首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The rapid growth of vehicle sales and usage has highlighted the need for greenhouse gas (GHG) emission reduction in Macau, a special administrative region (SAR) of China. As the most primary vehicle type, light-duty vehicles (LDV, including light-duty gasoline vehicles (LDGVs) and light-duty diesel vehicles (LDDVs)) play a key role in promoting the GHG reduction and development of green transportation system in Macau.

Methods

This study, on the basis of real-world tested and statistical data, firstly performed a streamlined life-cycle assessment (SLCA) on LDVs, to evaluate the potential GHG emissions and reduction through shifting to hybrid electric vehicles (HEVs) and electric vehicles (EVs).

Results and discussion

The results show that the mean GHG emissions from the LDGVs, LDDVs, and HEVs per 100 km were 25.16, 20.30, and 15.00 kg CO2 eq, respectively. Under the current electricity mix in Macau, EVs with the emissions of 12.39 kg CO2 eq/100 km can achieve a significant GHG emission reduction of LDVs in Macau. The total GHG emissions from LDVs increased from 124.99 to 247.82 thousand metric tons over the periods 2001–2014, with a 5.42% annual growth rate. A scenario analysis indicated that the development of HEVs and EVs—especially EVs—has the potential to control the GHG emissions from LDVs. Under the electricity mix of natural gas (NG) and solar energy (SE), the GHG emissions from EVs would drop by about 22 and 28%, respectively, by 2030.

Conclusions

This study develops a useful approach to evaluate the potential GHG emissions and its reduction strategies in Macau. All the obtained results could be useful for decision makers, providing robust support for drawing up an appropriate plan for improving green transportation systems in Macau.
  相似文献   

2.

Purpose

The well-to-wheel (WTW) methodology is widely used for policy support in road transport. It can be seen as a simplified life cycle assessment (LCA) that focuses on the energy consumption and CO2 emissions only for the fuel being consumed, ignoring other stages of a vehicle’s life cycle. WTW results are therefore different from LCA results. In order to close this gap, the authors propose a hybrid WTW+LCA methodology useful to assess the greenhouse gas (GHG) profiles of road vehicles.

Methods

The proposed method (hybrid WTW+LCA) keeps the main hypotheses of the WTW methodology, but integrates them with LCA data restricted to the global warming potential (GWP) occurring during the manufacturing of the battery pack. WTW data are used for the GHG intensity of the EU electric mix, after a consistency check with the main life cycle impact (LCI) sources available in literature.

Results and discussion

A numerical example is provided, comparing GHG emissions due to the use of a battery electric vehicle (BEV) with emissions from an internal combustion engine vehicle. This comparison is done both according to the WTW approach (namely the JEC WTW version 4) and the proposed hybrid WTW+LCA method. The GHG savings due to the use of BEVs calculated with the WTW-4 range between 44 and 56 %, while according to the hybrid method the savings are lower (31–46 %). This difference is due to the GWP which arises as a result of the manufacturing of the battery pack for the electric vehicles.

Conclusions

The WTW methodology used in policy support to quantify energy content and GHG emissions of fuels and powertrains can produce results closer to the LCA methodology by adopting a hybrid WTW+LCA approach. While evaluating GHG savings due to the use of BEVs, it is important that this method considers the GWP due to the manufacturing of the battery pack.
  相似文献   

3.

Purpose

The crude palm oil (CPO) extraction is normally done by a wet extraction process, and wastewater treatment of the wet process emits high levels of greenhouse gases (GHGs). A dry process extracts mixed palm oil (MPO) from palm fruit without using water and has no GHG emissions from wastewater treatment. This work is aimed at determining the GHG emissions of a dry process and at evaluating GHG savings on changing from wet to dry process, including land use change (LUC) effects.

Methods

Life cycle assessment from cradle to gate was used. The raw material is palm fruits. The dry process includes primary production, oil room, and utilities. MPO is the main product, while palm cake and fine palm residue are co-products sold for animal feed. Case studies were undertaken without and with carbon stocks of firewood and of nitrogen recycling at plantations from fronds. Allocations by mass, economic, and heating values were conducted. The trading of GHG emissions from co-products to GHG emissions from animal feed was assessed. The GHG emissions or savings from direct LUC (dLUC) and from indirect LUC (iLUC) effects and for the change from wet to dry process were determined.

Results and discussion

Palm fruit and firewood were the major GHG emission sources. Nitrogen recycling on plantations from fronds significantly affects the GHG emissions. With the carbon stocks, the GHG emissions allocated by energy value were 550 kg CO2 eq/t MPO. The GHG emissions were affected by ?3 to 37% for the change from wet to dry process. When the plantation area was increased by 1 ha and the palm oil extraction was changed from wet to dry process, and the change included dLUC and iLUC, the GHG savings ranged from ?0.94 to 5.08 t CO2 eq/ha year. The iLUC was the main GHG emission source. The GHG saving mostly originated from the change of extraction process and from the dLUC effect. Based on the potential use of biodiesel production from oil palm, during 2015–2036 in Thailand, when the extraction process was changed and dLUC and iLUC effects were included, the saving in GHG emissions was estimated to range from ?35,454 to 274,774 t CO2 eq/year.

Conclusions

The change of palm oil extraction process and the LUC effects could minimize the GHG emissions from the palm oil industry. This advantage encourages developing policies that support the dry extraction process and contribute to sustainable developments in palm oil production.
  相似文献   

4.

Background

Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source.

Results

Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility.

Conclusion

High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions reduction.
  相似文献   

5.

Purpose

The effect of regional factors on life cycle assessment (LCA) of camelina seed production and camelina methyl ester production was assessed in this study. While general conclusions from LCA studies point to lower environmental impacts of biofuels, it has been shown in many studies that the environmental impacts are dependent on location, production practices, and even local weather variations.

Methods

A cradle-to-farm gate and well-to-pump approaches were used to conduct the LCA. To demonstrate the impact of agro-climatic and management factors (weather condition, soil characteristics, and management practices) on the overall emissions for four different regions including Corvallis, OR, Pendleton, OR, Pullman, WA, and Sheridan, WY, field emissions were simulated using the DeNitrification-DeComposition (DNDC) model. openLCA v.1.4.2 software was used to quantify the environmental impacts of camelina seed and camelina methyl ester production.

Results and discussion

The results showed that greenhouse gas (GHG) emissions during camelina production in different regions vary between 49.39 and 472.51 kg CO2-eq./ha due to differences in agro-climatic and weather variations. The GHG emissions for 1 kg of camelina produced in Corvallis, Pendleton, Pullman, and Sheridan were 0.76 ± 11, 0.55 ± 10, 0.47 ± 18, and 1.26 ± 6 % kg CO2-eq., respectively. The GHG emissions for 1000 MJ of camelina biodiesel using camelina produced in Corvallis, Pendleton, Pullman, and Sheridan were 53.60 ± 5, 48.87 ± 5, 44.33 ± 7, and 78.88 ± 4 % kg CO2-eq., respectively. Other impact categories such as acidification and ecotoxicity for 1000 MJ of camelina biodiesel varied across the regions by 43 and 103 %, respectively.

Conclusions

It can be concluded that process-based crop models such as DNDC in conjunction with Monte Carlo analysis are helpful tools to quantitatively estimate the influence of regional factors on field emissions which consequently can provide information about the expected variability in LCA results.
  相似文献   

6.

Purpose

The study aims to develop a methodological framework to estimate life cycle energy consumption and greenhouse gas (GHG) emissions related to pavement design and management decisions. Another objective is to apply the framework to the design and management of flexible highway pavement in Hong Kong. Traditionally, pavement design and management decisions are solely based on economic considerations. This study quantifies the relationships between such decisions and the environmental impacts, thereby helping highway agencies understand the environmental implications of their decisions and make more balanced decisions to improve highway sustainability.

Methods

(1) A methodological framework is developed by integrating the mechanistic-empirical pavement design guide (ME-PDG) and life cycle assessment (LCA) methods. (2) The calculation processes for the detailed components in the framework are proposed by synthesizing existing models, data, and tools. (3) In applying the framework to pavement design and management in Hong Kong, a large number of simulations are conducted to generate pavement performance data at different combinations of pavement thickness, roughness trigger value, and traffic levels. (4) GHG emissions and energy consumption are calculated for each simulation scenario, and the results are used to build statistical regression models. (5) The simulation and calculation results are also analyzed to gain additional insights on the environmental impacts of pavement design and management decisions.

Results and conclusions

(1) The developed framework that integrates ME-PDG and LCA methods is useful to assess pavement-related life cycle energy consumption and GHG emissions. (2) The developed regression models can well capture the trends of life cycle energy consumption and GHG emissions at different traffic levels, using asphalt concrete (AC) layer thickness and roughness trigger value as independent variables. (3) Material production, road use, and congestion due to road closure dominate pavement-related life cycle energy use and GHG emissions. (4) Optimum pavement thickness and international roughness index (IRI) trigger values exist, and they vary with traffic levels.
  相似文献   

7.
8.

Purpose

The purpose of this study was to quantify the spatial and technological variability in life cycle greenhouse gas (GHG) emissions, also called the carbon footprint, of durum wheat production in Iran.

Methods

The calculations were based on information gathered from 90 farms, each with an area ranging from 1 to 150 ha (average 16 ha). The carbon footprint of durum wheat was calculated by quantifying the biogenic GHG emissions of carbon loss from soil and biomass, as well as the GHG emissions from fertilizer application and machinery use, irrigation, transportation, and production of inputs (e.g., fertilizers, seeds, and pesticides). We used Spearman’s rank correlation to quantify the relative influence of technological variability (in crop yields, fossil GHG emissions, and N2O emissions from fertilizer application) and spatial variability (in biogenic GHG emissions) on the variation of the carbon footprint of durum wheat.

Results and discussion

The average carbon footprint of 1 kg of durum wheat produced was 1.6 kg CO2-equivalents with a minimum of 0.8 kg and a maximum of 3.0 kg CO2-equivalents. The correlation analysis showed that variation in crop yield and fertilizer application, representing technological variability, accounted for the majority of the variation in the carbon footprint, respectively 76 and 21%. Spatial variation in biogenic GHG emissions, mainly resulting from differences in natural soil carbon stocks, accounted for 3% of the variation in the carbon footprint. We also observed a non-linear relationship between the carbon footprint and the yield of durum wheat that featured a scaling factor of ?2/3. This indicates that the carbon footprint of durum wheat production (in kg CO2-eq kg?1) typically decreases by 67% with a 100% increase in yield (in kg ha?1 year?1).

Conclusions

Various sources of variability, including variation between locations and technologies, can influence the results of life cycle assessments. We demonstrated that technological variability exerts a relatively large influence on the carbon footprint of durum wheat produced in Iran with respect to spatial variability. To increase the durum wheat yield at farms with relatively large carbon footprints, technologies such as site-specific nutrient application, combined tillage, and mechanized irrigation techniques should be promoted.
  相似文献   

9.

Purpose

The purpose of the study was to outline and demonstrate a new geographic information system (GIS)-based approach for utilising spatial geological data in three dimensions (i.e. length, width and depth) to improve estimates on earthworks during early stages of road infrastructure planning.

Methods

This was undertaken by using three main methodological steps: mass balance calculation, life cycle inventory analysis and spatial mapping of greenhouse gas (GHG) emissions and energy use. The mass balance calculation was undertaken in a GIS environment using two assumptions of geological stratigraphy for two proposed alternative road corridors in Sweden. The estimated volumes of excavated soil, blasted rock and filling material were later multiplied with the GHG emission and energy use factors for these processes, to create spatial data and maps in order to show potential impacts of the studied road corridors. The proposed GIS-based approach was evaluated by comparing with actual values received after one alternative was constructed.

Results and discussion

The results showed that the estimate of filling material was the most accurate (about 9 % deviation from actual values), while the estimate for excavated soil and blasted rock resulted in about 38 and 80 % deviation, respectively, from the actual values. It was also found that the total volume of excavated and ripped soils did not change when accounting for stratigraphy.

Conclusions

The conclusion of this study was that more information regarding embankment height and actual soil thickness would further improve the model, but the proposed GIS-based approach shows promising results for usage in LCA at an early stage of road infrastructure planning. Thus, by providing better data quality, GIS in combination with LCA can enable planning for a more sustainable transport infrastructure.
  相似文献   

10.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

11.

Purpose

Governments around the world encourage the use of biofuels through fuel standard policies that require the addition of renewable diesel in diesel fuel from fossil fuels. Environmental impact studies of the conversion of biomass to renewable diesel have been conducted, and life cycle assessments (LCA) of the conversion of lignocellulosic biomass to hydrogenation-derived renewable diesel (HDRD) are limited, especially for countries with cold climates like Canada.

Methods

In this study, an LCA was conducted on converting lignocellulosic biomass to HDRD by estimating the well-to-wheel greenhouse gas (GHG) emissions and fossil fuel energy input of the production of biomass and its conversion to HDRD. The approach to conduct this LCA includes defining the goal and scope, compiling a life cycle inventory, conducting a life cycle impact assessment, and executing a life cycle interpretation. All GHG emissions and fossil fuel energy inputs were based on a fast pyrolysis plant capacity of 2000 dry tonnes biomass/day. A functional unit of 1 MJ of HDRD produced was adopted as a common unit for data inputs of the life cycle inventory. To interpret the results, a sensitivity analysis was performed to measure the impact of variables involved, and an uncertainty analysis was performed to assess the confidence of the results.

Results and discussion

The GHG emissions of three feedstocks studied—whole tree (i.e., chips from cutting the whole tree), forest residues (i.e., chips from branches and tops generated from logging operations), and agricultural residues (i.e., straw from wheat and barley)—range from 35.4 to 42.3 g CO2,eq/MJ of HDRD (i.e., lowest for agricultural residue- and highest for forest residue-based HDRD); this is 53.4–61.1 % lower than fossil-based diesel. The net energy ratios range from 1.55 to 1.90 MJ/MJ (i.e., lowest for forest residue- and highest for agricultural residue-based HDRD) for HDRD production. The difference in results among feedstocks is due to differing energy requirements to harvest and pretreat biomass. The energy-intensive hydroprocessing stage is responsible for most of the GHG emissions produced for the entire conversion pathway.

Conclusions

Comparing feedstocks showed the significance of the efficiency in the equipment used and the physical properties of biomass in the production of HDRD. The overall results show the importance of efficiency at the hydroprocessing stage. These findings indicate significant GHG mitigation benefits for the oil refining industry using available lignocellulosic biomass to produce HDRD for transportation fuel.
  相似文献   

12.

Purpose

Variability in consumer behaviour can significantly influence the environmental performance of products and their associated impacts and this is typically not quantified in life cycle assessments. The goal of this paper is to demonstrate how consumer behaviour data can be used to understand and quantify the variability in the greenhouse gas emissions from domestic laundry washing across Europe.

Methods

Data from a pan-European consumer survey of product usage and washing habits was combined with internal company data on product format greenhouse gas (GHG) footprints and in-home measurement of energy consumption of laundry washing as well as literature data to determine the GHG footprint of laundry washing. The variability associated with four laundry detergent product formats and four wash temperature settings in washing machines were quantified on a per wash cycle basis across 23 European countries. The variability in GHG emissions associated with country electricity grid mixes was also taken into account. Monte Carlo methods were used to convert the variability in the input parameters into variability of the life cycle GHG emissions. Rank correlation analysis was used to quantify the importance of the different sources of variability.

Results and discussion

Both inter-country differences in background electricity mix as well as intra-country variation in consumer behaviour are important for determining the variability in life cycle GHG emissions of laundry detergents. The average GHG emissions related to the laundry washing process in the 23 European countries in 2014 was estimated to be 5?×?102 g CO2?eq/wash cycle, but varied by a factor of 6.5 between countries. Intra-country variability is between a factor of 3.5 and 5.0 (90% interval). For countries with a mainly fossil-based electricity system, the dominant source of variability in GHG emissions results from consumer choices in the use of washing machines. For countries with a relatively low-carbon electricity mix, variability in life cycle GHG emissions is mainly determined by laundry product-related parameters.

Conclusions

The combination of rich data sources enabled the quantification of the variability in the life cycle GHG emissions of laundry washing which is driven by a variety of consumer choices, manufacturer choices and infrastructural differences of countries. The improved understanding of the variability needs to be balanced against the cost and challenges of assessing of consumer habits.
  相似文献   

13.

Purpose

China is the world’s largest producer and consumer of refined and reclaimed copper because of the rapid economic and industrial development of this country. However, only a few studies have analyzed the environmental impact of China’s copper industry. The current study analyzes the life cycle environmental impact of copper production in China.

Methods

A life cycle impact assessment using the ReCiPe method was conducted to estimate the environmental impact of refined and reclaimed copper production in China. Uncertainty analysis was also performed based on the Monte-Carlo simulation.

Results and discussion

The environmental impact of refined copper was higher than that of reclaimed copper in almost all categories except for human toxicity because of the direct atmospheric arsenic emission during the copper recycling stage. The overall environmental impact for the refined copper production was mainly attributed to metal depletion, freshwater ecotoxicity, marine ecotoxicity, and water depletion potential impact. By contrast, that for the reclaimed copper production was mainly caused by human toxicity impact.

Conclusions

Results show that the reclaimed copper scenario had approximately 59 to 99% more environmental benefits than those of the refined copper scenario in most key categories except for human toxicity, in which a similar environmental burden was observed between both scenarios. The key factors that reduce the overall environmental impact for China’s copper industry include decreasing direct heavy metal emissions in air and water, increasing the national recycling rate of copper, improving electricity consumption efficiency, replacing coal with clean energy sources for electricity production, and optimizing the efficiency of copper ore mining and consumption.
  相似文献   

14.

Purpose

The aim of this article is to present the first life cycle assessment of chitosan production based on data from two real producers located in India and Europe. The goal of the life cycle assessment (LCA) was to understand the main hot spots in the two supply chains, which are substantially different in terms of raw materials and production locations.

Methods

The LCA is based on consequential modelling principles, whereby allocation is avoided by means of substitution, and market mixes include only flexible, i.e. non-constrained suppliers. The product system is cradle to gate and includes the production of raw materials, namely waste shells from snow crab and shrimp in Canada and India, respectively, the processing of these in China and India and the manufacture of chitosan in Europe and India. Primary data for chitin and chitosan production were obtained from the actual producers, whereas raw material acquisition as well as waste management activities were based on literature sources. The effects of indirect land use change (iLUC) were also included. Impact assessment was carried out at midpoint level by means of the recommended methods in the International Life Cycle Data (ILCD) handbook.

Results and discussion

In the Indian supply chain, the production of chemicals (HCl and NaOH) appears as an important hot spot. The use of shrimp shells as raw material affects the market for animal feed, resulting in a credit in many impact indicators, especially in water use. The use of protein waste as fertilizer is also an important source of greenhouse-gas and ammonia emissions. In the European supply chain, energy use is the key driver for environmental impacts, namely heat production based on coal in China and electricity production in China and Europe. The use of crab shells as raw material avoids the composting process they would be otherwise subject to, leading to a saving in composting emissions, especially ammonia. In the Indian supply chain, the effect of iLUC is relevant, whereas in the European one, it is negligible.

Conclusions

Even though we assessed two products from the same family, the results show that they have very different environmental profiles, reflecting their substantially different supply chains in terms of raw material (shrimp shells vs. crab shells), production locations (locally produced vs. a global supply chain involving three continents) and the different applications (general-purpose chitosan vs. chitosan for the medical sector).
  相似文献   

15.

Purpose

The cultivation of pomegranate worldwide has increased sharply in the past few years, mainly due to the growing perception that this fruit has numerous medical benefits. Despite the proliferation of studies delving into the properties of pomegranate from a medical and dietary perspective, its analysis from an environmental perspective has yet to be carried out in depth. Hence, the present study aims at understanding the life cycle environmental impacts in terms of greenhouse gas (GHG) emissions derived from the cultivation, processing and distribution abroad of fresh pomegranate grown at an innovative farm in a hyper-arid area in the region of Ica (Peru).

Methods

The international standards for life cycle methodologies were considered in order to obtain the overall carbon footprint (CFP) of fresh pomegranate cultivation, processing and distribution. Data acquisition was performed at the cultivation site and supported by the ecoinvent® database, whereas GHG emissions were modelled using the IPCC 2007 method. In addition, biogenic carbon sequestration was included in the assessment, using two distinct models, a first one to model the aerial carbon sequestered by the pomegranate trees and a second, using the IPCC Soil Carbon Tool for soil storage.

Results and discussion

Annual results show that on-site GHG emissions can be mitigated to a great extent in the first years of production thanks to biogenic carbon sequestration. However, through time, this tendency is reverted, and in years of maximum pomegranate productivity, GHG emissions are estimated to outweigh those linked to sequestration, despite the relevant minimization of emissions when using innovative irrigation schemes as compared to the conventional flood irrigation in the region.

Conclusions

Despite the threat in terms of water depletion and security, the expansion of Peru’s agricultural frontier in hyper-arid areas appears to be a feasible strategy for carbon fixation, although current agricultural practices, such as the use of machinery or electricity, need to be optimized to make positive the carbon balance.
  相似文献   

16.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

17.

Background

For 15+ years, a beech (Fagus sylvatica L.) dominated forest on calcareous soil was studied on two opposing slopes with contrasting microclimate in Tuttlingen, Swabian Alb, Germany. The cool-humid NE aspect of these slopes represents the majority of beech forests under current climate, the warmer and drier SW aspect represents beech forests under future climate conditions. The field studies were supplemented by investigations under controlled conditions.

Scope

The research program aimed to provide a comprehensive understanding of plant-soil-microbe water, carbon and nitrogen feedbacks in a changing climate and a holistic view of the sensitivity of beech to climate change.

Conclusions

The results of comparative and experimental studies underpin the high vulnerability of adult beech and its natural regeneration on calcareous soil to both direct climate change effects on plant physiology and indirect effects mediated by soil biogeochemical cycles. Mechanisms contributing to this vulnerability at the ecosystem and organismic level indicate a high significance of competitive interactions of beech with other vegetation components and soil microbial communities. Obvious forest management practices such as selective felling did not necessarily counteract negative effects of climate change.
  相似文献   

18.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

19.

Purpose

The aim of this study was to estimate the total greenhouse gas (GHG) emissions generated from whole life cycle stages of a sewer pipeline system and suggest the strategies to mitigate GHG emissions from the system.

Methods

The process-based life cycle assessment (LCA) with a city-scale inventory database of a sewer pipeline system was conducted. The GHG emissions (direct, indirect, and embodied) generated from a sewer pipeline system in Daejeon Metropolitan City (DMC), South Korea, were estimated for a case study. The potential improvement actions which can mitigate GHG emissions were evaluated through a scenario analysis based on a sensitivity analysis.

Results and discussion

The amount of GHG emissions varied with the size (150, 300, 450, 700, and 900 mm) and materials (polyvinyl chloride (PVC), polyethylene (PE), concrete, and cast iron) of the pipeline. Pipes with smaller diameter emitted less GHG, and the concrete pipe generated lower amount of GHG than pipes made from other materials. The case study demonstrated that the operation (OP) stage (3.67 × 104 t CO2eq year?1, 64.9%) is the most significant for total GHG emissions (5.65 × 104 t CO2eq year?1) because a huge amount of CH4 (3.51 × 104 t CO2eq year?1) can be generated at the stage due to biofilm reaction in the inner surface of pipeline. Mitigation of CH4 emissions by reducing hydraulic retention time (HRT), optimizing surface area-to-volume (A/V) ratio of pipes, and lowering biofilm reaction during the OP stage could be effective ways to reduce total GHG emissions from the sewer pipeline system. For the rehabilitation of sewer pipeline system in DMC, the use of small diameter pipe, combination of pipe materials, and periodic maintenance activities are suggested as suitable strategies that could mitigate GHG emissions.

Conclusions

This study demonstrated the usability and appropriateness of the process-based LCA providing effective GHG mitigation strategies at a city-scale sewer pipeline system. The results obtained from this study could be applied to the development of comprehensive models which can precisely estimate all GHG emissions generated from sewer pipeline and other urban environmental systems.
  相似文献   

20.

Objectives

To develop and validate a microdilution method for measuring the minimum inhibitory concentration (MIC) of biosurfactants.

Results

A standardized microdilution method including resazurin dye has been developed for measuring the MIC of biosurfactants and its validity was established through the replication of tetracycline and gentamicin MIC determination with standard bacterial strains.

Conclusion

This new method allows the generation of accurate MIC measurements, whilst overcoming critical issues related to colour and solubility which may interfere with growth measurements for many types of biosurfactant extracts.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号