首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histamine release induced by the introduction of a nonhydrolyzable analogue of GTP, GTP-gamma-S, into ATP-permeabilized mast cells, is associated with phosphoinositide breakdown, as evidenced by the production of phosphatidic acid (PA) in a neomycin-sensitive process. The dependency of both PA formation and histamine secretion on GTP-gamma-S concentrations is bell shaped. Whereas concentrations of up to 0.1 mM GTP-gamma-S stimulate both processes, at higher concentrations the cells' responsiveness is inhibited. At a concentration of 1 mM, GTP-gamma-S self-inhibits both PA formation and histamine secretion. Inhibition of secretion can, however, be overcome by the basic secretagogues compound 48/80 and mastoparan that in suboptimal doses synergize with 1 mM GTP-gamma-S to potentiate secretion. Secretion under these conditions is not accompanied by PA formation and is resistant both to depletion of Ca2+ from internal stores and to pertussis toxin (PtX) treatment. In addition, 48/80, like mastoparan, is capable of directly stimulating the GTPase activity of G-proteins in a cell-free system. Together, our results are consistent with a model in which the continuous activation of a phosphoinositide-hydrolyzing phospholipase C (PLC) by a stimulatory G-protein suffices to trigger histamine secretion. Basic secretagogues of mast cells, such as compound 48/80 and mastoparan, are capable of inducing secretion in a mechanism that bypasses PLC by directly activating a G-protein that is presumably located downstream from PLC (GE). Thereby, these secretagogues induce histamine secretion in a receptor-independent manner.  相似文献   

2.
In the rat larynx, plasma exudation and edema formation were studied by light and electron microscopy after i.v. injections of the mast cell activator compound 48/80, substance P, and capsaicin. The morphological effects of substance P and capsaicin on connective tissue mast cells in vivo were also examined. Of the drugs tested, only compound 48/80 degranulated the connective tissue mast cells. All drugs induced a subepithelial plasma exudation in the subglottic region, with edema in the lamina propria and widened intraepithelial intercellular spaces, though the tight junction regions seemed intact. In the epiglottis, 10 min after compound 48/80 injection, there was edema in the lamina propria on the lingual side, with an intact and tight epithelial lining. No morphological sign of edema was found in the epiglottis after injection of substance P or capsaicin. The pronounced effect found in the epiglottic region after compound 48/80 injection was due to the release of mediators such as histamine and 5-hydroxytryptamine from the connective tissue mast cells. This study supports the belief that substance P in vivo mediates an increased vascular permeability by a direct effect on the blood vessels – a mechanism distinct from mast cell degranulation.  相似文献   

3.
Proliferative potential of degranulated mast cells was investigated. Mast cells were collected from the peritoneal cavity of mice, and degranulation was induced by compound 48/80, substance P, 12-O-tetradecanoylphorbol 13-acetate (TPA), or calcium ionophore A23187. The potentiality of colony formation in methylcellulose was not reduced by treatment of various concentrations of compound 48/80, substance P and TPA. When degranulation was induced by compound 48/80, substance P or TPA, proportion of highly degranulated mast cells containing less than five granules was rather small. In contrast, considerable proportion of highly degranulated mast cells was obtained after the treatment with the low concentration (0.1 microgram/ml) of A23187. These highly degranulated mast cells, which were individually picked up by the micromanipulator, proliferated not only in methylcellulose but also in the skin of mast cell-deficient WBB6F1-W/Wv mice. Inasmuch as we have already shown the proliferation of IgE-sensitized and Ag-stimulated mast cells, degranulated mast cells appear to retain the proliferative potential in general.  相似文献   

4.
The membrane-permeabilizing activities of mastoparans and related histamine-releasing agents were compared through measurements of K(+) efflux from bacteria, erythrocytes, and mast cells. Changes in bacterial cell viability, hemolysis, and histamine release, as well as in the shape of erythrocytes were also investigated. The compounds tested were mastoparans (HR1, a mastoparan from Polistes jadwagae, and a mastoparan from Vespula lewisii), granuliberin R, mast cell-degranulating peptide, and compound 48/80, as well as antimicrobial peptides, such as magainin I, magainin II, gramicidin S, and melittin. We used a K(+)-selective electrode to determine changes in the permeability to K(+) of the cytoplasmic membranes of cells. Consistent with the surface of mast cells becoming negatively charged during histamine release, due to the translocation of phosphatidylserine to the outer leaflet of the cytoplasmic membrane, histamine-releasing agents induced K(+) efflux from mast cells, dependent on their ability to increase the permeability of bacterial cytoplasmic membranes rich in negatively charged phospholipids. The present results demonstrated that amphiphilic peptides, possessing both histamine-releasing and antimicrobial capabilities, induced the permeabilization of the cytoplasmic membranes of not only bacteria but mast cells. Mastoparans increased the permeability of membranes in human erythrocytes at higher concentrations, and changed the normal discoid shape to a crenated form. The structural requirement for making the crenated form was determined using compound 48/80 and its constituents (monomer, dimer, and trimer), changing systematically the number of cationic charges of the molecules.  相似文献   

5.
The noncholinergic airway constriction is mediated by tachykinins, mainly neurokinin A and substance P, and this bronchoconstriction is usually enhanced during inflammatory episodes. We demonstrated previously that reactive oxygen species play an important role in capsaicin-, hyperventilation-, and citric acid (CA) inhalation-induced noncholinergic airway constriction. For understanding cellular involvement, we further investigated the relationship between mast cells, bradykinin (BK), reactive oxygen species, and noncholinergic airway constriction. Sixty-five guinea pigs were divided into seven groups: saline control; CA; BK + CA; cromolyn sodium (CS) + CA; BK + CS + CA; compound 48/80 + CA; and compound 48/80 + BK + CA. CS was used to stabilize mast cells, whereas a secretagogue, compound 48/80, was for the depletion of mast cells. Each animal was anesthetized, cannulated, paralyzed, and ventilated artificially. In control animals, CA aerosol inhalation caused decreases in dynamic compliance and forced expiratory parameters, indicating CA-induced noncholinergic airway constriction. Either CS or compound 48/80 significantly attenuated the CA-induced airway constriction. Also, we detected a significant increase in lucigenin-initiated chemiluminescence counts of the bronchoalveolar lavage sample in the BK + CA group. Furthermore, CA exposure caused an increase in bronchoalveolar lavage substance P level. Either CS or compound 48/80 prevented the above CA-induced increases in chemiluminescence and substance P. These results suggest that mast cells play an important role in CA aerosol inhalation-induced airway constriction via perhaps releasing constricting factors.  相似文献   

6.
 To investigate the functions of GTP-binding protein(s) in the melanosome-aggregating response in fish melanophores, the effects of activators of G-proteins, namely, mastoparan and compound 48/80, were examined in cultured melanophores of the balck-moor goldfish, Carassius auratus. Both mastoparan and compound 48/80 induced an approximately 40% increase in the GTP-hydrolyzing activity in the melanophore membranes compared to the basal level. In intact melanophores, these compounds inhibited the effect of 3-isobutyl-1-methylxanthine, which induced the accumulation of intracellular cAMP. Pretreatment of melanophores with pertussis toxin at 1 μg ⋅ ml-1 for 15 h attenuated the inhibitory effect of mastoparan on the accumulation of cAMP. However, pretreatment with the toxin only slightly attenuated the inhibitory effect of compound 48/80 on the accumulation of cAMP. In addition, compound 48/80 at 1 mg ⋅ ml-1 induced full aggregation of the melanosomes in melanophores, though mastoparan at 5 μmol ⋅ l-1 induced only 10–20% aggregation of melanophores. These results suggest that mastoparan and compound 48/80 can each activate the inhibitory G-protein in goldfish melanophores, which results in inhibition of adenylate cyclase activity. This signal-transduction pathway is involved in the aggregation of melanosomes in these cells. Accepted: 3 June 1996  相似文献   

7.
The functional and biochemical characterization of rat bone marrow derived mast cells (RBMMC) confirms both species-related differences between rat and mouse bone marrow-derived mast cells (MBMMC) as well as mast cell heterogeneity in a single species. Such RBMMC have the staining characteristics of mucosal mast cells and contain the mucosal mast cell protease. The RBMMC release the preformed granule mediator beta-hexosaminidase both in response to immunologic stimulation with 200 ng Ag (net release 15.8 +/- 3.8%) and in response to 1 microM calcium ionophore A23187 (net release 21.8 +/- 6.8%). However, compound 48/80, substance P, and somatostatin did not induce mast cell degranulation. In experiments with optimal beta-hexosaminidase release, the RBMMC generated similar quantities of the newly formed arachidonic acid metabolites leukotriene C4 and PGD2 when stimulated with either Ag or calcium ionophore A23187. The RBMMC incorporate [35S]sulfate into proteoglycans consisting of 90% chondroitin sulfates and 10% heparin. The chondroitin sulfates were comprised of chondroitin 4 sulfate and chondroitin sulfate diB sulfated disaccharides in a ratio of 4/1. Although we show that RBMMC and MBMMC share a low histamine content, functional IgE receptors and unresponsiveness to cromolyn and selective secretagogues (compound 48/80, substance P, and somatostatin), we also provide evidence that RBMMC differ from MBMMC in their profile of newly generated mediators, preformed granule proteoglycan, and lack of proliferative response to mouse IL-3.  相似文献   

8.
Catestatin (bovine CgA(344-364)) is a cationic peptide, which besides reducing catecholamine secretion from chromaffin cells in vitro also acts a potent vasodilator in the rat in vivo. The alleged histamine releasing effect of catestatin was tested in vitro in rat mast cells. The most active domain of catestatin (bovine CgA(344-358): RSMRLSFRARGYGFR) caused concentration-dependent (0.01-5 microM) release of histamine from peritoneal and pleural mast cells. The potency and efficacy of catestatin was higher than for the wasp venom peptide, mastoparan. Only in the pleural cells was neurotensin (NT) more potent than catestatin, mastoparan and substance P (SP), consistent with a receptor-mediated histamine release by neurotensin. Amongst these cationic peptides, substance P was least effective. The acidic CgA peptide (WE-14, bovine CgA (324-337)) neither stimulated nor modulated histamine release by the cationic peptides. The catestatin and neurotensin evoked histamine release were suppressed by pertussis toxin (PTX), suggesting involvement of a G(i) subunit. Electron micrographs of rat pleural mast cells responding to catestatin revealed a concentration-dependent discharge of granular material. We propose that catestatin activates histamine release from rat mast cells by a mechanism analogous to that already established for mastoparan and other amphiphilic cationic neuropeptides (the peptidergic pathway) and distinct from the mechanism of inhibition of catecholamine release from chromaffin cells.  相似文献   

9.
Kelly MN  Irving HR 《Planta》2003,216(4):674-685
Nod factors are lipo-chito-oligosaccharides secreted by rhizobia that initiate many responses in the root hairs of the legume hosts, culminating in deformed hairs. The heterotrimeric G-protein agonists mastoparan, Mas7, melittin, compound 48/80 and cholera toxin provoke root hair deformation, whereas the heterotrimeric G-protein antagonist pertussis toxin inhibits mastoparan and Nod factor NodNGR[S]- (from Rhizobiumsp. NGR234) induced root hair deformation. Another heterotrimeric G-protein antagonist, isotetrandrine, only inhibited root hair deformation provoked by mastoparan and melittin. These results support the notion that G-proteins are implicated in Nod factor signalling. To study the role of G-proteins at a biochemical level, we examined the GTP-binding profiles of root microsomal membrane fractions isolated from the nodulation competent zone of Vigna unguiculata(L.) Walp. GTP competitively bound to the microsomal membrane fractions labelled with [(35)S]GTPgammaS, yielding a two-site displacement curve with displacement constants ( K(i)) of 0.58 micro M and 0.16 mM. Competition with either ATP or GDP revealed a one-site displacement curve with K(i) of 4.4 and 29 micro M, respectively, whereas ADP and UTP were ineffective competitors. The GTP-binding profiles of microsomal membrane fractions isolated from roots pretreated with either NodNGR[S] or the four-sugar, N- N'- N"- N'"-tetracetylchitotetraose (TACT) backbone of Nod factors were significantly altered compared with control microsomal fractions. To identify candidate proteins, membrane proteins were separated by SDS-PAGE and electrotransferred to nitrocellulose. GTP overlay experiments revealed that membrane fractions isolated from roots pretreated with NodNGR[S] or TACT contained two proteins (28 kDa and 25 kDa) with a higher affinity for GTPgammaS than control membrane fractions. Western analysis demonstrated that membranes from the pretreated roots contained more of another protein (~55 kDa) recognised by Galpha(common) antisera. These results provide pharmacological and biochemical evidence supporting the contention that G-proteins are involved in Nod factor signalling and, importantly, implicate monomeric G-proteins in this process.  相似文献   

10.
The effects of mastoparan and compound 48/80 on the activities of alpha beta gamma-trimeric GTP-binding proteins (G proteins) were studied with purified Go and Gi-1 which had been reconstituted into phospholipid vesicles. Pertussis toxin-catalyzed ADP-ribosylation of Go or Gi-1 was inhibited by mastoparan or compound 48/80, suggesting that the G proteins were dissociated into their constituent alpha- and beta gamma-subunits in the presence of these compounds. The steady-state rate of GTP hydrolysis catalyzed by Go or Gi-1 was stimulated by the two compounds. Both the stimulations were due to increases in the rate of the GDP-GTP exchange reaction occurring on the G proteins. However, the modes stimulation of the GTPase activity depended on the type of G protein used, and the stimulations caused by the two compounds were differently affected by pertussis toxin-catalyzed ADP-ribosylation of G proteins. Moreover, the mastoparan-induced stimulation of the GTPase activity was partially inhibited by compound 48/80. Thus, the two histamine secretagogues mastoparan and compound 48/80 appear to activate G proteins differently, though they interact with the signal-transducing proteins, at least partly, at a common binding site.  相似文献   

11.
To study why neonatal and young rats are resistant to the effects of some secretagogues, such as compound 48/80 and 2.5-S nerve growth factor, we examined peritoneal mast cells from 14–15-day-old rats (young rats) and compared them to peritoneal mast cells from adults. Peritoneal mast cells from young rats contain approximately one-tenth of the amount of histamine observed in adult peritoneal mast cells. However, both cell populations contained similar low levels of the mucosal mast cell-associated protease rat mast cell protease II. Histochemical analysis of peritoneal mast cells from young rats using safranin O and berberine sulphate suggested that only a portion of the granules of these cells contained heparin. At an ultrastructural level the young rat peritoneal mast cell contains relatively few granules. The majority of mast cells from young rats have a bilobed or indented nucleus which is only rarely observed in adult cells. Functionally, the young rat peritoneal mast cell demonstrates a significantly reduced histamine release in response to the connective tissue mast cellspecific secretagogues compound 48/80 and 2.5-S nerve growth factor. In contrast, the percent histamine release in response to the neurotransmitter substance P, which degranulates both connective tissue mast cells and intestinal mucosal mast cells, was similar in the adult cells and the young rat cells. This study demonstrates substantial differences between the young rat and adult peritoneal mast cells which may explain the ability of very young animals to withstand large doses of certain secretagogues.  相似文献   

12.
Abstract: Mast cells play a central role in both immediate allergic reactions and inflammation. A functional nerve-mast cell interaction has been proposed, given the morphological association between mast cells and neuropeptide-containing peripheral nerves. We now show that purified rat peritoneal mast cells contain large quantities of N -acetylaspartate (NAA; 747.50 nmol/mg of protein). Mast cell levels of NAA were rapidly reduced, by 64.0 and 86.4%, following treatment with compound 48/80 and mastoparan, respectively. These secretagogues strongly decreased mast cell histamine content over the same time period, suggesting also that NAA is stored in secretory granules. The data are the first to show that NAA is present in an immune effector cell type. Because NAA may be involved in myelin synthesis and glutamyl peptide metabolism, NAA released from mast cells following nervous or other stimuli could participate in neuroimmune interactions. Mast cells in multiple sclerosis plaques may contribute to the reported elevations in brain NAA in this disease.  相似文献   

13.
Rainbow trout (Oncorhynchus mykiss) intestinal strips (n = 10) were mounted in an isolated organ bath and the effect of incremental doses of compound 48/80 was recorded. Compound 48/80 induced concentration-related contraction in all the examined strips following a sigmoidal dose-response curve fit. Values for maximal contraction (E(max) , g?cm(-2)), negative logarithm of the EC(50) (pD(2)), and hill slope were, respectively (mean±standard error), 12.88 ± 0.51, 1.88 ± 0.05, 1.49 ± 0.27. The histological modification induced on mast cells (MCs) due to compound 48/80 was characterized by mean of gray-levels and texture analysis. Significant differences were observed between gray-levels values (Linear mixed model, P<0.01), contrast, and entropy (Linear mixed model, P<0.05) of MCs from compound 48/80-treated strips compared with MCs from untreated strips. Moreover, maximal intestinal contraction (due to compound 48/80) correlates positively and significantly (Pearson and Spearman correlations, P<0.05) with degranulation intensity determined by means of gray-levels analysis. Four antisera were tested on intestinal sections and no MCs positive to serotonin, substance P, met-enkephalin, and bombesin were found. This study demonstrates that compound 48/80 induces the degranulation of trout intestinal MCs ex vivo, and that the aforementioned degranulation promotes a concentration-dependent intestinal contraction.  相似文献   

14.
Mast cells play a central role in inflammatory and allergic reactions by releasing inflammatory mediators through two main pathways, immunoglobulin E-dependent and -independent activation. In the latter, mast cells are activated by a diverse range of basic molecules, including peptides and amines such as substance P, neuropeptide Y, and compound 48/80. These secretagogues are thought to activate the G proteins in mast cells through a receptor-independent mechanism. Here, we report that the basic molecules activate G proteins through the Mas-related gene (Mrg) receptors on mast cells, leading to mast cell degranulation. We suggest that one of the Mrg receptors, MrgX2, has an important role in regulating inflammatory responses to non-immunological activation of human mast cells.  相似文献   

15.
Proteinase activity was determined in myofibrils from intact rat skeletal muscle and from skeletal muscle myocytes grown in culture. In vivo administration of the mast cell degranulator compound 48/80 abolished the alkaline proteinase activity in myofibrils obtained from normal or streptozotocin-diabetic rats. Exposure of myocytes to compound 48/80 in cell cultures had no effect on their myofibrillar proteinase activity, nor did it affect the rate of overall protein degradation in these cells. Co-incubation of cultured mast cells (line P815Y) with myocytes followed by sonication of the cell mixture resulted in a marked reduction of the proteinase activity in the pellet fraction, suggesting that the mast cells contain inhibitor(s) of myofibrillar proteinase activity. It is suggested that the myofibril-bound alkaline proteinase activity is not a mast cell-derived enzyme but a genuine component of muscle cells. The in vivo 48/80-induced reduction of muscle myofibrillar proteinase activity appears to be due to release of a soluble inhibitory activity rather than removal of mast cell proteinase from the tissue by degranulation.  相似文献   

16.
Triton X-100 at concentrations preceding those which liberated histamine, produced dose-dependent inhibition of compound 48/80-induced histamine release from rat mast cells. Triton X-100 (0.00002 1/1) depleted ATP content in the mast cells and blocked compound 48/80-induced histamine release. The inhibition of compound 48/80-induced histamine release and depletion of the ATP content in the mast cells was reversed by glucose (10 mmole). It is concluded that inhibition by Triton X-100 of histamine release induced by compound 48/80 is dependent on inhibition of energy production.  相似文献   

17.
Upregulation of CGRP-immunoreactive (IR) primary afferent nerve fibers accompanied by mastocytosis is characteristic for the Schistosoma mansoni-infected murine ileum. These mucosal mast cells (MMC) and CGRP-IR fibers, which originate from dorsal root (DRG) and nodose ganglia, are found in close apposition. We examined interactions between primary cultured MMC and CGRP-IR DRG neurons in vitro by confocal recording of intracellular Ca(2+) concentration ([Ca(2+)](i)). The degranulatory EC(50) for the mast cell secretagogue compound 48/80 (C48/80; 10 microg/ml) and the neuropeptides CGRP (2.10(-8) M) and substance P (SP; 3.10(-8) M) were determined by measurement of extracellular release of the granule chymase, mouse mast cell protease-1. Application of C48/80 (10 microg/ml) and CGRP and SP (both 10(-7) M) to Fluo-4-loaded MMC induced a transient rise in [Ca(2+)](i) after a lag time, indicative of mast cell degranulation and/or secretion. The CGRP response could be completely blocked by pertussis toxin (2 microg/ml), indicating involvement of G(i) proteins. Application of MMC juice, obtained by C48/80 degranulation of MMC, to Fluo-4-loaded DRG neurons induced in all neurons a rise in [Ca(2+)](i), indicative of activation. Degranulation of MMC by C48/80 in culture dishes containing Fluo-4-loaded DRG neurons also caused activation of the DRG neurons. In conclusion, these results demonstrate a bidirectional cross-talk between cultured MMC and CGRP-IR DRG neurons in vitro. This indicates that such a communication may be the functional relevance for the close apposition between MMC and CGRP-IR nerve fibers in vivo.  相似文献   

18.
Digestion of human foreskin with collagenase and hyaluronidase disperses approximately 3.4 X 10(7) nucleated cells per gram of tissue, of which mast cells constitute 4.7%. These may be purified to 80% by use of density gradient centrifugation. The majority of mast cells (79%) measured between 9 and 13 micron in diameter, and the mean histamine content was 4.6 pg/cell. Viability was demonstrated by trypan blue exclusion by 93% of the cells and the low spontaneous histamine secretion of less than 7% in functional studies. Anti-IgE released up to 17.5% of cell-associated histamine within 5 to 7 min. Calcium ionophore-induced release was optimal with 0.3 microM A23187 when 28.6% histamine was released. Unlike human lung mast cells, skin mast cells released histamine in response to compound 48/80 and poly-L-lysine. This release, which was complete within 20 sec, was totally dependent on intact glycolysis and oxidative phosphorylation and partially dependent on extracellular calcium. The same characteristics were observed with secretion induced by substance P and morphine. The weak activity of eledoisin and physalaemin suggests that the substance P receptor, like that of the rat mast cell, is not of the classical types described for smooth muscle. Morphine-induced secretion was partially blocked by naloxone in a manner not compatible with competitive antagonism at a classical opioid receptor. The sensitivity of skin mast cells to nonimmunologic stimulation clearly distinguishes them from mast cells of the lung and lymphoid tissues and provides evidence of functional heterogeneity within human mast cells.  相似文献   

19.
The anti-allergic effect of a 70% ethanol extract from Dictamnus dasycarpus Turcz (DDT) was studied in mice. DDT at doses of 200 and 500 mg/kg inhibited the systemic anaphylactic shock induced by compound 48/80 in a dose-dependent manner. It also inhibited dose-dependently the scratching behavior induced by compound 48/80, histamine and serotonin. An increase in the vascular permeability induced by compound 48/80, histamine and serotonin was also inhibited by DDT. In an in vitro study, DDT inhibited the histamine released from rat peritoneal mast cells induced by compound 48/80. It seems likely from these findings that DDT was effective in antagonizing certain pharmacological effects induced by compound 48/80 that occurred via both histamine and serotonin released from mast cells. In conclusion, DDT may be effective in the relief of symptoms of allergic atopic dermatitis and other allergy-related diseases.  相似文献   

20.
Blood glucose, hepatic glycogen, and the histological integrity of hepatic mast cells, were evaluated in anesthetized rats receiving iv injections of 0.125 mg/kg body weight compound 48/80 (a mast cell degranulator) and/or of 0.001 to 10.0 mg/kg body weight lodoxamide tromethamine (an inhibitor of mast cell degranulation). A nonglucogenic dose of lodoxamide, 0.001 mg/kg body weight, prevented dissipation of histochemically demonstrable fluorescence in mast cells (degranulation) without inhibiting compound 48/80-induced hyperglycemia and hepatic glycogenolysis. These results suggest that this glucotropic response is independent of compound 48/80-evoked release of mediators such as serotonin from mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号