首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We described the complete mitochondrial genome (mitogenome) of the Wagner’s mustached bat, Pteronotus personatus, a species belonging to the family Mormoopidae, and compared it with other published mitogenomes of bats (Chiroptera). The mitogenome of P. personatus was 16,570 bp long and contained a typically conserved structure including 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region (D-loop). Most of the genes were encoded on the H-strand, except for eight tRNA and the ND6 genes. The order of protein-coding and rRNA genes was highly conserved in all mitogenomes. All protein-coding genes started with an ATG codon, except for ND2, ND3, and ND5, which initiated with ATA, and terminated with the typical stop codon TAA/TAG or the codon AGA. Phylogenetic trees constructed using Maximum Parsimony, Maximum Likelihood, and Bayesian inference methods showed an identical topology and indicated the monophyly of different families of bats (Mormoopidae, Phyllostomidae, Vespertilionidae, Rhinolophidae, and Pteropopidae) and the existence of two major clades corresponding to the suborders Yangochiroptera and Yinpterochiroptera. The mitogenome sequence provided here will be useful for further phylogenetic analyses and population genetic studies in mormoopid bats.  相似文献   

2.
The first complete mitochondrial genome (mitogenome) of Tachinidae Exorista sorbillans (Diptera) is sequenced by PCR-based approach. The circular mitogenome is 14,960?bp long and has the representative mitochondrial gene (mt gene) organization and order of Diptera. All protein-coding sequences are initiated with ATN codon; however, the only exception is Cox I gene, which has a 4-bp ATCG putative start codon. Ten of the thirteen protein-coding genes have a complete termination codon (TAA), but the rest are seated on the H strand with incomplete codons. The mitogenome of E. sorbillans is biased toward A+T content at 78.4?%, and the strand-specific bias is in reflection of the third codon positions of mt genes, and their T/C ratios as strand indictor are higher on the H strand more than those on the L strand pointing at any strain of seven Diptera flies. The length of the A+T-rich region of E. sorbillans is 106?bp, including a tandem triple copies of a13-bp fragment. Compared to Haematobia irritans, E. sorbillans holds distant relationship with Drosophila. Phylogenetic topologies based on the amino acid sequences, supporting that E. sorbillans (Tachinidae) is clustered with strains of Calliphoridae and Oestridae, and superfamily Oestroidea are polyphyletic groups with Muscidae in a clade.  相似文献   

3.
We sequenced the complete mitochondrial genome (mitogenome) of Neochauliodes parasparsus. The 15,995-bp mitogenome contained the standard set of 13 protein-coding genes, 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and a putative control region, with a gene arrangement that was identical to that reported for most other megalopteran species. We also predicted the secondary structure of all the RNA genes and analysed the preferred codon usage of the protein-coding genes. The putative 1265-bp control region contained two tandem repeated regions and several microsatellite-like elements. The phylogenetic analysis of available neuropteridan mitogenomes, based on the 13 protein-coding genes, appeared to support the current view of the neuropteridan phylogeny, and among the Neochauliodes spp., N. parasparsus was the most closely related to N. punctatolosus.  相似文献   

4.
有瓣蝇类分类、系统发育及演化   总被引:1,自引:0,他引:1  
闫利平  裴文娅  张东 《昆虫学报》2021,64(6):757-768
有瓣蝇类(Calyptratae)隶属于昆虫纲(Insecta)四大超适应辐射类群之一的双翅目(Diptera),占双翅目已知物种多样性的近20%。有瓣蝇类分布广泛,生物学习性极为多样,在维系生态系统稳定中发挥着重要作用,是媒介、法医、传粉和天敌昆虫学研究领域的热点类群,也是探究双翅目系统演化及其成功适应辐射的关键类群。为了还原有瓣蝇类的演化历史,许多著名昆虫学者先后对该类昆虫开展过不同层面的研究。有瓣蝇类的单系性得到了普遍支持,并被分为3个总科——虱蝇总科(Hippoboscoidea)、蝇总科(Muscoidea)和狂蝇总科(Oestroidea),其中单系的狂蝇总科与多系的蝇总科聚为一支,再与虱蝇总科成为姐妹群。在科级阶元水平,蝠蝇科(Streblidae)(虱蝇总科)、花蝇科(Anthomyiidae)(蝇总科)、丽蝇科(Calliphoridae)(狂蝇总科)、邻寄蝇科(Rhinophoridae)(狂蝇总科)等类群的单系性仍有待验证,且新的科仍在不断被建立[如粉蝇科(Polleniidae)、乌鲁鲁蝇科(Ulurumyiidae)],因此,有瓣蝇类科级系统发育关系仍不十分明晰。已有研究对虱蝇总科虱蝇科(Hippoboscidae)、蝠蝇科、蛛蝇科(Nycteribiidae),蝇总科蝇科(Muscidae)、粪蝇科(Scathophagidae),狂蝇总科麻蝇科(Sarcophagidae)、狂蝇科(Oestridae)胃蝇亚科(Gasterophilinae)的演化历史进行研究,明确了起源与扩散、寄主转移、取食策略等关键生物学习性的演化历史。但由于部分关键类群生活史信息的缺失,以及尚未有效解决的系统发育关系,有瓣蝇类演化历史仍有许多待解之谜。本文综述了有瓣蝇类分类、系统发育及演化研究进展,是在系统学研究进入系统发育基因组学时代后对该类群相关研究进展的首次全面总结。  相似文献   

5.
We explored the phylogenetic utility and limits of the individual and concatenated mitochondrial genes for reconstructing the higher-level relationships of teleosts, using the complete (or nearly complete) mitochondrial DNA sequences of eight teleosts (including three newly determined sequences), whose relative phylogenetic positions were noncontroversial. Maximum-parsimony analyses of the nucleotide and amino acid sequences of 13 protein-coding genes from the above eight teleosts, plus two outgroups (bichir and shark), indicated that all of the individual protein-coding genes, with the exception of ND5, failed to recover the expected phylogeny, although unambiguously aligned sequences from 22 concatenated transfer RNA (tRNA) genes (stem regions only) recovered the expected phylogeny successfully with moderate statistical support. The phylogenetic performance of the 13 protein-coding genes in recovering the expected phylogeny was roughly classified into five groups, viz. very good (ND5, ND4, COIII, COI), good (COII, cyt b), medium (ND3, ND2), poor (ND1, ATPase 6), and very poor (ND4L, ND6, ATPase 8). Although the universality of this observation was unclear, analysis of successive concatenation of the 13 protein-coding genes in the same ranking order revealed that the combined data sets comprising nucleotide sequences from the several top-ranked protein-coding genes (no 3rd codon positions) plus the 22 concatenated tRNA genes (stem regions only) best recovered the expected phylogeny, with all internal branches being supported by bootstrap values >90%. We conclude that judicious choice of mitochondrial genes and appropriate data weighting, in conjunction with purposeful taxonomic sampling, are prerequisites for resolving higher-level relationships in teleosts under the maximum-parsimony optimality criterion.  相似文献   

6.
Tachinid flies are natural enemies of many lepidopteran and coleopteran pests of forests, crops, and fruit trees. In order to address the lack of genetic data in this economically important group, we sequenced the complete mitochondrial genome of the Palaearctic tachinid fly Elodia flavipalpis Aldrich, 1933. Usually found in Northern China and Japan, this species is one of the primary natural enemies of the leaf-roller moths (Tortricidae), which are major pests of various fruit trees. The 14,932-bp mitochondrial genome was typical of Diptera, with 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. However, its control region is only 105 bp in length, which is the shortest found so far in flies. In order to estimate dipteran evolutionary relationships, we conducted a phylogenetic analysis of 58 mitochondrial genomes from 23 families. Maximum-likelihood and Bayesian methods supported the monophyly of both Tachinidae and superfamily Oestroidea. Within the subsection Calyptratae, Muscidae was inferred as the sister group to Oestroidea. Within Oestroidea, Calliphoridae and Sarcophagidae formed a sister clade to Oestridae and Tachinidae. Using a Bayesian relaxed clock calibrated with fossil data, we estimated that Tachinidae originated in the middle Eocene.  相似文献   

7.
To help determine whether the typical arthropod arrangement was a synapomorphy for the whole Tettigoniidae, we sequenced the mitochondrial genome (mitogenome) of the quiet-calling katydids, Xizicus fascipes (Orthoptera: Tettigoniidae: Meconematinae). The 16,166-bp nucleotide sequences of X. fascipes mitogenome contains the typical gene content, gene order, base composition, and codon usage found in arthropod mitogenomes. As a whole, the X. fascipes mitogenome contains a lower A+T content (70.2%) found in the complete orthopteran mitogenomes determined to date. All protein-coding genes started with a typical ATN codon. Ten of the 13 protein-coding genes have a complete termination codon, but the remaining three genes (COIII, ND5 and ND4) terminate with incomplete T. All tRNAs have the typical clover-leaf structure of mitogenome tRNA, except for tRNA(Ser(AGN)), in which lengthened anticodon stem (9 bp) with a bulged nuleotide in the middle, an unusual T-stem (6 bp in constrast to the normal 5 bp), a mini DHU arm (2 bp) and no connector nucleotides. In the A+T-rich region, two (TA)n conserved blocks that were previously described in Ensifera and two 150-bp tandem repeats plus a partial copy of the composed at 61 bp of the beginning were present. Phylogenetic analysis found: i) the monophyly of Conocephalinae was interrupted by Elimaea cheni from Phaneropterinae; and ii) Meconematinae was the most basal group among these five subfamilies.  相似文献   

8.
Lu Bao  Yonghen Zhang  Xing Gu  Yuefang Gao  Youben Yu 《Genomics》2019,111(5):1043-1052
Zygaenidae comprises >1036 species, including many folivorous pests in agriculture. In the present study, the complete mitochondrial genome (mitogenome) of a major pest of tea trees, Eterusia aedea was determined. The 15,196-bp circular genome contained the common set of 37 mitochondrial genes (including 13 protein-coding genes, two rRNA genes, and 22 tRNA genes) and exhibited the similar genomic features to reported Zygaenidae mitogenome. Comparative analyses of Zygaenidae mitogenomes showed a typical evolutionary trend of lepidopteran mitogenomes. In addition, we also investigated the gene order of lepidopteran mitogenomes and proposed that the novel gene order trnA-trnR-trnN-trnE-trnS-trnF from Zygaenidae and Gelechiidae and most other gene rearrangements of this tRNA cluster evolved independently. Finally, the mitogenomic phylogeny of Lepidoptera was reconstructed based on multiple mitochondrial datasets. And all the phylogenetic results revealed the sister relationships of Cossoidea and Zygaenoidea with both BI and ML methods, which is the first stable mitogenomic evidence for this clade.  相似文献   

9.
Hwang DS  Lee JS 《Mitochondrial DNA》2012,23(4):301-302
We sequenced the complete mitochondrial genome from the boreal digging frog Kaloula borealis. The genome sequence was 17,173 bp in size, and the gene order and contents were identical to those of previously reported amphibian mitochondrial genomes. Of 13 protein-coding genes (PCGs), 5 genes (CO2, ATPase 6, CO3, ND3, and ND4) had incomplete stop codons. Also ND1 gene used GTG as a start codon, while CO1 and ND5 genes used AGG as a stop codon. The base composition of K. borealis mitogenome showed a strong anti-G bias (6.11%) on the 3rd position of PCGs.  相似文献   

10.
The complete mitochondrial genome (mitogenome) of Diaphania pyloalis (Lepidoptera: Pyralididae) was determined to be 15,298 bp and has the typical gene organization of mitogenomes from lepidopteran insects. It consists of 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and an A + T-rich region. The A + T content of this mitogenome is 80.83% and the AT skew is slightly positive. All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 (cox1) gene which is initiated by CGA. Only the cox2 gene has an incomplete stop codon consisting of just a T. All the tRNA genes display a typical clover-leaf structure of mitochondrial tRNA. The A + T-rich region of the mitogenome is 332 bp in length, including several common features found in lepidopteran mitogenomes. Phylogenetic analysis showed that the D. pyloalis is close to Pyralididae.  相似文献   

11.
The complete mitogenome of Talpa occidentalis, the Iberian mole, was sequenced using a combination of the Illumina and Sanger methods. The 16,962 bp genome obtained contains 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs, and a control region. Thirty-seven identical repetitions of a 10-nucleotide (CACACGTACG) repeat element were identified in the non-coding control region (D-loop). The number, order, and orientation of the mitochondrial genes are the same as in T. europaea, the only mitogenome published so far for this genus. These two mitogenomes differ only at the repeat element included in the control region. The phylogeny obtained for the Talpidae species using the protein-coding genes of these mitogenomes agrees with the current classification of this family.  相似文献   

12.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the most serious pest of citrus as the vector of Huanglongbing (HLB), the citrus greening disease. In this study, the complete mitochondrial genome (mitogenome) of D. citri has been sequenced and annotated, and a comparative analysis is provided with known Psylloidea species. The mitogenome of D. citri is a typical circular molecular of 15,038 bp in length with an A + T content of 74.56%, contains the typical 37 genes and the gene order is identical to the other Psylloidea mitogenomes. The nucleotide composition and codon usage of D. citri are similar to the four Psylloidea species. All protein-coding genes (PCGs) use standard initiation codons (TAN), stop with TAA and TAG except ND2 and ND5 which stop with incomplete termination codon T. All tRNAs have the typical clover-leaf structure, with the exception of trnS1 lacking the dihydrouridine (DHU) arm. The control region is located between rrnL and the trnI gene with the highest A + T content among the five Psylloidea species. Phylogenetic analysis is conducted based on the 13 PCGs or/and 2 rRNAs of 23 Sternorrhycha mitogenomes. Both maximum likelihood (ML) and Bayesian inference (BI) analysis suggest a clear relationship of Psylloidea, Aleyrodoidea and Aphidoidea within Sternorrhycha, which support the traditional morphological classification.  相似文献   

13.
Phylogenetic relationship within Neuroptera is controversial, particularly for the various hypotheses based on both morphological and molecular evidence. In the present study, we determined the complete mitochondrial genome (mitogenome) of Gatzara jezoensis, which is the second representative of the tribe Dendroleontini. The G. jezoensis mitogenome contained the conserved set of 37 mitochondrial genes and a putative control region, with a conserved gene arrangement which was similar to that of most sequenced neuropteran mitogenomes. All transfer RNAs exhibited the canonical cloverleaf secondary structure, except for trnS(AGN). The control region contained two conserved elements (ploy-T stretch and ATGGTTCAAYAAAATAAYYCYCTC motif) and abundant microsatellite-like elements. The phylogenetic analysis of sequenced neuropteran mitogenomes using the concatenated protein-coding genes (PCGs) and ribosomal genes recovered the monophyly of Myrmeleontidae, which revealed this dataset could generate the more robust phylogeny of Neuroptera than that of 13 PCGs dataset.  相似文献   

14.
The dipteran clade Calyptratae is comprised of approximately 18 000 described species (12% of the known dipteran diversity) and includes well‐known taxa such as houseflies, tsetse flies, blowflies and botflies, which have a close association with humans. However, the phylogenetic relationships within this insect radiation are very poorly understood and controversial. Here we propose a higher‐level phylogenetic hypothesis for the Calyptratae based on an extensive DNA sequence dataset for 11 noncalyptrate outgroups and 247 calyptrate species representing all commonly accepted families in the Oestroidea and Hippoboscoidea, as well as those of the muscoid grade. DNA sequences for genes in the mitochondrial (12S, 16S, cytochrome c oxidase subunit I and cytochrome b) and nuclear genome [18S, 28S, the carbamoyl phosphate synthetase region of CAD (rudimentary), Elongation factor one alpha] were used to reconstruct the relationships. We discuss problems relating to the alignment and analysis of large datasets and emphasize the advantages of utilizing a guide tree‐based approach for the alignment of the DNA sequences and using the leaf stability index to identify ‘wildcard’ taxa whose excessive instability obscures the phylogenetic signal. Our analyses support the monophyly of the Calyptratae and demonstrate that the superfamily Oestroidea is nested within the muscoid grade. We confirm that the monotypic family Mystacinobiidae is an oestroid and further revise the composition of the Oestroidea by demonstrating that the previously unplaced and still undescribed ‘McAlpine’s fly’ is nested within this superfamily as a probable sister group to Mystacinobiidae. Within the Oestroidea we confirm with molecular data that the Calliphoridae are a paraphyletic grade of lineages. The families Sarcophagidae and Rhiniidae are monophyletic, but support for the monophyly of Tachinidae and Rhinophoridae depends on analytical technique (e.g. parsimony or maximum likelihood). The superfamilies Hippoboscoidea and Oestroidea are consistently found to be monophyletic, and the paraphyly of the muscoid grade is confirmed. In the overall relationships for the calyptrates, the Hippoboscoidea are sister group to the remaining Calyptratae, and the Fanniidae are sister group to the nonhippoboscoid calyptrates, whose relationships can be summarized as (Muscidae (Oestroidea (Scathophagidae, Anthomyiidae))).  相似文献   

15.
Qin F  Jiang GF  Zhou SY 《Mitochondrial DNA》2012,23(2):123-125
In this study, we sequenced the complete mitochondrial genome of Teinopalpus aureus guangxiensis (Lepidoptera: Papilionidae), which is considered as an endemic species in China. It is listed as a vulnerable species by International Union for Conservation of Nature and Natural Resources Red List and also a first class endangered species in China. The complete mtDNA from T. aureus guangxiensis was 15,235 base pairs in length and contained 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The T. aureus guangxiensis genes were in the same order and orientation as the completely sequenced mitogenomes of other lepidopteran species. All PCGs of T. aureus guangxiensis mitogenome start with a typical ATN codon and terminate in the common stop codon TAA, except that ND1 gene uses TTA, ND3 gene uses ATT, and ND4 and ND4L gene use TAA. The phylogenetic relationships were reconstructed with the concatenated sequences of the 13 PCGs of the mitochondrial genome, and phylogenetic results confirmed that Nymphalidae, Lycaenidae, Papilionidae, Pieridae are monophyletic clades.  相似文献   

16.
Bombycoidea comprises 10 families and 4723 species, and the phylogenetic relationships among families are still in debate. In this study, we have determined the complete mitochondrial genome (mitogenome) of Brahmaea porphyria. The 15,429-bp mitogenome contains a common set of 37 mitochondrial genes including 13 protein-coding genes, 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and an inferred control region, and shares the conserved gene rearrangement (trnM-trnI-trnQ) in most ditrysian mitogenomes. Moreover, we analysed the secondary structure for all the tRNA genes of B. porphyria and the preference of codon usage in the PCGs of B. porphyria. The putative 373-bp control region (CR) possesses three types of conserved elements, including ATAGA, Ploy-T stretch, and microsatellite-like elements. A phylogenetic analysis among available Bombycoidea mitogenomes using the concatenated 37 mitochondrial genes appears to support the hypothesis of (Sphingidae+Bombycidae)+Saturniidae and the relatively basal phylogenetic position of Brahmaeidae within Bombycoidea.  相似文献   

17.
The complete mitochondrial genome (mitogenome) of the Chinese pistacia looper Biston panterinaria was sequenced and annotated (15,517 bp). It contains the typical 37 genes of animal mitogenomes and a high A + T content (79.5%). All protein coding genes (PCGs) use standard ATN initiation codons except for cytochrome c oxidase 1 (COX1) with CGA. Eleven PCGs use a common stop codon of TAA or TAG, whereas COX2 and NADH dehydrogenase 4 (ND4) use a single T. All transfer RNA (tRNA) genes have the typical clover-leaf structure with the exception of tRNASer(AGN). We reconstructed a preliminary mitochondrial phylogeny of six ditrysian superfamilies and performed comparative analyses of inference methods (Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP)), dataset compositions (including and excluding 3rd codon positions), and alignment methods (Muscle, Clustal W, and MAFFT). Our analyses indicated that inference methods and dataset compositions more significantly affected the phylogenetic results than alignment methods. BI analysis consistently revealed uncontroversial relationships with all dataset compositions. By contrast, ML analysis failed to reconstruct stable phylogeny at two nodes, whereas MP analysis had more difficulties in the tree resolution and nodal support. Distinct from most previous studies, our analyses revealed that Geometroidea had a closer lineage relationship with Bombycoidea than Noctuoidea. Similar to previous molecular studies, our analyses revealed that Hesperiidae were nested in the Papilionoidea clade, providing further evidence to the previous concept that Papilionoidea was paraphyletic, and none of the butterflies were associated with the Macroheterocera.  相似文献   

18.
《Journal of Asia》2019,22(2):513-521
The complete mitochondrial genome (mitogenome) of Mahanta tanyae was sequenced and extensively compared with all seven additionally reported zygaenoid mitogenomes. The M. tanyae mitogenome is circular, double-stranded, and 15,323 bp long. Gene content, gene order, and orientation are all typical of Lepidoptera, despite the existence of gene rearrangements for some other zygaenoid mitogenomes. Comparative analyses further showed that the incomplete termination codon T is consistently recognized in the mitochondrial cox1, cox2 and nad4 genes of all zygaenoid species, as well as in the nad5 gene in two limacodid species. Among 13 protein-coding genes, nad6 exhibits the highest evolutionary rate. The structure for each tRNA is highly conserved, including loss of the dihydorouidine (DHU) arm in trnS1 (AGN), but remarkable nucleotide variation exists, primarily in the pseudouridine (TψC) loops. Interestingly, in four species of Zygaenidae, the anticodons for trnS1 (AGN) are consistently UCU, instead of the routinely used codon GCU, in all three species of Limacodidae. In the intergenic region between trnS2 and nad1, a short sequence before the motif “ATACTAA” is present in the M. tanyae mitogenome that is unique among reported zygaenoid mitogenomes. In the A + T-rich region between the motif “ATTTA” and the microsatellite (AT)n element, some nucleotides were present for most zygaenoid mitogenomes, which is, to our knowledge, rare even in reported lepidopteran mitogenomes. Phylogenetic analyses based on the combined 37 mitochondrial genes confirmed the position of M. tanyae in Limacodidae of the Zygaenoidea.  相似文献   

19.
20.
Insect mitochondrial genomes (mitogenomes) are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号