首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Realistic HIV models tend to be rather complex and many recent models proposed in the literature could not yet be analyzed by traditional identifiability testing techniques. In this paper, we check a priori global identifiability of some of these nonlinear HIV models taken from the recent literature, by using a differential algebra algorithm based on previous work of the author. The algorithm is implemented in a software tool, called DAISY (Differential Algebra for Identifiability of SYstems), which has been recently released (DAISY is freely available on the web site ). The software can be used to automatically check global identifiability of (linear and) nonlinear models described by polynomial or rational differential equations, thus providing a general and reliable tool to test global identifiability of several HIV models proposed in the literature. It can be used by researchers with a minimum of mathematical background.  相似文献   

2.
Identifiability of statistical models is a fundamental regularity condition that is required for valid statistical inference. Investigation of model identifiability is mathematically challenging for complex models such as latent class models. Jones et al. used Goodman's technique to investigate the identifiability of latent class models with applications to diagnostic tests in the absence of a gold standard test. The tool they used was based on examining the singularity of the Jacobian or the Fisher information matrix, in order to obtain insights into local identifiability (ie, there exists a neighborhood of a parameter such that no other parameter in the neighborhood leads to the same probability distribution as the parameter). In this paper, we investigate a stronger condition: global identifiability (ie, no two parameters in the parameter space give rise to the same probability distribution), by introducing a powerful mathematical tool from computational algebra: the Gröbner basis. With several existing well-known examples, we argue that the Gröbner basis method is easy to implement and powerful to study global identifiability of latent class models, and is an attractive alternative to the information matrix analysis by Rothenberg and the Jacobian analysis by Goodman and Jones et al.  相似文献   

3.
4.
The parameter identifiability problem for dynamic system ODE models has been extensively studied. Nevertheless, except for linear ODE models, the question of establishing identifiable combinations of parameters when the model is unidentifiable has not received as much attention and the problem is not fully resolved for nonlinear ODEs. Identifiable combinations are useful, for example, for the reparameterization of an unidentifiable ODE model into an identifiable one. We extend an existing algorithm for finding globally identifiable parameters of nonlinear ODE models to generate the ‘simplest’ globally identifiable parameter combinations using Gröbner Bases. We also provide sufficient conditions for the method to work, demonstrate our algorithm and find associated identifiable reparameterizations for several linear and nonlinear unidentifiable biomodels.  相似文献   

5.
The two methods available for analyzing the global structural identifiability of the parameters of a nonlinear system with a specified input function, the Taylor series approach and the similarity transformation approach, are compared and contrasted through application to three examples. It is shown that, as for linear systems, it is very difficult to predict which of the available methods will result in the least effort for a particular example. The role of modern symbolic manipulation packages in the analysis is assessed. The third example proves intractable using the similarity transformation approach as originally formulated, but the analysis is completed using a reformulation that exploits the polynominal form of the system equations in the example.  相似文献   

6.
This paper presents a new finite element simulation approach for surgical simulators. Based on the solution of the algebraic equations derived from a nonlinear elastic model, we propose a real time simulation rule based on the implicit relation between the displacements of contacted and free nodes. This rule is an analytic expression in the linear case, and an approximation of the implicit relation in the non-linear case. We also remove some of the restrictions on flexibility exhibited by previous linear and nonlinear approaches. In the linear case, real time reconfiguration of the contacted nodes and the boundary constraints is realized using the simulation rule, while in the nonlinear case, a similar result is obtained by employing affine mapping. These methods allow nonlinear material properties to be applied to real time tissue simulation, with an efficiency comparable to that of the tensor matrix method for linear elastic models.  相似文献   

7.
While a choice of techniques exists for checking the deterministic (structural) identifiability of a specific linear, time-invariant model from a specific experiment, and some progress has been made towards topological criteria for identifiability, no method at present available allows quick and reliable checking of a range of models for globally unique identifiability from a range of experiments. Even individual cases are sometimes difficult and tedious to check. The reasons are examined by exhaustive case-by-case analysis of single-input experiments on all possible three-compartment models. All patterns of loss to the environment are covered, and all combinations of observed compartments. Catalogues of minimal observation sets for globally unique identifiability, and of nonuniquely identifiable cases, are presented. The structural causes of nonuniqueness are discussed by reference to examples from the latter catalogue. Methods are given for shortening the derivation of the structural equations giving rise to nonunique parameters. From the diversity of behavior found, it is concluded that the prospects of obtaining a comprehensive set of necessary and sufficient structural conditions for globally unique identifiability are poor.  相似文献   

8.
Growth competition assays have been developed to quantify the relative fitness of HIV-1 mutants. In this article, we develop mathematical models to describe viral/cellular dynamic interactions in the assay system from which the competitive fitness indices or parameters are defined. In our previous HIV-viral fitness experiments, the concentration of uninfected target cells was assumed to be constant (Wu et al. 2006). But this may not be true in some experiments. In addition, dual infection may frequently occur in viral fitness experiments and may not be ignorable. Here, we relax these two assumptions and extend our earlier viral fitness model (Wu et al. 2006). The resulting models then become nonlinear ODE systems for which closed-form solutions are not achievable. In the new model, the viral relative fitness is a function of time since it depends on the target cell concentration. First, we studied the structure identifiability of the nonlinear ODE models. The identifiability analysis showed that all parameters in the proposed models are identifiable from the flow-cytometry-based experimental data that we collected. We then employed a global optimization approach (the differential evolution algorithm) to directly estimate the kinetic parameters as well as the relative fitness index in the nonlinear ODE models using nonlinear least square regression based on the experimental data. Practical identifiability was investigated via Monte Carlo simulations.  相似文献   

9.
Since analysis and simulation of biological phenomena require the availability of their fully specified models, one needs to be able to estimate unknown parameter values of the models. In this paper we deal with identifiability of parametrizations which is the property of one-to-one correspondence of parameter values and the corresponding outputs of the models. Verification of identifiability of a parametrization precedes estimation of numerical values of parameters, and thus determination of a fully specified model of a considered phenomenon. We derive necessary and sufficient conditions for the parametrizations of polynomial and rational systems to be structurally or globally identifiable. The results are applied to investigate the identifiability properties of the system modeling a chain of two enzyme-catalyzed irreversible reactions. The other examples deal with the phenomena modeled by using Michaelis–Menten kinetics and the model of a peptide chain elongation.  相似文献   

10.
MOTIVATION: Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. RESULTS: We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.  相似文献   

11.
MOTIVATION: Mathematical modelling of biological systems is becoming a standard approach to investigate complex dynamic, non-linear interaction mechanisms in cellular processes. However, models may comprise non-identifiable parameters which cannot be unambiguously determined. Non-identifiability manifests itself in functionally related parameters, which are difficult to detect. RESULTS: We present the method of mean optimal transformations, a non-parametric bootstrap-based algorithm for identifiability testing, capable of identifying linear and non-linear relations of arbitrarily many parameters, regardless of model size or complexity. This is performed with use of optimal transformations, estimated using the alternating conditional expectation algorithm (ACE). An initial guess or prior knowledge concerning the underlying relation of the parameters is not required. Independent, and hence identifiable parameters are determined as well. The quality of data at disposal is included in our approach, i.e. the non-linear model is fitted to data and estimated parameter values are investigated with respect to functional relations. We exemplify our approach on a realistic dynamical model and demonstrate that the variability of estimated parameter values decreases from 81 to 1% after detection and fixation of structural non-identifiabilities.  相似文献   

12.
Mathematical modeling is now frequently used in outbreak investigations to understand underlying mechanisms of infectious disease dynamics, assess patterns in epidemiological data, and forecast the trajectory of epidemics. However, the successful application of mathematical models to guide public health interventions lies in the ability to reliably estimate model parameters and their corresponding uncertainty. Here, we present and illustrate a simple computational method for assessing parameter identifiability in compartmental epidemic models. We describe a parametric bootstrap approach to generate simulated data from dynamical systems to quantify parameter uncertainty and identifiability. We calculate confidence intervals and mean squared error of estimated parameter distributions to assess parameter identifiability. To demonstrate this approach, we begin with a low-complexity SEIR model and work through examples of increasingly more complex compartmental models that correspond with applications to pandemic influenza, Ebola, and Zika. Overall, parameter identifiability issues are more likely to arise with more complex models (based on number of equations/states and parameters). As the number of parameters being jointly estimated increases, the uncertainty surrounding estimated parameters tends to increase, on average, as well. We found that, in most cases, R0 is often robust to parameter identifiability issues affecting individual parameters in the model. Despite large confidence intervals and higher mean squared error of other individual model parameters, R0 can still be estimated with precision and accuracy. Because public health policies can be influenced by results of mathematical modeling studies, it is important to conduct parameter identifiability analyses prior to fitting the models to available data and to report parameter estimates with quantified uncertainty. The method described is helpful in these regards and enhances the essential toolkit for conducting model-based inferences using compartmental dynamic models.  相似文献   

13.
A major problem for the identification of metabolic network models is parameter identifiability, that is, the possibility to unambiguously infer the parameter values from the data. Identifiability problems may be due to the structure of the model, in particular implicit dependencies between the parameters, or to limitations in the quantity and quality of the available data. We address the detection and resolution of identifiability problems for a class of pseudo-linear models of metabolism, so-called linlog models. Linlog models have the advantage that parameter estimation reduces to linear or orthogonal regression, which facilitates the analysis of identifiability. We develop precise definitions of structural and practical identifiability, and clarify the fundamental relations between these concepts. In addition, we use singular value decomposition to detect identifiability problems and reduce the model to an identifiable approximation by a principal component analysis approach. The criterion is adapted to real data, which are frequently scarce, incomplete, and noisy. The test of the criterion on a model with simulated data shows that it is capable of correctly identifying the principal components of the data vector. The application to a state-of-the-art dataset on central carbon metabolism in Escherichia coli yields the surprising result that only $4$ out of $31$ reactions, and $37$ out of $100$ parameters, are identifiable. This underlines the practical importance of identifiability analysis and model reduction in the modeling of large-scale metabolic networks. Although our approach has been developed in the context of linlog models, it carries over to other pseudo-linear models, such as generalized mass-action (power-law) models. Moreover, it provides useful hints for the identifiability analysis of more general classes of nonlinear models of metabolism.  相似文献   

14.
Summary Sufficient conditions for the global stability of equilibria in general, nonlinear, two-species model ecosystems are derived. These results contain and extend the theorem of Goh (1976), which is specific to linear per capita growth rates.  相似文献   

15.
Parameter estimation and model calibration are key problems in the application of biofilm models in engineering practice, where a large number of model parameters need to be determined usually based on experimental data with only limited information content. In this article, identifiability of biokinetic parameters of a biofilm model describing two-step nitrification was evaluated based solely on bulk phase measurements of ammonium, nitrite, and nitrate. In addition to evaluating the impact of experimental conditions and available measurements, the influence of mass transport limitation within the biofilm and the initial parameter values on identifiability of biokinetic parameters was evaluated. Selection of parameters for identifiability analysis was based on global mean sensitivities while parameter identifiability was analyzed using local sensitivity functions. At most, four of the six most sensitive biokinetic parameters were identifiable from results of batch experiments at bulk phase dissolved oxygen concentrations of 0.8 or 5 mg O(2)/L. High linear dependences between the parameters of the subsets (KO2,AOB,muAOB) and (KO2,NOB,muNOB) resulted in reduced identifiability. Mass transport limitation within the biofilm did not influence the number of identifiable parameters but, in fact, decreased collinearity between parameters, especially for parameters that are otherwise correlated (e.g., muAOB) and KO2,AOB, or muNOB and KO2,NOB). The choice of the initial parameter values had a significant impact on the identifiability of two parameter subsets, both including the parameters muAOB and KO2,AOB. Parameter subsets that did not include the subsets muAOB and KO2,AOB or muNOB and KO2,NOB were clearly identifiable independently of the choice of the initial parameter values.  相似文献   

16.
What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the model equations. For example, in the context of model calibration, before attempting a numerical estimation of the model parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is defined on the sole basis of the model structure within a hypothetical ideal experiment determined by a setting of model inputs (stimuli) and observable variables (measurements). Structural identifiability analysis applied to dynamic models described by ordinary differential equations (ODEs) is a common practice in control engineering and system identification. This analysis demands mathematical technicalities that are beyond the academic background of animal science, which might explain the lack of pervasiveness of identifiability analysis in animal science modelling. To fill this gap, in this paper we address the analysis of structural identifiability from a practitioner perspective by capitalizing on the use of dedicated software tools. Our objectives are (i) to provide a comprehensive explanation of the structural identifiability notion for the community of animal science modelling, (ii) to assess the relevance of identifiability analysis in animal science modelling and (iii) to motivate the community to use identifiability analysis in the modelling practice (when the identifiability question is relevant). We focus our study on ODE models. By using illustrative examples that include published mathematical models describing lactation in cattle, we show how structural identifiability analysis can contribute to advancing mathematical modelling in animal science towards the production of useful models and, moreover, highly informative experiments via optimal experiment design. Rather than attempting to impose a systematic identifiability analysis to the modelling community during model developments, we wish to open a window towards the discovery of a powerful tool for model construction and experiment design.  相似文献   

17.
In this work, we present a time-scale analysis based model reduction and parameter identifiability analysis method for metabolic reaction networks. The method uses the information obtained from short term chemostat perturbation experiments. We approximate the time constant of each metabolite pool by their turn-over time and classify the pools accordingly into two groups: fast and slow pools. We performed a priori model reduction, neglecting the dynamic term of the fast pools. By making use of the linlog approximative kinetics, we obtained a general explicit solution for the fast pools in terms of the slow pools by elaborating the degenerate algebraic system resulting from model reduction. The obtained relations yielded also analytical relations between a subset of kinetic parameters. These relations also allow to realize an analytical model reduction using lumped reaction kinetics. After solving these theoretical identifiability problems and performing model reduction, we carried out a Monte Carlo approach to study the practical identifiability problems. We illustrated the methodology on model reduction and theoretical/practical identifiability analysis on an example system representing the glycolysis in Saccharomyces cerevisiae cells.  相似文献   

18.
Wang X  Guo X  He M  Zhang H 《Biometrics》2011,67(3):987-995
Analysis of data from twin and family studies provides the foundation for studies of disease inheritance. The development of advanced theory and computational software for general linear models has generated considerable interest for using mixed-effect models to analyze twin and family data, as a computationally more convenient and theoretically more sound alternative to the classical structure equation modeling. Despite the long history of twin and family data analysis, some fundamental questions remain unanswered. We addressed two important issues. One is to determine the necessary and sufficient conditions for the identifiability in the mixed-effects models for twin and family data. The other is to derive the asymptotic distribution of the likelihood ratio test, which is novel due to the fact that the standard regularity conditions are not satisfied. We considered a series of specific yet important examples in which we demonstrated how to formulate mixed-effect models to appropriately reflect the data, and our key idea is the use of the Cholesky decomposition. Finally, we applied our method and theory to provide a more precise estimate of the heritability of two data sets than the previously reported estimate.  相似文献   

19.
Lin  Wei; Kulasekera  K. B. 《Biometrika》2007,94(2):496-501
We provide a proof for the identifiability for both single-indexmodels and partially linear single-index models assuming onlythe continuity of the regression function, a condition muchweaker than the differentiability conditions assumed in theexisting literature. Our discussion is then extended to theidentifiability of the additive-index models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号