首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Prion diseases are caused by the conversion of a cellular protein (PrPC) into a misfolded, aggregated isoform (PrPRes). Misfolding of recombinant PrPC in the absence of PrPRes template, cellular factors, denaturing agents, or at neutral pH has not been achieved. A number of studies indicate that dimerization of PrPC may be a key step in the aggregation process. In an effort to understand the molecular event that may activate misfolding of PrPC in more relevant physiological conditions, we tested if enforced dimerization of PrPC may induce a conformational change reminiscent of the conversion of PrPC to PrPRes. We used a well described inducible dimerization strategy whereby a chimeric PrPC composed of a modified FK506-binding protein (Fv) fused with PrPC and termed Fv-PrP is incubated in the presence of a monomeric FK506 or dimerizing AP20187 ligand. Addition of AP20187 but not FK506 to recombinant Fv-PrP (rFv-PrP) in physiological-like conditions resulted in a rapid conformational change characterized by an increase in β-sheet structure and simultaneous aggregation of the protein. Aggregates were partially resistant to proteinase K and induced the conversion of soluble rFv-PrP in serial seeding experiments. As judged from thioflavin T binding and electron microscopy, aggregates converted to amyloid fibers. Aggregates were toxic to cultured cells, whereas soluble rFv-PrP and amyloid fibers were harmless. This study strongly supports the proposition that dimerization of PrPC is a key pathological primary event in the conversion of PrPC and may initiate the pathogenesis of prion diseases.  相似文献   

2.
The prion diseases occur following the conversion of the cellular prion protein (PrPC) into disease-related isoforms (PrPSc). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrPC in prion formation was examined using a cell painting technique. PrPSc formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrPC. In contrast, PrPC containing a GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc. Furthermore, the presence of desialylated PrPC inhibited the production of PrPSc within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrPC contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrPC. Desialylated PrPC was less sensitive to cholesterol depletion than PrPC and was not released from cells by treatment with glimepiride. The presence of desialylated PrPC in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases.  相似文献   

3.
PurposeIt has been suggested that FK506 could improve some symptoms of OAB in both clinical settings and animal models; however, its mechanism of action is not well-understood. Here, we investigated the effect of FK506 on TRPC6 in bladder smooth muscle, and explored the possible involvement of TRPC6 in OAB.MethodsFK506 was injected intraperitoneally into rats in which OAB was induced via BOO, and urodynamic indices were recorded. Rats and human bladder smooth muscle tissues with or without OAB were examined for TRPC6 expression by western blot, RT-PCR and IF staining. Cultured BSMCs were treated with PDGF, TRPC6 siRNAs and FK506. Then the TRPC6 expression and cellular proliferation were examined, and the Ca2+ influx and contractility of BSMCs were examined by time-lapse Ca2+ imaging and collagen gel contraction. Finally, IF and Co-IP were performed to test the effects of FK506 on NFAT translocation to the nucleus and the interaction of TRPC6 with FKBP12, respectively.ResultsFK506 improved urodynamic indices of OAB rats, and TRPC6 was expressed in rats and human bladder tissues. TRPC6 elevation in OAB rats was inhibited by FK506, and this inhibition coincided with improvements in urodynamic indices. PDGF enhanced TRPC6 expression, cellular proliferation, Ca2+ influx and contractility of BSMCs, and these effects were inhibited by TRPC6 siRNAs and FK506. FK506 inhibited NFAT translocation to the nucleus and disrupted the interaction of TRPC6 with FKBP12.ConclusionsOur results collectively indicate that FK506 may be used to treat OAB, and that TRPC6 may serve as an attractive target for therapeutic intervention in OAB.  相似文献   

4.

Background

The accumulation of protease resistant conformers of the prion protein (PrPres) is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific.

Methodology/Principal Finding

In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrPres formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS) from the PrPC substrate was found to specifically prevent PrPres formation seeded by mouse derived PrPSc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrPres formation, while having no effect on PrPres formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans.

Conclusions/Significance

Cofactor requirements for PrPres formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.  相似文献   

5.
1. Prion protein (PrPC) is a host-encoded glycoprotein constitutively expressed on the neuronal cell surface. Accumulation of its protease-resistant isoform is closely related to pathologic changes and prion propagation in the brain tissue of a series of prion diseases. However, the physiological role of PrPC remains to be elucidated.2. After long-term observation, we noted impaired motor coordination and loss of cerebellar Purkinje cells in the aged mice homozygous for a disrupted PrP gene, a finding which strongly suggests that PrPC plays a role in the long-term survival of Purkinje cells.3. We also describe the resistance of the PrP null mice to the prion, indicating the requirement of PrPC for both the development of prion diseases and the prion propagation.  相似文献   

6.
The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC) into the disease-associated, transmissible form (PrPSc). PrPC is a sialoglycoprotein that contains two conserved N-glycosylation sites. Among the key parameters that control prion replication identified over the years are amino acid sequence of host PrPC and the strain-specific structure of PrPSc. The current work highlights the previously unappreciated role of sialylation of PrPC glycans in prion pathogenesis, including its role in controlling prion replication rate, infectivity, cross-species barrier and PrPSc glycoform ratio. The current study demonstrates that undersialylated PrPC is selected during prion amplification in Protein Misfolding Cyclic Amplification (PMCAb) at the expense of oversialylated PrPC. As a result, PMCAb-derived PrPSc was less sialylated than brain-derived PrPSc. A decrease in PrPSc sialylation correlated with a drop in infectivity of PMCAb-derived material. Nevertheless, enzymatic de-sialylation of PrPC using sialidase was found to increase the rate of PrPSc amplification in PMCAb from 10- to 10,000-fold in a strain-dependent manner. Moreover, de-sialylation of PrPC reduced or eliminated a species barrier of for prion amplification in PMCAb. These results suggest that the negative charge of sialic acid controls the energy barrier of homologous and heterologous prion replication. Surprisingly, the sialylation status of PrPC was also found to control PrPSc glycoform ratio. A decrease in PrPC sialylation levels resulted in a higher percentage of the diglycosylated glycoform in PrPSc. 2D analysis of charge distribution revealed that the sialylation status of brain-derived PrPC differed from that of spleen-derived PrPC. Knocking out lysosomal sialidase Neu1 did not change the sialylation status of brain-derived PrPC, suggesting that Neu1 is not responsible for desialylation of PrPC. The current work highlights previously unappreciated role of PrPC sialylation in prion diseases and opens multiple new research directions, including development of new therapeutic approaches.  相似文献   

7.
8.
Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.  相似文献   

9.
《Autophagy》2013,9(9):1386-1394
Prion diseases are fatal neurodegenerative disorders and no effective treatment has been established to date. In this study, we evaluated the effect of FK506 (tacrolimus), a macrolide that is known to be a mild immunosuppressant, on prion infection, using cell culture and animal models. We found that FK506 markedly reduced the abnormal form of prion protein (PRNPSc) in the cell cultures (N2a58 and MG20) infected with Fukuoka-1 prion. The levels of autophagy-related molecules such as LC3-II, ATG12–ATG5 and ATG7 were significantly increased in the FK506-treated cells, and resulted in the increased formation of autolysosomes. Upregulation of the autophagy-related molecules was also seen in the brains of FK506-treated mice and the accumulation of PRNPSc was delayed. The survival periods in mice inoculated with Fukuoka-1 were significantly increased when FK506 was administered from day 20 post-inoculation. These findings provide evidence that FK506 could constitute a novel antiprion drug, capable of enhancing the degradation of PRNPSc in addition to attenuation of microgliosis and neuroprotection.  相似文献   

10.
Prion disease is caused by a single pathogenic protein (PrPSc), an abnormal conformer of the normal cellular prion protein PrPC. Depletion of PrPC in prion knockout mice makes them resistant to prion disease. Thus, gene silencing of the Prnp gene is a promising effective therapeutic approach. Here, we examined adeno-associated virus vector type 2 encoding a short hairpin RNA targeting Prnp mRNA (AAV2-PrP-shRNA) to suppress PrPC expression both in vitro and in vivo. AAV2-PrP-shRNA treatment suppressed PrP levels and prevented dendritic degeneration in RML-infected brain aggregate cultures. Infusion of AAV2-PrP-shRNA-eGFP into the thalamus of CD-1 mice showed that eGFP was transported to the cerebral cortex via anterograde transport and the overall PrPC levels were reduced by ∼70% within 4 weeks. For therapeutic purposes, we treated RML-infected CD-1 mice with AAV2-PrP-shRNA beginning at 50 days post inoculation. Although AAV2-PrP-shRNA focally suppressed PrPSc formation in the thalamic infusion site by ∼75%, it did not suppress PrPSc formation efficiently in other regions of the brain. Survival of mice was not extended compared to the untreated controls. Global suppression of PrPC in the brain is required for successful therapy of prion diseases.  相似文献   

11.
A plethora of evidence suggests that protein misfolding and aggregation are underlying mechanisms of various neurodegenerative diseases, such as prion diseases and Alzheimer's disease(AD). Like prion diseases, AD has been considered as an infectious disease in the past decades as it shows strain specificity and transmission potential. Although it remains elusive how protein aggregation leads to AD, it is becoming clear that cellular prion protein(PrP~C ) plays an important role in AD pathogenesis. Here, we briefly reviewed AD pathogenesis and focused on recent progresses how PrP~C contributed to AD development. In addition, we proposed a potential mechanism to explain why infectious agents, such as viruses, conduce AD pathogenesis. Microbe infections cause Aβ deposition and upregulation of PrP~C , which lead to high affinity binding between Aβ oligomers and PrP~C . The interaction between PrP~C and Aβ oligomers in turn activates the Fyn signaling cascade, resulting in neuron death in the central nervous system(CNS). Thus, silencing PrP~C expression may turn out be an effective treatment for PrP~C dependent AD.  相似文献   

12.
《朊病毒》2013,7(5):470-476
Prion diseases are fatal, neurodegenerative diseases characterized by the structural conversion of the normal, cellular prion protein, PrPC into an abnormally structured, aggregated and partially protease-resistant isoform, termed PrPSc. Although substantial research has been directed toward development of therapeutics targeting prions, there is still no curative treatment for the disease. Benzoxazines are bicyclic heterocyclic compounds possessing several pharmaceutically important properties, including neuroprotection and reactive oxygen species scavenging. In an effort to identify novel inhibitors of prion formation, several 5,7,8-trimethyl-1,4-benzoxazine derivatives were evaluated in vitro for their effectiveness on the expression levels of normal PrPC and its conversion to the abnormal isoforms of PrPSc in a scrapie-infected cell culture model. The most potent compound was 2-(4-methoxyphenyl)-5,7,8-trimethyl-3,4-dihydro-2H-1,4-benzoxazine, with a diminishing effect on the formation of PrPSc, thus establishing a class of compounds with a promising therapeutic use against prion diseases.  相似文献   

13.
Prion diseases are infectious and fatal neurodegenerative diseases affecting humans and animals. Transmission is possible within and between species with zoonotic potential. Currently, no prophylaxis or treatment exists. Prions are composed of the misfolded isoform PrPSc of the cellular prion protein PrPC. Expression of PrPC is a prerequisite for prion infection, and conformational conversion of PrPC is induced upon its direct interaction with PrPSc. Inhibition of this interaction can abrogate prion propagation, and we have previously established peptide aptamers (PAs) binding to PrPC as new anti-prion compounds. Here, we mapped the interaction site of PA8 in PrP and modeled the complex in silico to design targeted mutations in PA8 which presumably enhance binding properties. Using these PA8 variants, we could improve PA-mediated inhibition of PrPSc replication and de novo infection of neuronal cells. Furthermore, we demonstrate that binding of PA8 and its variants increases PrPC α-cleavage and interferes with its internalization. This gives rise to high levels of the membrane-anchored PrP-C1 fragment, a transdominant negative inhibitor of prion replication. PA8 and its variants interact with PrPC at its central and most highly conserved domain, a region which is crucial for prion conversion and facilitates toxic signaling of Aβ oligomers characteristic for Alzheimer’s disease. Our strategy allows for the first time to induce α-cleavage, which occurs within this central domain, independent of targeting the responsible protease. Therefore, interaction of PAs with PrPC and enhancement of α-cleavage represent mechanisms that can be beneficial for the treatment of prion and other neurodegenerative diseases.  相似文献   

14.
15.
Prion diseases are fatal, neurodegenerative diseases characterized by the structural conversion of the normal, cellular prion protein, PrPC into an abnormally structured, aggregated and partially protease-resistant isoform, termed PrPSc. Although substantial research has been directed toward development of therapeutics targeting prions, there is still no curative treatment for the disease. Benzoxazines are bicyclic heterocyclic compounds possessing several pharmaceutically important properties, including neuroprotection and reactive oxygen species scavenging. In an effort to identify novel inhibitors of prion formation, several 5,7,8-trimethyl-1,4-benzoxazine derivatives were evaluated in vitro for their effectiveness on the expression levels of normal PrPC and its conversion to the abnormal isoforms of PrPSc in a scrapie-infected cell culture model. The most potent compound was 2-(4-methoxyphenyl)-5,7,8-trimethyl-3,4-dihydro-2H-1,4-benzoxazine, with a diminishing effect on the formation of PrPSc, thus establishing a class of compounds with a promising therapeutic use against prion diseases.  相似文献   

16.
17.
18.
Prion and Alzheimer diseases are fatal neurodegenerative diseases caused by misfolding and aggregation of the cellular prion protein (PrPC) and the β-amyloid peptide, respectively. Soluble oligomeric species rather than large aggregates are now believed to be neurotoxic. PrPC undergoes three proteolytic cleavages as part of its natural life cycle, α-cleavage, β-cleavage, and ectodomain shedding. Recent evidences demonstrate that the resulting secreted PrPC molecules might represent natural inhibitors against soluble toxic species. In this mini-review, we summarize recent observations suggesting the potential benefit of using PrPC-derived molecules as therapeutic agents in prion and Alzheimer diseases.  相似文献   

19.

Background

Recent advances toward an effective therapy for prion diseases employ RNA interference to suppress PrPC expression and subsequent prion neuropathology, exploiting the phenomenon that disease severity and progression correlate with host PrPC expression levels. However, delivery of lentivirus encoding PrP shRNA has demonstrated only modest efficacy in vivo.

Methodology/Principal Findings

Here we describe a new siRNA delivery system incorporating a small peptide that binds siRNA and acetylcholine receptors (AchRs), acting as a molecular messenger for delivery to neurons, and cationic liposomes that protect siRNA-peptide complexes from serum degradation.

Conclusions/Significance

Liposome-siRNA-peptide complexes (LSPCs) delivered PrP siRNA specifically to AchR-expressing cells, suppressed PrPC expression and eliminated PrPRES formation in vitro. LSPCs injected intravenously into mice resisted serum degradation and delivered PrP siRNA throughout the brain to AchR and PrPC-expressing neurons. These data promote LSPCs as effective vehicles for delivery of PrP and other siRNAs specifically to neurons to treat prion and other neuropathological diseases.  相似文献   

20.
Prion diseases are fatal neurodegenerative disorders, which are not curable and no effective treatment exists so far. The major neuropathological change in diseased brains is the conversion of the normal cellular form of the prion protein PrPcC into a disease-associated isoform PrPSc. PrPSc accumulates into multimeres and fibrillar aggregates, which leads to the formation of amyloid plaques. Increasing evidence indicates a fundamental role of PrPSc species and its aggregation in the pathogenesis of prion diseases, which initiates the pathological cascade and leads to neurodegeneration accompanied by spongiform changes. In search of compounds that have the potential to interfere with PrPSc formation and propagation, we used a cell based assay for the screening of potential aggregation inhibitors. The assay deals with a permanently prion infected cell line that was adapted for a high-throughput screening of a compound library composed of 10,000 compounds (DIVERset 2, ChemBridge).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号