首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth yield of Thiobacillus intermedius is greater in glucose-yeast extract or glucose-casein hydrolysate broth than in comparable media without glucose. The quantity of glucose utilized in the glucose-supplemented media is much greater than the increase in cell yield observed relative to the unsupplemented media. Addition of glucose to cell-free extracts of glucose-yeast extract or glucose-casein hydrolysate grown cells results in the reduction of endogenous cytochrome c. Thus, in these media, glucose serves as a source of energy. This is in contrast to thiosulfate-glucose broth in which glucose provides only cell carbon. The presence of thiosulfate in glucose-casein hydrolysate broth results in a marked decrease in glucose consumption. Cytochrome c in extracts of cells grown in this medium is not reduced by glucose addition. The data suggest that thiosulfate prevents the utilization of glucose for energy generation. The final growth yield in glucose-casein hydrolysate broth is directly proportional to the initial glucose concentration, although not all the glucose was utilized even at the lowest concentration tested. This effect may be due to an inefficient glucose transport in this organism.  相似文献   

2.
Regulation of the beta-galactoside transport system in response to growth substrates in the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable analog methyl-beta-D-thiogalactopyranoside (TMG) as the transport substrate. T. neapolitana cells grown on galactose or lactose accumulated TMG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external galactose or lactose and showed induced levels of beta-galactosidase. Cells grown on glucose, maltose, or galactose plus glucose showed no capacity to accumulate TMG, though these cells carried out active transport of the nonmetabolizable glucose analog 2-deoxy-D-glucose. Glucose neither inhibited TMG uptake nor caused efflux of preaccumulated TMG; rather, glucose promoted TMG uptake by supplying metabolic energy. These data show that beta-D-galactosides are taken up by T. neapolitana via an active transport system that can be induced by galactose or lactose and repressed by glucose but which is not inhibited by glucose. Thus, the phenomenon of catabolite repression is present in T. neapolitana with respect to systems catalyzing both the transport and hydrolysis of beta-D-galactosides, but inducer exclusion and inducer expulsion, mechanisms that regulate permease activity, are not present. Regulation is manifest at the level of synthesis of the beta-galactoside transport system but not in the activity of the system.  相似文献   

3.
Long term and acute effects of glucose on myo-inositol (MI) uptake were studied in primary cultures of bovine retinal pigment epithelial (RPE) cells. RPE cells were grown under low (5 mM) or high (20, 40, or 50 mM) glucose levels in the growth medium for up to 18 days. The concentrative capacity of confluent RPE cells to accululate [3H]MI (10 microM) was reduced up to 41% as the glucose concentration in the growth medium increased. When the growth medium glucose was switched from 5 to 40 mM, or vice versa, the capacity of cells to accumulate MI was reversed. Treatment of cells grown in 40 or 50 mM glucose with 0.1 mM Sorbinil (an aldose reductase inhibitor) minimally reversed the ability of cells to accumulate MI. RPE cells, grown in 5 mM glucose, were incubated with 10-60 mM D-glucose or its nonmetabolizable analogues (acute effect). Kinetics of MI uptake inhibition by alpha-methyl glucose according to Dixon plots were characteristic of competitive inhibition (Ki = 28 mM). MI uptake was strongly inhibited by phlorizin. The ability of RPE cells to bind 5 microM [3H]phlorizin also was reduced by increased glucose levels in the growth medium. These studies indicated that MI and glucose shared the same transporter system. Glucose in the incubation medium directly interfered with MI binding to the transporter. High glucose feeding of the cells also down-regulated the transporter density. The uptake and function of solutes such as MI in tissues that operate on the glucose carrier system may be severely impaired in diabetes.  相似文献   

4.
Human erythrocyte hexose transfer is mediated by the glucose transport protein GLUT1 and is characterized by a complexity that is unexplained by available hypotheses for carrier-mediated sugar transport [Cloherty, E. K., Heard, K. S., and Carruthers, A. (1996) Biochemistry 35, 10411-10421]. The study presented here examines the possibility that the operational properties of GLUT1 are determined by host cell environment. A glucose transport-null strain of Saccharomyces cerevisiae (RE700A) was transfected with the p426 GPD yeast expression vector containing DNA encoding the wild-type human glucose transport protein (GLUT1), mutant GLUT1 (GLUT1(338)(-)(A3)), or carboxy-terminal hemagglutinin-polyHis-tagged GLUT1 (GLUT1-HA-H6). GLUT1 and GLUT1-HA-H6 are expressed at the yeast cell membrane and restore 2-deoxy-d-glucose, 3-O-methylglucose, and d-glucose transport capacity to RE700A. GLUT1-HA-H6 confers GLUT1-specific sugar transport characteristics to transfected RE700A, including inhibition by cytochalasin B and high-affinity transport of the nonmetabolized sugar 3-O-methylglucose. GLUT1(338)(-)(A3), a catalytically inactive GLUT1 mutant, is expressed but fails to restore RE700A sugar uptake capacity or growth on glucose. In contrast to transport in human red cells, K(m(app)) for 2-deoxy-d-glucose uptake equals K(i(app)) for 2-deoxy-d-glucose inhibition of 3-O-methylglucose uptake. Unlike transport in human red cells or transport in human embryonic kidney cells transfected with GLUT1-HA-H6, unidirectional sugar uptake in RE700A-GLUT1-HA-H6 is not inhibited by reductant and is not stimulated by intracellular sugar. Net uptake of subsaturating 3-O-methylglucose by RE700A-GLUT1-HA-H6 is a simple, first-order process. These findings support the hypothesis that red cell sugar transport complexity is host cell-specific.  相似文献   

5.
Glucose uptake by Corynebacterium glutamicum is predominantly assured by a mannose phosphotransferase system (PTS) with a high affinity for glucose (Km=0.35 mM). Mutants selected for their resistance to 2-deoxyglucose (2DG) and lacking detectable PEP-dependent glucose-transporting activity, retained the capacity to grow on media in which glucose was the only carbon and energy source, albeit at significantly diminished rates, due to the presence of a low affinity (Ks=11 mM) non-PTS uptake system. During growth in media of different osmolarity, specific rates of glucose consumption and of growth of wild type cells were diminished. Cell samples from these cultures were shown to possess similar PTS activities when measured under standard conditions. However, when cells were resuspended in buffer solutions of different osmolarity measurable PTS activity was shown to be dependent upon osmolarity. This inhibition effect was sufficient to account for the decreased rates of both sugar uptake and growth observed in fermentation media of high osmolarity. The secondary glucose transporter was, however, not influenced by medium osmolarity. During industrial fermentation conditions with accumulation of glutamic acid and the corresponding increase in medium osmolarity, similar inhibition of the sugar transport capacity was observed. This phenomenon provokes a major process constraint since the decrease in specific rates leads to an increasing proportion of sugar catabolised for maintenance requirements with an associated decrease in product yields.  相似文献   

6.
Uptake and efflux of 6-deoxy-d-[3H]glucose and of 2-deoxy-d-[14C]glucose by the yeast Kluyveromyces lactis was studied. The tritiated, nonphosphorylatable hexose analogue leaves the cell in the absence and presence of intracellular 2-deoxy-d-glucose 6-phosphate. In energy-rich cells containing pools of hexose 6-phosphate, 2-deoxy-d-glucose is trapped in the cells, for it neither effluxes into glucose-free medium nor exchanges with external, free sugar. In starved, poisoned cells containing negligible amounts of 2-deoxy-d-glucose 6-phosphate, 2-deoxy-d-glucose does leave the cells upon transfer to glucose-free medium. An involvement of analogue structure and availability of metabolites of energy-rich cells in hexose retention is suggested. An internal pool of 6-deoxy-d-glucose does not affect the rate of uptake of 6-deoxy-d-[3H]glucose, nor does internal 2-deoxy-d-[14C]glucose 6-phosphate influence that rate. Hence, transport of glucose by this yeast is probably not regulated by internal pools of glucose 6-phosphate.  相似文献   

7.
Transport of 2-deoxy-d-glucose (2-dGlc) and 6-deoxy-d-glucose (6-dGlc) is studied in Kluyveromyces marxianus, grown under different conditions. It is shown that early stationary phase cells contain only one glucose transporter, with low affinity for 6-dGlc and high affinity for 2-dGlc. This transporter is recognized by glucose and fructose. In late stationary phase cells, two transport systems are operative for 6-dGlc, one with a high and one with a low affinity. The high-affinity system appears to be a glucose-galactose carrier, catalyzing uphill transport, energized by coupling sugar transport to translocation of protons. Induction (or derepression) of the high-affinity 6-dGlc transport seems to be coupled, in an as yet unknown way, to citrate consumption and a strong alkalinization of the medium during growth. It is concluded that glucose transport in K. marxianus can proceed by at least two mechanisms: a glucose-fructose carrier, probably having phosphotransferase characteristics, and a derepressible glucose/galactose-proton symporter.  相似文献   

8.
Growth of galactose-adapted cells of Streptococcus lactis ML(3) in a medium containing a mixture of glucose, galactose, and lactose was characterized initially by the simultaneous metabolism of glucose and lactose. Galactose was not significantly utilized until the latter sugars had been exhausted from the medium. The addition of glucose or lactose to a culture of S. lactis ML(3) growing exponentially on galactose caused immediate inhibition of galactose utilization and an increase in growth rate, concomitant with the preferential metabolism of the added sugar. Under nongrowing conditions, cells of S. lactis ML(3) grown previously on galactose metabolized the three separate sugars equally rapidly. However, cells suspended in buffer containing a mixture of glucose plus galactose or lactose plus galactose again consumed glucose or lactose preferentially. The rate of galactose metabolism was reduced by approximately 95% in the presence of the inhibitory sugar, but the maximum rate of metabolism was resumed upon exhaustion of glucose or lactose from the system. When presented with a mixture of glucose and lactose, the resting cells metabolized both sugars simultaneously. Lactose, glucose, and a non-metabolizable glucose analog (2-deoxy-d-glucose) prevented the phosphoenolpyruvate-dependent uptake of thiomethyl-beta-d-galactopyranoside (TMG), but the accumulation of TMG, like galactose metabolism, commenced immediately upon exhaustion of the metabolizable sugars from the medium. Growth of galactose-adapted cells of the lactose-defective variant S. lactis 7962 in the triple-sugar medium was characterized by the sequential metabolism of glucose, galactose, and lactose. Growth of S. lactis ML(3) and 7962 in the triple-sugar medium occurred without apparent diauxie, and for each strain the patterns of sequential sugar metabolism under growing and nongrowing conditions were identical. Fine control of the activities of preexisting enzyme systems by catabolite inhibition may afford a satisfactory explanation for the observed sequential utilization of sugars by these two organisms.  相似文献   

9.
The non-metabolizable glucose analogue 2-deoxy-d-glucose is taken up by Pseudomonas aeruginosa against a concentration gradient, in a predominantly unchanged form. d-Glucose competitively inhibits 2-deoxy-d-glucose uptake and also causes a rapid exit of intracellular 2-deoxy-d-glucose. Thus these two sugars share the same stereospecific carrier system, and glucose transport can be studied reliably with 2-deoxy-d-glucose. The transport system is inducible, and is strongly repressed by a number of organic acids such as acetate, citrate, succinate, fumarate and malate, even in the presence of adequate excess of the inducer (d-glucose). Repression by organic acids can be relieved by transferring cells to a glucose medium, but in the presence of chloramphenicol the cells fail to recover from repression, indicating that the formation of the transport system involves the synthesis of protein. The results demonstrate that the regulation of glucose metabolism effected by citric acid-cycle intermediates in P. aeruginosa is manifest at the level of the glucose-transport system.  相似文献   

10.
Nitrogen-fixing activity and populations of nitrogen-fixing bacteria associated with two varieties of rice grown in dryland and wetland conditions were measured at various growth stages during the dry season. Acetylene reduction activities were measured both in the field and for the hydroponically grown rice, which was transferred from the field to water culture 1 day before assay. The activities measured by both methods were higher in wetland than in dryland rice. The population of nitrogen-fixing heterotrophic bacteria associated with rhizosphere soil, root, and basal shoots was determined by the most probable number method with semisolid glucose-yeast extract and semisolid malate-yeast extract media. The number of nitrogen-fixing bacteria was higher in wetland conditions than in dryland conditions. The difference between two conditions was most pronounced in the population associated with the basal shoot. The glucose medium gave higher counts than did the malate medium. Colonies were picked from tryptic soy agar plates, and their nitrogen-fixing activity was tested on a semisolid glucose-yeast extract medium. The incidence of nitrogen-fixing bacteria among aerobic heterotrophic bacteria in association with rhizosphere soil, root, and basal shoots was much lower in dryland rice than in wetland rice.  相似文献   

11.
At least two types of glucose transporter exist in cultured renal epithelial cells, a Na(+)-glucose cotransporter (SGLT), capable of interacting with D-glucose but not 2-deoxy-D-glucose (2dglc) and a facilitated transporter (GLUT) capable of interacting with both D-glucose and 2dglc. In order to examine the polarity of transport in cultured renal epithelia, 2dglc and D-glucose uptakes were measured in confluent cultures of LLC-PK1 cells grown on collagen-coated filters that permitted access of medium to both sides of the monolayer. The rates of basolateral uptake of both 1 mM glucose (Km 3.6 mM) and 1 mM 2dglc (Km 1.5 mM) were greater than apical uptake rates and the (apical-to-basolateral)/(basolateral-to-apical) flux ratio was high for glucose (9.4) and low for 2dglc (0.8), thus, confirming the lack of interaction of 2dglc with the apical SGLT. Specific glucose transport inhibitor studies using phlorizin, phloretin and cytochalasin B confirmed the polarised distribution of SGLT and GLUT in LLC-PK1 cells. Basolateral sugar uptake could be altered by addition of insulin (1 mU/ml) which increased 2dglc uptake by 72% and glucose uptake by 50% and by addition of 20 mM glucose to the medium during cell culture which decreased 2dglc uptake capacity at confluence by 30%. During growth to confluence, 2dglc uptake increased to a maximum, then decreased at the time of confluence, coincident with a rise in uptake capacity for alpha-methyl-D-glucoside, a hexose that interacts only with the apical SGLT. It was concluded that the non-metabolisable sugar 2dglc was a useful, specific probe for GLUT in LLC-PK1 cells and that GLUT was localised at the basolateral membrane after confluence.  相似文献   

12.
Under aerobic conditions 2-deoxy-d-glucose was accumulated in Kluyveromyces marxianus mainly in a phosphorylated form. During sugar uptake both ATP, polyphosphate and orthophosphate levels decreased. Under anaerobic conditions considerably less sugar was taken up. The intracellular free sugar concentration did not exceed the medium concentration, whereas sugar phosphorylation leveled off at about 3 μmol/g yeast. In response to anaerobic 2-deoxy-d-glucose uptake only ATP and polyphosphate appeared to decrease. Within the experimental error sugar phosphorylation was counterbalanced by the polyphosphate decrease. Pulse labeling experiments revealed transport-associated phosphorylation under these anaerobic conditions, Further, kinetic studies on permeabilized cells showed that cytoplasmic ATP could not be the phosphoryl donor in this transport-associated phosphorylation. These results confirm and extend previous observations, indicating that polyphosphate plays a crucial role in 2-deoxy-d-glucose transport in Kluyveromyces marxianus.  相似文献   

13.
Resting cells of Fusobacterium nucleatum 10953 (grown previously in a medium containing glucose) failed to accumulate glucose under aerobic or anaerobic conditions. However, the addition of glutamic acid, lysine, or histidine to anaerobic suspensions of cells caused the immediate and rapid accumulation of glucose. Except for the amino acid-dependent transport of galactose and fructose (the latter being transported at approximately one-third the rate of glucose), no other sugars tested were accumulated by the resting cells. Amino acid-dependent uptake of sugar(s) by F. nucleatum was abolished by exposure of cells to air, and under aerobic conditions the rates of fermentation of glutamic acid and lysine were less than 15% of the rates determined anaerobically. The energy necessary for active transport of the sugars (acetyl phosphate and ATP) is derived from the anaerobic fermentation of glutamic acid, lysine, or histidine. Competition studies revealed that glucose and galactose were mutual and exclusive inhibitors of transport, and it is suggested that the two sugars (Km = 14 microM) are translocated via a common carrier. The products of amino acid-dependent sugar transport were recovered from resting cells as ethanol-precipitable, high-molecular-weight polymers. Polymer formation by F. nucleatum, during growth in medium containing glucose or galactose, was confirmed by electron microscopy.  相似文献   

14.
ATP and respiration (NADH)-driven NAD(P)+ transhydrogenase (EC 1.6.1.1) activities are low in membranes from Escherichia coli cultured on yeast extract medium (17 and 21 nmol/min × mg) but high on glucose (82 and 142 nmol/min × mg). The ATPase and respiratory activities in both cases appeared comparable. Growth of the bacteria in yeast extract medium followed by washing and replacement into a glucose medium showed that after 3 h the energy-linked and energy-independent NAD(P)+ transhydrogenase (reduction of acetylpyridine NAD+ by NADPH) activities had appeared simultaneously. Incorporation of chloramphenicol or omission of glucose in the induction medium resulted in no increase in these activities indicating that de novo protein synthesis is required for the induction of energy-linked and -independent NAD(P)+ transhydrogenase. It was found that the Km values for acetylpyridine NAD+ and NADPH for the energy-independent reaction in membranes from glucose grown cells (143 and 62 μm) were similar to those in membranes from cells grown on glucose-yeast extract (135 and 45 μm), respectively, but the maximum velocity at infinite acetyl pyridine NAD+ and NADPH increased from 353 to 2175 nmol/min × mg. Furthermore, the membrane-bound NAD(P)+ transhydrogenase in glucose-yeast extract grown cells showed substrate inhibition at high NADPH and low acetyl pyridine NAD+ levels. Further kinetic data demonstrate that the mechanism of the energy-independent NAD(P)+ transhydrogenase in E. coli is similar to that of the mitochondrial enzyme and exhibits similar responses to competitive inhibitors at the NAD+ and NADPH sites.  相似文献   

15.
Yersinia pestis was found to utilize palmitic acid as a primary carbon and energy source. No inhibition of growth by palmitic acid was observed. Comparison of palmitic acid uptake by cells pregrown either with or without palmitic acid demonstrated that fatty acid uptake was constitutive. High basal levels of two enzymes of beta-oxidation, beta-hydroxyacyl-coenzyme A dehydrogenase and thiolase, and the two enzymes of the glyoxylate shunt, isocitrate lyase and malate synthase, were found in cells grown in defined medium with glucose. Elevated levels of all four enzymes were found when cells were grown with acetate as a primary carbon and energy source, and even higher levels were observed when palmitic acid was provided as a primary carbon and energy source. High-pressure liquid chromatography was used to demonstrate that, in the presence of glucose, uniformly labeled [14C]palmitic acid was converted to intermediates of the tricarboxylic acid cycle and glyoxylate shunt. Pregrowth with palmitic acid was not required for this conversion. Strains lacking the 6- or the 47-megadalton plasmid did not take up [3H]palmitic acid but did possess levels of enzyme activity comparable to those observed in the wild-type strain.  相似文献   

16.
Changes in trehalose accumulation and in cytochromes during diauxic growth in glucose medium were examined in a normal Saccharomyces cerevisiae strain. While no appreciable disaccharide accumulation occurred during most of the logarithmic phase, a rapid synthesis took place during the final stages. The intrinsic capacity of cells to accumulate trehalose was also determined under nonproliferating conditions, in glucose medium lacking a nitrogen source. Cells harvested at an early growth stage had a much lower trehalose accumulation capacity than cells taken after glucose was exhausted from the culture medium. A high trehalose accumulation capacity could also be obtained at any growth stage by using maltose or galactose as carbon source. Since cells grown under various conditions exhibit a correlated change in cytochrome development and in trehalose accumulation capacity, it was concluded that the level of glucose repression determines the concentration and/or state of activation of the trehalose synthetase-trehalase complex. Independent control of trehalose accumulation capacity and mitochondrial biogenesis by the level of glucose repression was shown in two ways: by demonstrating derepression of trehalose accumulation without development of cytochromes a and c in microaerobic cells, and by showing repression-dependent changes in a cytoplasmic respiration-deficient (ρ?) mutant, which lacked functional mitochondria. Therefore, the capacity of a cell to accumulate trehalose is not regulated solely by the supply of ATP generated by oxidative phosphorylation.  相似文献   

17.
Uptake of sugar by Phaseolus vulgaris cell suspension cultures from a sucrose supplemented medium is predominantly in the hexose form. This is due to a rapid cleavage of the sucrose by an apoplastic acid invertase activity and an apparent very low demand for and uptake of carbon from the medium prior to induction of cell growth and division. Glucose is preferentially taken up, leading to an accumulation of fructose in the medium. However, when the glucose is depleted the cells do take up the fructose at a rate similar to that of glucose. When glucose or fructose is supplied individually to cell cultures, both are utilised very efficiently with growth slightly better on the fructose medium. Hexose uptake is largely an active process with diffusion uptake even at the highest concentrations (> 50 m M ) contributing less than 30%. The hexose uptake system of the cells has a greater affinity for glucose (Km= 240 µ M ) than for fructose (Km= 960 µ M ) but the maximum uptake (Vmax) is similar. The major difference in the kinetic properties of hexose uptake is that glucose is a strong inhibitor of fructose uptake, while fructose has little effect on glucose uptake. The differences in the kinetic properties of the uptake system for the two hexoses can largely explain the observed pattern of hexose utilisation when both glucose and fructose are present in the medium.  相似文献   

18.
Regulation of sugar transport in Neurospora crassa   总被引:13,自引:11,他引:2       下载免费PDF全文
Sugar uptake systems in Neurospora crassa are catabolically repressed by glucose. Synthesis of a low K(m) glucose uptake system (system II) in Neurospora is derepressed during starvation for an externally supplied source of carbon and energy. Fasting also results in the derepression of uptake systems for fructose, galactose, and lactose. In contrast to the repression observed when cells were grown on glucose, sucrose, or fructose, system II was not repressed by growth on tryptone and casein hydrolysate. System II was inactivated in the presence of 0.1 m glucose and glucose plus cycloheximide but not by cycloheximide alone. Inactivation followed first-order kinetics with a half-time of 40 min. The addition of glycerol to the uptake medium had no significant effect on the kinetics of 3-0-methyl glucose uptake, suggesting that the system was not feedback inhibitable by catabolites of glycerol metabolism.  相似文献   

19.
T Sugio  S Kudo  T Tano  K Imai 《Journal of bacteriology》1982,150(3):1109-1114
Properties of a heat-labile glucose transport system in Thiobacillus ferrooxidans strain AP-44 were investigated with iron-grown cells. [14C]glucose was incorporated into cell fractions, and the cells metabolized [14C]glucose to 14CO2. Amytal, rotenone, cyanide, azide, 2,4-dinitrophenol, and dicyclohexylcarbodiimide strongly inhibited [14C]glucose uptake activity, suggesting the presence of an energy-dependent glucose transport system in T. ferrooxidans. Heavy metals, such as mercury, silver, uranium, and molybdate, markedly inhibited the transport activity at 1 mM. When grown on mixotrophic medium, the bacteria preferentially utilized ferrous iron as an energy source. When iron was exhausted, the cells used glucose if the concentration of ferrous sulfate in the medium was higher than 3% (wt/vol). However, when ferrous sulfate was lower than 1%, both of the energy sources were consumed simultaneously.  相似文献   

20.
Lactobacillus rhamnosus ATCC 7469 exhibited diauxie when grown in a medium containing both glucose and citrate as energy source. Glucose was used as the primary energy source during the glucose-citrate diauxie. Uptake of citrate was carried out by an inducible citrate transport system. The induction of citrate uptake system was repressed in the presence of glucose. This repression was reversible and mediated by cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号