首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Mutant forms of the glyU (glycyl tRNA) gene cloned in M13mp8 were subjected to uninduced targeted UV mutagenesis; i.e. phage particles were irradiated and used to infect unirradiated umuC + or irradiated umuC mutant cells. The irradiated phage carried GAG at the anticodon triplet and transitions to GAA were scored. The uninduced targeted mutation rate was reduced by altering the sequence of the gene in the vicinity of the target purine (Pu) residue. In particular a triplet of pyrimidines (PyPyPy) 5 to the target G was changed to PyPuPy in order to prevent formation of cyclcobutane and 6-4 pyrimidine dimers close to the target. On this basis we suggest a mechanism for one type of uninduced regionally targeted UV mutagenesis.  相似文献   

2.
Summary By genetic analysis we examined UV mutagenesis of the Escherichia coli glyU gene. When carried by M13 phage mp9, glyU is subject to induced UV mutagenesis which is dependent on the umuC + and recF + genes. When carried by M13 phage mp8, glyU is not subject to induced UV mutagenesis. This difference is correlated with the nature of the target nucleotides: CTC in the mp9 derivative and GAG in the mp8 derivative. Thus, we conclude that the induced (unuC and recF dependent) mutagenesis is locally targeted on pyrimidine cyclobutane or 6-4 dimers. glyU carried by M13 is equally subject to uninduced UV mutagenesis whether carried by mp8 or mp9. This uninduced mutagenesis is independent of the umuC + , recF + and recA + genes and we hypothesize that it is regionally targeted on pyrimidine cyclobutane or 6-4 dimers in the vicinity of the target CTC and GAG nucleotides. The role of recF in UV mutagenesis was tested in two ways. First, mutagenesis of glyU carried by M13 mp9 in a recA730 genetic background was found to be recF dependent. Because recA730 renders induced UV mutagenesis partially constitutive, we conclude that the RecF product plays a direct role in UV mutagenesis rather than, or in addition to, any indirect regulatory role it may play. Second, UV mutagenesis of E. coli chromosomal glyU was found to be recF independent while UV mutagenesis of M13-bourne glyU was recF dependent. We conclude that the mechanism of induced UV mutagenesis of the E. coli chromosome is at least partly different from that of M13 phage and we discuss the biochemical basis for such a difference.  相似文献   

3.
The SOS hypothesis postulated that the mutator effect on undameged DNA that generates phage-untargeted mutagenesis (UTM) results directly from the mechanism of targeted mutagenesis. RecA protein, which stimulates the cleavage of both the LexA repressor and UmuD protein, and the UmuDC gene products are required for UV-induced targeted mutagenesis. The use of phage λ for analyzing UV-induced mutagenesis has permitted a distinction to be made between the mechanisms of targeted and untargeted mutagenesis, in that the two processes differ with respect to their genetic requirements for recA+ and umuDC+ genes. In this paper, we show thet (i) proficiency for excision repair is required for UTM in double-stranded DNA phage but not in single-stranded DNA phage; (ii) the umuC function, which is not required for UTM of the double-stranded DNA phage λ, is necessary for untargeted mutagenesis of the single-stranded DNA phages M13 and φX174; (iii) for both single-stranded and double-stranded DNA phage, UV irradiation of the host increases the level of recA730-induced UTM. Our results are also consistent with the interpretation that the expression of untargeted mutagenesis in phage λ and in M13 depends on the polymerase and to a lesser extent on the exonuclease 5′ → 3′, activities of Po1I. These results suggest that the involvement of the RecA and UmuDC proteins may be related to more than the presence of base damage in the DNA substrate.  相似文献   

4.
Summary It has been proposed that the mutation fixation processes stimulated by SOS induction result from an induced infidelity of DNA replication (Radman 1974). The aim of this study was to determine if mutator mutations in the E. coli DNA polymerase III might affect UV-induced mutagenesis.Using a phage mutation assay which can discriminate between targeted and untargeted mutations, we show that the polC74 mutator mutation (Sevastopoulos and Glaser 1977) primarily affects untargeted mutagenesis, which occurs in a recA1 genetic background and is amplified in the recA + genetic background. The polC74 mutation also increases the UV-induced mutagenesis of the bacterial chromosome. These results suggest that DNA polymerase III is involved in the process of UV-induced mutagenesis in E. coli.  相似文献   

5.
DNA polymerase IV (pol IV) in Escherichia coli is a member of a novel family of DNA polymerases (the DinB/UmuC/Rad30/Rev1 super-family or the DNA polymerase Y family). Although expression of the dinB gene encoding DNA pol IV is known to result in an enhancement of untargeted mutagenesis, it remains uncertain whether DNA pol IV is involved in a variety of lesion-induced mutagenesis (targeted mutagenesis), and the relationship between expression levels of dinB and the mutagenesis that DNA pol IV promotes has not been investigated thoroughly. Here, we report that DNA pol IV is involved in -1 frameshift mutagenesis induced by 4-nitroquinoline N-oxide (4-NQO) and that the expression level of the chromosomal pol IV gene is 6-12 times higher than those for other SOS-inducible DNA polymerases in E. coli, i.e., DNA pol II (PolB) or DNA pol V (UmuDC), respectively. Interestingly, the dinB gene is present not only on the chromosome but also on the F' plasmid in the E. coli CC108 strain. In this strain, 750 molecules of DNA pol IV are expressed from the F' dinB gene in the uninduced state and 250 molecules are expressed from the chromosomal gene. These cellular expression levels strongly affect -1 frameshifts induced by 4-NQO in runs of six guanine bases: mutagenicity was highest in the strain CC108, followed by strains YG2242 (chromosome deltadinB/F' dinB+), YG2247 (chromosome dinB+/F' deltadinB) and FC1243 (chromosome deltadinB/F' deltadinB). The incidence of untargeted -1 frameshifts was reduced by two-thirds on deletion of dinB from the F' episome. The chromosomal dinB gene appeared to have little or no effect on the untargeted mutagenesis. These results suggest that DNA pol IV efficiently mediates targeted mutagenesis by 4-NQO, and that the cellular levels of expression substantially affect targeted and untargeted mutagenesis.  相似文献   

6.
Closed circular double stranded M13mp19 DNA containing a site-specifically placed HMT (4'-hydroxymethyl-4-5'-8-trimethylpsoralen) monoadduct or crosslink was synthesized in vitro. The damaged DNA were scored for loss of infectivity by transfection into repair proficient or deficient E. coli and into SOS induced E. coli. Mutant phages were detected by the loss of alpha-complementation between the viral and the host Lac Z genes or by the acquisition of resistance to kpn I digestion. Our results indicate that HMT mutagenesis is targeted and that deletion or transversion of the modified thymidine is the predominant sequence change elicited by a monoadduct or a crosslink. Transfection of the monoadducted DNA into a Uvr A deficient strain did not change the mutation pattern but did increase the respective mutation frequencies. Transfection of the crosslinked DNA into a SOS induced host resulted in the appearence of other types of mutations attributable to an increase in both targeted and untargeted mutations.  相似文献   

7.
Summary We have studied spontaneous and UV mutagenesis of the glyU gene in Escherichia coli trpA461 (GAG) strains carrying the pIP11 plasmid, in which the dnaQ gene encoding the 3–5 exonuclease subunit (epsilon) of DNA polymerase III is fused to the tac(trp-lac) promoter. We have used a pair of M13glyU phage in which the gene encoding the glycyl-tRNA is cloned in opposite orientations, consequently the phage present either GGG or CCC anticodon triplets for mutagenesis. The presence of IPTG, the inducer of the tac-dnaQ fusion, results in about 100-fold decrease in frequency of spontaneous Su+ (GAG) mutations arising in the CCC phage. The enhanced expression of tac-dnaQ reduces 10-fold the frequency of UV-induced Su+ (GAG) mutations in the CCC phage and nearly completely prevents generation by UV of Su+ (GAG) mutations in the GGG phage, in which UV-induced pyrimidine photoproducts can be formed only in the vicinity of the target triplet. These results suggest that both locally and regionally targeted mutagenesis is affected by overproduction of the epsilon subunit. By delayed photoreversal mutagenesis we have shown that UV-induced chromosomal mutagenesis of the umuC36 trpA461 strain harboring pIP11 is completely abolished in the presence of IPTG. This result seems to indicate that the misinocorporation step of DNA translesion synthesis is affected by excess of the epsilon subunit. Finally, we have introduced the pIP13 plasmid carrying the dnaQ gene into the recA1207 strain, which is deficient in the recombinase activity of RecA but constitutive in the protease activity. We demonstrate that the transformant shows much higher UV sensitivity than recA1207 carrying the vector plasmid pBR325, indicating that translesion synthesis significantly contributes to DNA repair capacity of cells deficient in recombination.  相似文献   

8.
Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr+ host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one to two mutant phage per mutant burst. From this and the pathways of lambda DNA synthesis, it can be argued that non-targeted mutagenesis involves a loss of fidelity in semiconservative DNA replication. A series of experiments with various mutant host cells showed a major pathway of non-targeted mutagenesis by ultraviolet light, which acts in addition to "SOS induction" (where cleavage of the LexA repressor by RecA protease leads to din gene induction): (1) the induction of mutants has the same dependence on irradiation for wild-type and for umuC host cells; (2) a strain in which the SOS pathway is constitutively induced requires irradiation to the same level as wild-type cells in order to fully activate non-targeted mutagenesis; (3) non-targeted mutagenesis occurs to some extent in irradiated recA recB cells. In cells with very low levels of PolI, the induction of non-targeted mutagenesis by ultraviolet light is enhanced. We propose that the major pathway for non-targeted mutagenesis in irradiated host cells involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and that the low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage.  相似文献   

9.
Mechanism of SOS-induced targeted and untargeted mutagenesis in E. coli   总被引:1,自引:0,他引:1  
G Maenhaut-Michel 《Biochimie》1985,67(3-4):365-369
This paper retraces the evolution of hypotheses concerning mechanisms of SOS induced mutagenesis. Moreover, it reports some recent data which support a new model for the mechanism of targeted and untargeted mutagenesis in E. coli. In summary, the SOS mutator effect, which is responsible for untargeted mutagenesis and perhaps for the misincorporation step in targeted mutagenesis, is believed to involve a fidelity function associated with DNA polymerase III and does not require the umuC gene product. umuC and umuD gene products are probably required specifically for elongation of DNA synthesis past blocking lesions, i.e. to allow mutagenic replication of damaged DNA.  相似文献   

10.
Bacteria live in unstructured and structured environments, experiencing feast and famine lifestyles. Bacterial colonies can be viewed as model structured environments. SOS induction and mutagenesis have been observed in aging Escherichia coli colonies, in the absence of exogenous sources of DNA damage. This cAMP-dependent mutagenesis occurring in Resting Organisms in a Structured Environment (ROSE) is unaffected by a umuC mutation and therefore differs from both targeted UV mutagenesis and recA730 (SOS constitutive) untargeted mutagenesis. As a recB mutation has only a minor effect on ROSE mutagenesis it also differs from both adaptive reversion of the lacI33 allele and from iSDR (inducible Stable DNA Replication) mutagenesis. Besides its recA and lexA dependence, ROSE mutagenesis is also uvrB and polA dependent. These genetic requirements are reminiscent of the untargeted mutagenesis in λ phage observed when unirradiated λ infects UV-irradiated E. coli. These mutations, which are not observed in aging liquid cultures, accumulate linearly with the age of the colonies. ROSE mutagenesis might offer a good model for bacterial mutagenesis in structured environments such as biofilms and for mutagenesis of quiescent eukaryotic cells.  相似文献   

11.
Guanidinoacetic acid (GAA) is the biosynthetic precursor of creatine which is involved in storage and transmission of phosphate-bound energy. Hepatocytes readily convert GAA to creatine, raising the possibility that the active uptake of GAA by hepatocytes is a regulatory factor. The purpose of this study is to investigate and identify the transporter responsible for GAA uptake by hepatocytes. The characteristics of [(14)C]GAA uptake by hepatocytes were elucidated using the in vivo liver uptake method, freshly isolated rat hepatocytes, an expression system of Xenopus laevis oocytes, gene knockdown, and an immunohistochemical technique. In vivo injection of [(14)C]GAA into the rat femoral vein and portal vein results in the rapid uptake of [(14)C]GAA by the liver. The uptake was markedly inhibited by γ-aminobutyric acid (GABA) and nipecotinic acid, an inhibitor of GABA transporters (GATs). The characteristics of Na(+)- and Cl(-)-dependent [(14)C]GAA uptake by freshly isolated rat hepatocytes were consistent with those of GAT2. The Km value of the GAA uptake (134 μM) was close to that of GAT2-mediated GAA transport (78.9 μM). GABA caused a marked inhibition with an IC(50) value of 8.81 μM. The [(14)C]GAA uptake exhibited a significant reduction corresponding to the reduction in GAT2 protein expression. GAT2 was localized on the sinusoidal membrane of the hepatocytes predominantly in the periportal region. This distribution pattern was consistent with that of the creatine biosynthetic enzyme, S-adenosylmethionine:guanidinoacetate N-methyltransferase. GAT2 makes a major contribution to the sinusoidal GAA uptake by periportal hepatocytes, thus regulating creatine biosynthesis in the liver.  相似文献   

12.
The 31mer 5'-TCA ACG CTA GAA TTC GGA TCC ATC GCT TGG T, the complementary 33mer 5'-CCA AGC GAT GGA TCC GAA TTC TAG CGT TGA GAT, the 40mer 5'-GGC CAG GAT GGT GAA GAA TTC GAT CCG GTA CGT AGC TAA G, and the complementary 42mer 5'-TAC TTA GCT ACG TAC CGG ATC GAA TTC TTC ACC ATC CTG GCC were synthesized and their reactivity towards EcoRI was studied. It was found that the 31mer and the 40mer were cleaved at a comparable rate to the 31mer-33mer hybrid and the 40mer-42mer hybrid, respectively. The rate of cleavage of the 33mer and the 42mer was an order of magnitude lower. To rule out possible intermolecular duplex formation, the 33mer was immobilized on cellulose by ligation and labeled with alpha 32P-dCTP using Klenow fragment of E. coli DNA polymerase. EcoRI cleaved this immobilized oligomer into specific fragments.  相似文献   

13.
The association between Trp-tRNA and Pro-tRNA, which have complementary anticodon sequences, has been used as a probe of anticodon conformation. It is unaffected, however, by the base change in the D-stem present in UGA-suppressor Trp-tRNA. This does not support the hypothesis that UGA suppression depends upon a conformational change induced in the anticodon. The stable denatured form of wild-type Trp-tRNA no longer interacts with Pro-tRNA; the structure of the anticodon region must therefore be quite different in the denatured form.  相似文献   

14.
Summary Ultraviolet mutagenesis of lambda phage to clear plaque formers is the same in the total phage population and in subpopulations of phage which have also mutated to gam - or at an amber codon. This is true for phage assayed in host cells in which Weigle mutagenesis has been either partially induced by low levels of ultraviolet irradiation, or fully induced by higher levels. If induction of Weigle mutagenesis were all-or-none, clear plaque formers in phage subpopulations selected for another mutation elsewhere would come mainly from induced cells; then the clear plaque mutation rate would always be that for fully induced host cells. Therefore, induction requires more than one lesion in host cell DNA.Although thymine starvation of cells induces synthesis of recA protein, it does not induce Weigle mutagenesis; in fact starvation inhibits induction of this process on subsequent ultraviolet irradiation of the cells.  相似文献   

15.
The technique of site-directed mutagenesis has been used to investigate the mutagenicity of O6-methylguanine (O6-MeG) or hypoxanthine introduced as a single lesion at a specific locus in an M13mp9 RF molecule constructed in vitro. Following transformation of O6-MeG-containing RF molecules into E. coli JM101, mutant progeny phage were produced at a frequency not significantly different from that observed with wild-type M13mp9 RF. The mutant yield was greatly enhanced by exhausting cellular O6-MeG DNA-methyltransferase before transformation. In contrast, hypoxanthine exhibited miscoding mutagenesis in the absence of interference with cellular repair mechanisms. This indicates that cellular hypoxanthine-DNA glycosylase acts inefficiently in the removal of hypoxanthine from DNA in vivo. The precise mutational changes induced by hypoxanthine were determined by DNA sequence analysis.  相似文献   

16.
We have studied the specificity of singlet oxygen (1O2) mutagenesis in single-stranded DNA phage by analysing 1O2-induced mutations in the lac insert of the M13 mp 19 hybrid phage. 107 lac mutants were analysed showing mainly single-base substitutions with a total of 93% and 7% of 40-50 base deletion mutations. Most of the substitutions are G----T and C----A transversions with respectively 27 and 54% of the mutations. The replicative form of the M13 mp 19 DNA (RFDNA) was used as substrate for the 1O2 reactions, there are then two types of progeny phages DNA's. As guanine residues are the targets of the oxidation, it appears that both types of transversions are provided by one type of lesion: the guanine oxidised by 1O2 is read like a thymine by E. coli DNA polymerase-I.  相似文献   

17.
Bacteria live in unstructured and structured environments, experiencing feast and famine lifestyles. Bacterial colonies can be viewed as model structured environments. SOS induction and mutagenesis have been observed in aging Escherichia coli colonies, in the absence of exogenous sources of DNA damage. This cAMP-dependent mutagenesis occurring in Resting Organisms in a Structured Environment (ROSE) is unaffected by a umuC mutation and therefore differs from both targeted UV mutagenesis and recA730 (SOS constitutive) untargeted mutagenesis. As a recB mutation has only a minor effect on ROSE mutagenesis it also differs from both adaptive reversion of the lacI33 allele and from iSDR (inducible Stable DNA Replication) mutagenesis. Besides its recA and lexA dependence, ROSE mutagenesis is also uvrB and polA dependent. These genetic requirements are reminiscent of the untargeted mutagenesis in λ phage observed when unirradiated λ infects UV-irradiated E. coli. These mutations, which are not observed in aging liquid cultures, accumulate linearly with the age of the colonies. ROSE mutagenesis might offer a good model for bacterial mutagenesis in structured environments such as biofilms and for mutagenesis of quiescent eukaryotic cells. Received: 30 April 1997 / Accepted: 1 July 1997  相似文献   

18.
A generally applicable system for targeted mutagenesis of a chromosomal sequence is described. The Escherichia coli tufA gene was mutated using a recombinant M13mp9 phage vector carrying a tuf gene. Integration via crossing over with the chromosomal tufA target gene produced an M13 lysogen. These lysogens were screened for resistance to kirromycin. The M13 phage carrying tufA mutations were efficiently retrieved by a genetic procedure. Genetic mapping was performed with the M13 vectors. The same recombinant M13 phage was used for mutagenesis, lysogen formation, gene replacement, retrieval, mapping and sequencing of kirromycin mutants. Three different mutations yielding resistance to kirromycin were found: two of these have previously been found and characterised, while the third mutation, Gly316 Asp, is a new mutant. We also report the identification of a fourth kirromycin-resistant mutant, Gln124 Lys.  相似文献   

19.
Summary The SOS error-prone repair hypothesis proposes that untargeted and targeted mutations in E. coli both result from the inhibition of polymerase functions that normally maintain fidelity, and that this is a necessary precondition for translesion synthesis. Using mating experiments with excision deficient strains of Baker's yeast, Saccharomyces cerevisiae, we find that up to 40% of cyc1–91 revertants induced by UV are untargeted, showing that a reduction in fidelity is also found in irradiated cells of this organism. We are, however, unable to detect the induction or activation of any diffusible factor capable of inhibiting fidelity, and therefore suggest that untargeted and targeted mutations are the consequence of largely different processes. We propose that these observations are best explained in terms of a limited fidelity model. Untargeted mutations are thought to result from the limited capacity of processes which normally maintain fidelity, which are active during replication on both irradiated and unirradiated templates. Even moderate UV fluences saturate this capacity, leading to competition for the limited resource. Targeted mutations are believed to result from the limited, though far from negligible, capacity of lesions like pyrimidine dimers to form Watson-Crick base pairs.  相似文献   

20.
On the mechanism of bromouracil-induced mutagenesis   总被引:3,自引:0,他引:3  
Bromouracil (BU)-induced mutagenesis of λC17 am o8 phage, in relation to the recombination systems of phage (red) or bacteria (rec), was studied. The mutations investigated were amam+. For efficient BU-induced mutagenesis, red or recA genes as well as bacterial lex gene functions, known to be involved in UV-induced mutagenesis, were required. This suggests a common mechanism or some common step(s) in UV- and BU-induced mutagenesis. Moreover, a several-fold increase was observed in the number of mutants induced by BU in the excision-repair-deficient strain (uvrA), implying that incorporated BU induces some premutational lesions that are recognized and repaired by excision-repair enzymes. A hypothesis on the possible mechanism of BU-induced mutagenesis is proposed, which assumes a common mechanism for UV- and BU-induced mutagenesis, involving recombination repair processes. Incorporation of a tautomeric or ionized form of BU is considered only as a premutational change in DNA activating the dark-repair mechanisms in cells. The observation that BU enhances the frequency of recombination in λ phages also supports teh idea that recombination processes are involved in BU-induced mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号