and suddenly dropped to the control level after 0.5 h in 2-arachidonyl PI degradation. These results suggest that the cleavage of 2-arachidonate from PC, PE, and PI is essentially catalyzed through different pathways, two phospholipase A2 activities being involved in PC and PE breakdown, and phospholipase C and DG lipase activities in PI breakdown, and that the activities of these substrate-specific phospholipases change in response to LPS treatment in macrophages.  相似文献   

4.
In both supernatant and sediment of thyroid tissue homogenate phospholipase and lysophospholipase activities were demonstrated. In the supernatant, using 1-acyl-2[1-14C]linoleoyl-sn-glycero-3-phosphorocholine in the presence of sodium taurocholate, phospholipase A1 activity with pH optima at 3.6 and 4.8 and phospholipase A2 activity with pH optima at 3.6 and 5.7 were found. The sediment showed mainly phospholipase A2 activity with a pH optimum at pH 6.5. Lysophospholipase activity (optimum pH 7--8), USING 1-[9,10-(3)H]stearyl-sn-glycero-3-phosphorocholine as a substrate was present in both supernatant and sediment. Enzyme assays performed on subcellular fractions suggest the soluble phospholipases to be of lysosomal origin and the solubilized phospholipase A2 activity of homogenate sediment to be of microsomal origin. Incubations with 3H-14C mixed labelled phosphatidylcholine further confirmed the above observations.  相似文献   

5.
Monoclonal antibodies against rat liver mitochondrial phospholipase A2 were used to develop a rapid immunoaffinity chromatography for enzyme purification. The purified enzyme showed a single band upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The sequence of the N-terminal 24 amino acids was determined. This part of the sequence showed only 25% homology with that of rat pancreatic phospholipase A2 but was 96% identical to that of rat platelet and rat spleen membrane-associated phospholipase A2. These enzymes are distinguished from pancreatic phospholipases A2 by the absence of Cys-11. In rat liver phospholipase A2 activity has been reported in various subcellular fractions. All of these require Ca2+ and have a pH optimum in the alkaline region, but little is known about the structural relationship and quantitative distribution of these enzymes. We have investigated these points after solubilization of the phospholipase A2 activity from total homogenates and crude subcellular fractions by extraction with 1 M potassium chloride. Essentially all of the homogenate activity could be solubilized by this procedure indicating that the enzymes occurred in soluble or peripherally membrane-associated form. Gel filtration and immunological cross-reactivity studies indicated that phospholipases A2 solubilized from membrane fractions shared a common epitope with the mitochondrial enzyme. The quantitative distribution of the immunopurified enzyme activity among subcellular fractions followed closely that of the mitochondrial marker cytochrome c oxidase. Rat liver cytosol contained additional Ca2+-dependent and -independent phospholipase activities.  相似文献   

6.
Activities of membrane-associated phospholipases A1 and A2, and membrane-associated as well as soluble lysophospholipases were measured in different subcellular fractions of rat liver, using suspensions of stereospecifically labelled radioactive phospholipids as substrates. Plasma membranes and endoplasmic reticulum were shown to contain phospholipase A1 and lysophospholipase activities, both of which could be stimulated by Ca2+, mitochondria Ca2+-dependent phospholipase A2 and cytosol Ca2+-independent lysophospholipase activities. Each of these lipolytic enzymes could be inhibited by antimalarial drugs (chloroquine, mepacrine, primaquine) at concentrations above 1 x 10(-4) M. Inhibition of the alkaline cytosolic lysophospholipase by these drugs was noncompetitive with respect to the substrate, and the inhibitory potency increased, when the pH was raised.  相似文献   

7.
We have found a phospholipase D activity in the postnuclear fraction of human neutrophils, employing phosphatidylinositol as exogenous substrate. This phospholipase D activity was assessed by both phosphatidate formation and by free inositol release in the presence of 15 mM LiCl in the reaction mixture and in the absence of Mg2+ ions to prevent inositol-1-phosphate phosphatase activity. To assess further the phospholipase D activity, we studied its capacity to catalyze a transphosphatidylation reaction, as a unique feature of the enzyme. It was detected as [14C]phosphatidylethanol formation when the postnuclear fraction was incubated with [14C]phosphatidylinositol in the presence of ethanol. The phospholipase D showed a major optimum pH at 7.5 and a minor one at pH 5.0. Neutral and acid phospholipase D activities were differentially located in subcellular fractionation studies of resting neutrophils, namely in the cytosol and in the azurophilic granules, respectively. Neutral phospholipase D required Ca2+ ions to the active, whereas the acid enzyme activity was Ca2(+)-independent. The neutral phospholipase D activity showed a certain specificity for phosphatidylinositol, as it was able to hydrolyze phosphatidylinositol at a much higher rate than phosphatidylcholine, in the absence and in the presence of different detergents. This neutral phospholipase D activity behaved as a protein of high molecular mass (350-400 kDa) by gel filtration chromatography. Moreover, neutral phospholipase D activity was detected in the postnuclear fraction of human monocytes, by measuring free inositol release from phosphatidylinositol as exogenous substrate, under the same experimental conditions as those used with neutrophils. The enzyme displayed similar specific activities in both cell types as well as the same degree of activation after cell stimulation with the calcium ionophore A23187. These results demonstrate the existence of two phospholipase D activities with different pH optima and intracellular location in human neutrophils. Furthermore, these results suggest that this phospholipase D can play a role in signal-transducing processes during cell stimulation in human phagocytes.  相似文献   

8.
Phospholipase A2 activity was studied in the renal cortex and medulla of stroke-prone spontaneously hypertensive rat (SHRSP) and normotensive rat (WKY), and the subcellular localization of its activity was determined. Enhanced activity was found in both the cortical and medullary microsomes in SHRSP kidneys. In SHRSP, but not in WKY, phospholipase A2 activity progressively increased with age. This phospholipase A2 had substrate specificity toward phosphatidylethanolamine. There were no differences in optimal pH, substrate specificity, heat lability, and responses to Triton X-100 and deoxycholate between SHRSP and WKY. Ca2+ stimulated phospholipase A2 activity in both animals. The maximal activation was achieved at 5 mM Ca2+, and EDTA strongly inhibited the activity. But the response to Ca2+ was different in each. Ca2+ enhanced this activity in SHRSP markedly compared with WKY. It seems that Ca2+ is specifically required for phospholipase A2 activity in SHRSP. Though the influx of Ca2+ into microsomal membranes was not enhanced, the Ca2+ efflux of microsomal membranes decreased in SHRSP. This results in increases of intramicrosomal Ca2+, which may cause the subsequent activation of phospholipase A2. The Ca2+ permeability may be one of the factors in the increased phospholipase A2 activity in SHRSP.  相似文献   

9.
Phospholipase activity was studied in the protozoan Tetrahymena pyriformis NT-1 by using exogenous phosphatidylethanolamine and phosphatidylcholine. Several phospholipase activities were found in Tetrahymena homogenates. They were distinguished with respect to pH optimum, activity dependence on Ca2+, substrate specificity and positional specificity. Ca2+-Dependent phospholipase activity had an optimal pH around 9 and gave rise to free fatty acid and lysophospholipid. This enzyme hydrolyzes phosphatidylethanolamine but not phosphatidylcholine. The alkaline phospholipase with A1 activity was located mainly in the surface membrane (pellicle fraction). The enzyme activity had a pH optimum ranging from 8 to 9, and required 2 mM CaCl2 for the maximal activity. All detergents tested inhibited the enzyme activity. Ca2+-Independent phospholipase activity had an optimal pH from 4 to 5 and gave rise to free fatty acid, lysophospholipid, diacylglycerol, and monoacylglycerol. We concluded that there are at least three phospholipase in Tetrahymena homogenates, i.e., alkaline phospholipase A and acidic phospholipases A and C.  相似文献   

10.
Polymorphonuclear leukocytes obtained from sterile peritoneal exudates in rabbits contain two phospholipid-splitting activities (phosphatidylacylhydrolases EC 3.1.1.4), one most active at pH 5.5 and the other between pH 7.2 and 9.0. Hydrolysis of phospholipid was demonstrated using Escherichia coli labeled during growth with [1-(14)C]oleate and then autoclaved to inactivate E. coli phospholipases and to increase the accessibility of the microbial phospholipid substrates. The acid and alkaline phospholipase activities are both membrane bound, calcium dependent, and heat stable, and they appear to be specific for the 2-acyl position of phospholipids. Evidence was also obtained suggesting that the E. coli envelope phospholipids with oleate in position 2 are more readily degraded than those with palmitate. The two activities are associated with azurophilic as well as specific granules (obtained by zonal centrifugation) and with phagosomes (isolated after ingestion of paraffin particles by the granulocytes). Phospholipase A activities at pH 5.5 and pH 7.5 degrade the two major phospholipids of E. coli, phosphatidylethanolamine and phosphatidylglycerol, to the same extent, but the phospholipase activity at acid pH does not hydrolyze micellar dispersions of phosphatidylethanolamine. By contrast, phospholipase A(2) activity at pH 7.5 degrades both types of phosphatidylethanolamine substrates. Heparin and chondroitin sulfate inhibit phospholipase activity at pH 5.5 but have little effect on activity at pH 7.5. All detergents tested inhibited phospholipase activity, and both activities are inhibited by reaction products, free fatty acid and lysophosphatidylethanolamine. This product inhibition is only partially prevented by addition of albumin. Supernatant fractions of granulocyte homogenates contain a heat-labile inhibitor of granule phospholipase activity at pH 7.5. Boiling the fraction not only removes the inhibition but actually results in stimulation of hydrolysis at pH 7.5 as well as pH 5.5. These granule-associated phospholipase A activities of polymorphonuclear leukocytes differ in several of their properties from granule or lysosomal phospholipases of other phagocytic cells.  相似文献   

11.
Previously it has been shown that the binding of porcine pancreatic phospholipase A2 to lipid-water interfaces is governed by the pK of the alpha-NH3+ group of the N-terminal alanine. Chemically modified phospholipases A2 in which the N-terminal Ala has been replaced by D-Ala or in which the polypeptide chain has been elongated with DL-Ala no longer display activity toward micellar substrate. The activity of DL-Ala-1-, [D-Ala1]-, and [Gly1]phospholipases A2 on substrate monolayers, which allow a continuous change in the packing density of the lipid molecule, was investigated. At pH 6 [Gly1]phospholipase A2 behaves like the native enzyme on lecithin monolayers. DL-Ala1- and [D-Ala1]phospholipases A2, although they are active in this system, showed a weaker lipid penetration capacity at this pH. Studies on the pH and Ca2+ ion dependency of the pre-steady-state kinetics and of the activity of these radiolabeled proteins showed that [D-Ala1]phospholipase A2 does not possess a second low-affinity site for Ca2+ ions in contrast to the native phospholipase A2. This second low-affinity Ca2+ binding site, which is also absent in [Gly1]phospholipase A2, is induced in the latter enzyme by the presence of lipid-water interfaces.  相似文献   

12.
Phosphatidylinositol-specific phospholipase C of murine lymphocytes   总被引:3,自引:0,他引:3  
Phosphatidylinositol-specific phospholipase C (PI-phospholipase C) was found primarily in the cytosolic fraction of murine splenic lymphocytes. However, small but significant amounts of the activity of the enzyme were detected in the microsome and plasma membrane fractions. Both the cytosolic and membrane-bound phospholipases C specifically hydrolyzed inositol phospholipids, phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. PI-Phospholipase C activity was detected in the cytosolic and microsome fractions from both T-cell-enriched and B-cell-enriched spleen cells. The membrane-bound enzyme was distinguishable from the cytosolic enzyme in the following properties. The cytosolic PI-phospholipase C showed optimal activity at pH 6.0 while the membrane-bound enzyme had two pH optima between pH 5.0 and 7.0. The activity of the cytosolic enzyme was first detected at 1 microM Ca2+, and maximum activity was observed at 100 microM Ca2+, while the membrane-bound PI-phospholipase C required higher Ca2+ concentrations, of millimolar order. The membrane-bound enzyme could hardly be extracted with 1 M NaCl but was extracted with 0.4% cholate.A portion of the membrane-bound PI-phospholipase C activity in the cholate extract was absorbed by concanavalin A-Sepharose and specifically eluted with an alpha-methylmannoside solution. The cytosolic enzyme, which was water soluble, did not bind to concanavalin A-Sepharose. Trypsinization of lymphocytes before subcellular fractionation caused a significant decrease in the PI-phospholipase C activity in the microsome fraction but almost no loss at all of the cytosolic enzyme activity.  相似文献   

13.
The metabolism of phosphatidylcholine (PC) was investigated in sonicated suspensions of bovine pulmonary artery endothelial cells and in subcellular fractions using two PC substrates: 1-oleoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho[14C]choline. When these substrates were incubated with the whole cell sonicate at pH 7.5, all of the metabolized 3H label was recovered in [3H]oleic acid (95%) and [3H]diacylglycerol (5%). All of the 14C label was identified in [14C]lysoPC (92%) and [14C]phosphocholine (8%). These data indicated that PC was metabolized via phospholipase(s) A and phospholipase C. Substantial diacylglycerol lipase activity was identified in the cell sonicate. Production of similar proportions of diacylglycerol and phosphocholine and the low relative activity of phospholipase C compared to phospholipase A indicated that the phospholipase C-diacylglycerol lipase pathway contributed little to fatty acid release from the sn-2 position of PC. Neither phospholipase A nor phospholipase C required Ca2+. The pH profiles and subcellular fractionation experiments indicated the presence of multiple forms of phospholipase A, but phospholipase C activity displayed a single pH optimum at 7.5 and was located exclusively in the particulate fraction. The two enzyme activities demonstrated differential sensitivities to inhibition by p-bromophenacylbromide, phenylmethanesulfonyl fluoride and quinacrine. Each of these agents inhibited phospholipase A, whereas phospholipase C was inhibited only by p-bromophenacylbromide. The unique characteristics observed for phospholipase C activity towards PC indicated the existence of a novel enzyme that may play an important role in lipid metabolism in endothelial cells.  相似文献   

14.
H Kunze  B M L?ffler  M Schmidt 《FEBS letters》1988,236(2):388-390
Cultured rat hepatocytes exhibit acid phospholipase A activity. On the basis of product formation from stereospecifically radiolabeled phosphatidylethanolamine substrates, phospholipases A1 and A2 have been identified with optimal activities at pH 4.5. According to subcellular fractionation studies, the acid phospholipases in hepatocytes appear to be located in the lysosomal compartment. Application of specific inhibitors of the biosynthesis, glycosylation, and translocation of lysosomal enzymes in hepatocyte cultures suggests a half-life of approx. 1 day for the acid lysosomal phospholipase A1. About the same value for the half-life was obtained for the lysosomal marker enzymes, acid phosphatase and beta-N-acetyl-D-hexosaminidase.  相似文献   

15.
Rat platelets released phospholipase A2 and lysophospholipase upon activation with thrombin or ADP. The release of phospholipases was energy-dependent and was not in parallel with that of a known lysosomal marker enzyme, N-acetyl-beta-D-glucosaminidase. The phospholipases are derived from other granules (dense granules or alpha-granules) rather than lysosomal granules of the cells. All of the activities of both phospholipases in the cell free fraction obtained from the activated platelet reaction mixture was recovered in the supernatant after centrifugation at 105,000 X g. The degree of hydrolysis of phospholipids by the phospholipase A2 followed the order: phosphatidylethanolamine (PE) greater than phosphatidylserine (PS) greater than phosphatidylcholine (PC). Phospholipase A2 shows a broad pH optimum (greater than pH 7.0) and absolutely requires Ca2+. Lysophospholipase was specific to lysophosphatidylserine (lysoPS), and neither lysophosphatidylethanolamine (lysoPE) nor lysophosphatidylcholine (lysoPC) was hydrolyzed appreciably. Both 1-acyl- and 2-acyl-lysophosphatidylserine were equally hydrolyzed. Lysophospholipase activity shows similar pH optimum to phospholipase A2. The lysophospholipase activity was lost easily at 60 degrees C. The activity was reduced by the presence of EDTA, though low but distinct activity was observed even in the presence of EDTA. Addition of Ca2+ to the mixtures restores the full activity.  相似文献   

16.
Some properties (catalytic and hemolytic activity, pH and temperature optima, stability, substrate specificity, effects of detergents and metal ions, N-terminal sequence, chemical modification of histidine in the enzyme active center, etc.) of phospholipase A2 from hornet (Vespa orientalis) venom were studied. It was shown that phospholipase A2 from hornet venom differs essentially from other enzymes of this species in terms of stability, catalytic properties and structural features. The active center of the enzyme contains an essential histidine residue, similar to other phospholipases A2 from various sources. Unlike other known forms of phospholipase A2, the enzyme under study exerts a pronounced hemolytic action. The hemolysis is inhibited by Ca2+ at concentrations capable of inducing the activation of the hydrolytic activity of the enzyme.  相似文献   

17.
1.1. Lysosome-enriched fractions were prepared by differential centrifugation of homogenates of luteinized rats ovaries. Acid phospholipase A activities were characterized with [U-14C]diacyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-[9,10-3H]- or [1-14C]oleoyl-sn-glycero-3-phosphocholine as substrates. Acid phospholipase A1 activity had properties similar to other hydrolases of lysosomal origin; subcellular distribution, latency and acidic pH optimum. Acid phospholipase A2 activity with similar characteristics was also tentatively identified. We were unable to exclude the possibility that the combined action of phospholipase A1 and lysophospholipase contributed to the release of acyl moieties from the 2-position of the synthetic substrates. 2. Lysophospholipase activity was present in the lysosome-enriched fractions. This activity had an alkaline pH optimum. 3. Phospholipase A1 and A2 activities solubilized from lysosome fractions by freeze-thawing were inhibited by Ca2+ and slightly activated by EDTA. A Ca2+- stimulated phospholipase A2 activity, with an alkaline pH optimum, remained in the particulate residue of freeze-thawed lysosome preparations. This activity is believed to represent mitochondrial contamination. 4. Activities of acid phospholipase A, as well as other acid hydrolases, increased approx. 1.5-fold between 1 and 4 days following induction of luteinizatin, suggesting a hormonal influence on lysosomal enzyme activities.  相似文献   

18.
The release of free arachidonic acid from membrane phospholipids is believed to be the rate-controlling step in the production of the prostaglandins, leukotrienes, and related metabolites in inflammatory cells such as the macrophage. We have previously identified several different phospholipases in the macrophage-like cell line P388D1 potentially capable of controlling arachidonic acid release. Among them, a membrane-bound, alkaline pH optimum, Ca2+-dependent phospholipase A2 is of particular interest because of the likelihood that the regulatory enzyme has these properties. This phospholipase A2 has now been solubilized from the membrane fraction with octyl glucoside and partially purified. The first two steps in this purification are butanol extractions that yield a lyophilized, stable preparation of phospholipase A2 lacking other phospholipase activities. This phospholipase A2 shows considerably more activity when assayed in the presence of glycerol, regardless of whether the substrate, dipalmitoylphosphatidylcholine, is in the form of sonicated vesicles or mixed micelles with the nonionic surfactant Triton X-100. Glycerol (70%) increases both the Vmax and the Km with both substrate forms, giving a Vmax of about 15 nmol min-1 mg-1 and an apparent Km of about 60 microM for vesicles and a Vmax of about 100 nmol min-1 mg-1 and an apparent Km of about 1 mM for mixed micelles. Vmax/Km is slightly greater for vesicles than for mixed micelles. The lyophilized preparation of the enzyme is routinely purified about 60-fold and is suitable for evaluating phospholipase A2 inhibitors such as manoalide analogues. Subsequent steps in the purification are acetonitrile extraction followed by high performance liquid chromatography on an Aquapore BU-300 column and a Superose 12 column. This yields a 2500-fold purification of the membrane-bound phospholipase A2 with a 25% recovery and a specific activity of about 800 nmol min-1 mg-1 toward 100 microM dipalmitoylphosphatidylcholine in mixed micelles. When this material was subjected to analysis on a Superose 12 sizing column, the molecular mass of the active fraction was approximately 18,000 daltons.  相似文献   

19.
B M L?ffler  H Kunze 《FEBS letters》1987,216(1):51-56
Human liver was homogenised and fractionated by differential centrifugation, and the subcellular fractions were characterised biochemically. Absolute values and distribution patterns of protein and marker enzyme activities obtained from human liver have also been compared with those from rat liver. In addition, acid phospholipase activities have been studied in human liver. On the basis of product formation from stereo-specifically radiolabeled phosphatidylethanolamine substrates, lysosomal phospholipases A1 and A2 with optimal activities at pH 4.7 have been identified in human liver. Acid phospholipase C and lysophospholipase activities, however, were not found in human liver. Cationic amphiphilic drugs inhibited the activities of the acid phospholipases A in human and rat liver lysosomes to about the same extent.  相似文献   

20.
We demonstrate that both phospholipase A1 and phospholipase A2 are associated with isolated yeast mitochondria (Saccharomyces cerevisiae). Activity assays indicate that, unlike most other mitochondrial phospholipases A, the yeast enzymes are Ca(2+)-independent with acidic (pH 4-5) as well as alkaline (pH 8-9) pH optima. Data obtained with mitochondria isolated from either fermenting or respiring cells, and initial observations with a petite strain, strongly suggest that a phospholipase A2 with an acidic pH optimum functions in the in vivo adaptation and maintenance of mitochondrial membranes required for respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号