首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S I Do  R D Cummings 《Glycobiology》1992,2(4):345-353
We have previously demonstrated that the human transferrin receptor (TfR) of approximately 90 kDa contains Ser/Thr-linked (O-linked) oligosaccharides. In the present study, we report our identification of the site of attachment of the O-linked oligosaccharides in the receptor. A 70 kDa fragment from the external domain of the TfR was generated by trypsin treatment of the [3H]glucosamine-labelled receptor purified from human K562 cells. The beta-elimination of the intact TfR, but not the 70 kDa fragment, released Gal-[3H]Gal-NAcitol, indicating that the 70 kDa fragment lacks O-linked oligosaccharides. In the remaining 20 kDa fragment there are three potential sites (Thr96, Thr104 and Ser106) for O-glycosylation in the extracellular domain. To identify which of these residues are O-glycosylated, both the [3H]Thr- and [3H]Ser-labelled TfR were directly treated with mild base to effect beta-elimination, and the radiolabelled amino acids and their derivatives were analysed. Approximately 2% of the total radiolabelled Thr, but no radiolabelled Ser, was converted to expected beta-elimination products by this treatment. These and other results demonstrate that only one O-linked oligosaccharide is present in the TfR and that it occurs on either Thr96 or Thr104. From human serum we purified the cleaved, soluble form of the TfR (s-TfR), which contains Thr104, but lacks Thr96. The s-TfR was sensitive to O-glycanase and bound to Jacalin lectin, indicating that the s-TfR contains an O-linked oligosaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In human fibroblasts, the receptor for low density lipoprotein (LDL) is synthesized as a precursor of apparent Mr = 120,000 which is converted to a mature form of apparent Mr = 160,000, as determined by migration in sodium dodecyl sulfate (SDS)-polyacrylamide gels (Tolleshaug, H., Goldstein, J. L., Schneider, W. J., and Brown, M. S. (1982) Cell 30, 715-724). The current paper describes the relationship of N- and O-glycosylation to this post-translational modification. Oligosaccharides were analyzed from precursor and mature forms of LDL receptors that had been immunoprecipitated from cells grown in media containing radioactive sugars. In human epidermoid carcinoma A-431 cells, the receptor precursor appears to contain one N-linked high mannose oligosaccharide and approximately 6-9 N-acetylgalactosamine residues linked O-glycosidically to Ser/Thr residues. In the mature receptor, the O-linked oligosaccharides are mono- and disialylated species having the core structure of galactose leads to N-acetylgalactosamine leads to Ser/Thr. The single N-linked oligosaccharide of the mature receptor can either be a tri- or tetraantennary complex-type species. Similar results were obtained with normal human fibroblast receptor except that the O-linked oligosaccharides on the precursor are neutral disaccharides, of which one component is GalNAc and the N-linked complex type unit on the mature receptor is less branched. Since the addition of GalNAc residues to Ser/Thr residues precedes the conversion of N-linked high mannose-type oligosaccharides to complex-type structures, the transfer of N-acetylgalactosamine must occur prior to the entry of glycoproteins into the region of the Golgi containing the processing enzyme alpha-mannosidase I. We also studied the receptor from tunicamycin-treated cells and after treatment with neuraminidase. In addition, we analyzed the receptor synthesized by a lectin-resistant clone of Chinese hamster ovary cells that is deficient in adding galactose residues to both N- and O-linked oligosaccharides. These studies suggest that the apparent differences in molecular weight between the precursor and mature forms of the LDL receptor are largely, if not entirely, due to the addition of sialic acid and galactose residues to the O-linked GalNAc residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The effects of O-glycosylation on the synthesis and secretion of apolipoprotein E (apoE, a glycoprotein with O- but not N-linked sugars) were studied with a UDP-galactose/UDP-N-acetylgalactosamine 4-epimerase-deficient cell mutant (ldlD cells) which expresses a reversible defect in protein O-glycosylation. Under normal culture conditions the mutant ldlD cells cannot add N-acetylgalactosamine (GalNAc) to proteins. GalNAc is the first sugar of mucin-type O-linked oligosaccharides attached to the protein. This O-glycosylation defect is rapidly corrected when GalNAc is added to the culture medium. These cells also require external sources of galactose for the addition of this sugar to O-linked and other oligosaccharides. A bovine papilloma virus-based expression vector for human apoE and the human metallothionein 1A gene were transfected into ldlD cells, and apoE-expressing cell clones resistant to CdCl2 were selected and used in the present studies. The structure and secretion of apoE in these cells were examined by immunoprecipitation and one- and two-dimensional gel electrophoresis and autoradiography. The synthesis, rate, and extent of secretion of apoE were unaffected by O-glycosylation (GalNAc-independent). In the presence of both galactose and GalNAc, multiple apoE isoforms were synthesized in ldlD cells as a result of variation in the extent of sialylation. ApoE sialylation was dependent on the addition of galactose as well as GalNAc to the extracellular medium, suggesting that addition of galactose to the nascent oligosaccharide chains was required for the addition of sialic acid.  相似文献   

4.
HeLa cell membranes were studied for the distribution and orientation of the Golgi marker enzyme uridine diphosphate-galactose:beta-D-N-acetylglucosamine beta, 1-4 transferase (GT). Short pulse labeling in the presence of [35S]methionine resulted in two precursor species (Mr = 44,000 and 47,000), present in a microsomal fraction with a density of 1.18 g/ml in sucrose, presumably derived from the rough endoplasmic reticulum. Processing of the N-linked oligosaccharide(s) occurred only after the precursor molecules migrated to lighter density fractions, presumably derived from the Golgi complex. The mature GT molecules (Mr = 54,000) contain O-linked oligosaccharides as shown by beta-elimination of metabolically incorporated [3H]galactose. The O-glycosylation occurred mainly in the light density fractions. The topology of GT was studied on membrane fractions after labeling with [35S]methionine as well as immunocytochemically on ultrathin cryosections at the electron microscope level. Our results indicate that both the antigenic determinants of GT as well as polypeptide chain are present intramembraneously and at the luminal side of the membranes of the Golgi complex and rough endoplasmic reticulum.  相似文献   

5.
Decay accelerating factor (DAF) is a glycophospholipid-anchored membrane glycoprotein that protects mammalian host cells from inadvertant complement lysis. The effects of inhibiting mucin-type O-glycosylation on the cell surface expression of DAF were studied by introducing an expression vector for human DAF into wild-type Chinese hamster ovary and ldlD cells. The ldlD cells express reversible defects in the addition of galactose and N-acetylgalactosamine (GalNAc) to oligosaccharide chains on glycoproteins and glycolipids. Mucin-type O-glycosylation of proteins is inhibited in ldlD cells and can be selectively corrected by the addition of GalNAc to the culture medium. The attachment of a phosphatidylinositol phospholipase C-sensitive glycolipid anchor to DAF and its efficient sorting to the cell surface in ldlD cells were independent of galactose and GalNAc additions to glycolipids and proteins. Attachment of galactose and GalNAc to DAF's glycolipid anchor were apparently not required for its normal function. However, in the absence of O-glycosylation DAF was proteolytically cleaved soon after reaching the cell surface, and a large fragment of DAF was released into the culture medium. This rapid proteolysis/release resulted in the expression of very low steady state levels of O-glycosylation-deficient DAF as measured by immunoblotting. These results, in conjunction with those obtained from studies of three other membrane glycoproteins expressed in ldlD cells, suggest that O-linked sugars on membrane glycoproteins may frequently play a role in determining the level of cell surface expression of these proteins.  相似文献   

6.
The gonadotropins luteinizing hormone, follicle-stimulating hormone, and human chorionic gonadotropin are composed of two noncovalently linked subunits, alpha and beta. The alpha subunit, identical in all three hormones, is produced in excess over the unique beta subunits by pituitary and placenta, and is secreted as uncombined, or free subunit. Free alpha subunit from both tissues has a larger molecular weight than the dimer form. In bovine pituitary an extra O-linked oligosaccharide is added to free alpha subunit, and this modification has recently been detected at an analogous position (threonine 39) on human alpha subunit secreted by choriocarcinoma cells. To assess the contribution of N-linked and O-linked oligosaccharides to the heterogeneity of human free alpha subunit, we have compared free alpha with human chorionic gonadotropin alpha secreted by explants and cultured cytotrophoblasts of human first trimester placenta. We have also examined the free and combined forms of human alpha subunit expressed in transfected C-127 mouse mammary tumor cells. Processing of the alpha subunit in placental and C-127 cells was similar. Tryptic mapping of placental-derived and transfected alpha subunits indicated that O-glycosylation at threonine 39 was not a major modification. In the presence of the oligosaccharide processing inhibitor swainsonine the difference in size between the free and combined forms of alpha was eliminated in both placental and C-127 cells, indicating that the two forms of alpha differed in their N-linked oligosaccharides. Furthermore, the oligosaccharides of free alpha subunits from placental and transfected cells were resistant to endoglycosidase H, but the combined forms of alpha were partially sensitive to the enzyme. Thus, in human first trimester placenta and mouse C-127 cells, combination of alpha with human chorionic gonadotropin beta alters the processing of N-linked oligosaccharides on alpha subunit.  相似文献   

7.
The O-linked oligosaccharides of the cloned, murine cytotoxic T cell line B6.1.SF.1 were compared with the corresponding oligosaccharides from a Vicia villosa lectin-resistant mutant of B6.1.SF.1 called VV6 (Conzelmann, A., Pink, R., Acuto, O., Mach, J.-P., Dolivo, S., and Nabholz, M. (1980) Eur. J. Immunol. 10, 860-868). The VV6 mutant cells are deficient in binding sites for this GalNAc-specific lectin. Cells were grown in the presence of [3H]glucosamine and [3H] galactose to label the glycoproteins, and the desialyzed, alkaline borohydride-released oligosaccharides were isolated and characterized. The VV6 cells contained a series of O-linked oligosaccharides ranging in size from a disaccharide to a pentasaccharide. These were composed of galactose, N-acetylglucosamine, and N-acetylhexosaminitol, the latter sugar being derived from the reducing terminus. The predominant oligosaccharide had the partial structure Gal beta GlcNAc beta-(Gal beta)N-acetylhexosaminitol. In contrast, the analogous oligosaccharides of the parental cells contained additional beta-linked GalNAc residues located at nonreducing termini. The smallest of these had the structure GalNAc beta 1,4Gal beta-N-acetylhexosaminitol. Neither cell line contained significant amounts of terminal GalNAc linked to Ser/Thr which is the main binding site for the V. villosa B4 lectin on Tn erythrocytes (Tollefsen, S. R., and Kornfeld, R. (1983) J. Biol. Chem. 258, 5172-5176). These findings suggest that the major binding sites for the V. villosa lectin on the parental cytotoxic T cell line consist of structures containing beta 1,4-linked GalNAc residues at the nonreducing ends of conventional O-linked structures. The VV6 cells lack these beta-linked GalNAc residues, and this may account for their deficiency of V. villosa lectin-binding sites. In the following paper (Conzelmann, A., and Kornfeld, S. (1984) J. Biol. Chem. 259, 12536-12542), we demonstrate that the VV6 cells are missing the N-acetylgalactosaminyltransferase that is responsible for the synthesis of these unusual oligosaccharides.  相似文献   

8.
Receptors for peanut agglutinin (PNA) were isolated from Kato III human gastric cancer cells by affinity chromatography on PNA agarose, and were labeled by the galactose oxidase-NaB3H4 method. Alkaline NaBH4 treatment of the labeled receptors released two small oligosaccharide alcohols, which were identified as Gal beta 1----3GalNAc-ol and Gal beta 1----4GlcNAc beta 1----6(Gal beta 1----3)GalNAc-ol. Higher oligosaccharides and glycopeptides of both N- and O-linked type were also detected, but they did not appear to bear PNA binding sites. The presence of oligo-N-acetyllactosamine units in the N-linked type sugars was indicated by endo-beta-galactosidase digestion.  相似文献   

9.
Summary The glycosylation and subsequent processing of native and recombinant glycoproteins expressed in established insect cell lines and insect larvae were compared. TheSpodoptera frugiperda (Sf21) andTrichoplusia ni (TN-368 and BTI-Tn-5B1-4) cell lines possessed several intrinsic glycoproteins that are modified with both N- and O-linked oligosaccharides. The N-linked oligosaccharides were identified as both the simple (high mannose) and complex (containing sialic acid) types. Similarly, theT. ni larvae also possessed intrinsic glycoproteins that were modified with O-linked and simple and complex N-linked oligosaccharides. Additionally, human placental, secreted alkaline phosphatase (SEAP) produced during replication of a recombinant baculovirus inT. ni larvae was modified with complex oligosaccharide having sialic acid linked α(2–6) to galactose.  相似文献   

10.
The microheterogeneity seen when rat androgen-binding protein (rABP) is analyzed by two-dimensional polyacrylamide gel electrophoresis is attributable, at least in part, to the differential glycosylation of a single promoter. Further insight into the chemical nature of the oligosaccharide units on rABP was obtained by serial lectin chromatography. When rABP was chromatographed on immobilized Concanavalin A (Con-A), it was fractionated into three classes: (1) one that did not bind to the lectin (about 44% of the rABP), (2) one that was bound and could be eluted with 10 mM 1-O-methyl alpha-D-glucopyranoside (glucoside), about 34%, and (3) one that could be eluted with 0.5 M methyl alpha-D-mannopyranoside (mannoside), about 23%. Binding to Con-A indicates the presence of asparagine-linked oligosaccharides. Chromatography of the glucoside-eluted peak on lentil lectin (LcH) indicated that the rABP in that fraction contained a fucose residue on the chitobiose core. Chromatography of the mannoside-eluted peak on wheat germ agglutinin (WGA) indicated the presence of rABP with high mannose- (44%) and hybrid-type (56%) glycans attached. Chromatography on Ricinus communis I (RCA-I) lectin indicated a species containing galactosylated complex-type oligosaccharide chains. Treatment of rABP forms with exoglycosidases confirmed the presence of externally disposed fucose, sialic acid, mannose, and galactose residues. LcH chromatography indicated that about 30% of the rABP that did not bind to Con-A possessed triantennary oligosaccharides with fucose on the chitobiose core. About 28% of the rABP was retarded when it was chromatographed on Phaseolus vulgaris E lectin, suggesting the presence of bisected biantennary chains with terminal galactose residues. We were unable to detect rABP species with serine- or threonine-linked oligosaccharide chains in this fraction. Other forms of rABP in the nonretained fraction of Con-A were not resolved. Western blotting did not reveal major differences in relative molecular weight (Mr) among the rABP species; some differences in the ratio of the heavy to the light subunit of the molecule were detectable.  相似文献   

11.
N-Linked glycosylation is a post-translational event whereby carbohydrates are added to secreted proteins at the consensus sequence Asn-Xaa-Ser/Thr, where Xaa is any amino acid except proline. Some consensus sequences in secreted proteins are not glycosylated, indicating that consensus sequences are necessary but not sufficient for glycosylation. In order to understand the structural rules for N-linked glycosylation, we introduced N-linked consensus sequences by site-directed mutagenesis into the polypeptide chain of the recombinant human erythropoietin molecule. Some regions of the polypeptide chain supported N-linked glycosylation more effectively than others. N-Linked glycosylation was inhibited by an adjacent proline suggesting that sequence context of a consensus sequence could affect glycosylation. One N-linked consensus sequence (Asn123-Thr125) introduced into a position close to the existing O-glycosylation site (Ser126) had an additional O-linked carbohydrate chain and not an additional N-linked carbohydrate chain suggesting that structural requirements in this region favored O-glycosylation over N-glycosylation. The presence of a consensus sequence on the protein surface of the folded molecule did not appear to be a prerequisite for oligosaccharide addition. However, it was noted that recombinant human erythropoietin analogs that were hyperglycosylated at sites that were normally buried had altered protein structures. This suggests that carbohydrate addition precedes polypeptide folding.  相似文献   

12.
The family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGaNTases) is responsible for initiating mucin-type O-linked glycosylation in higher eukaryotes. To begin to examine the biological role of O-linked glycosylation, mammalian cells were treated with a small molecule inhibitor (designated 1-68A, Ref. 15) of ppGaNTase activity. NIH3T3 cells exposed to the inhibitor were shown to undergo a significant reduction in cell surface O-glycosylation as detected by staining with jacalin and peanut agglutinin lectins after 30 min of treatment; no reduction in staining using antibodies to O-linked N-acetylglucosamine or the lectin concanavalin A was detected. Apoptosis was also observed in treated cells after 45 min of exposure, ostensibly following the O-glycosylation reduction. Overexpression of several different ppGaNTase isoforms restored cell surface O-glycosylation and rescued inhibitor-induced apoptosis. Additionally, mouse embryonic mandibular organ cultures exposed to 1-68A developed abnormally, presumably because of epithelial and mesenchymal apoptosis that followed a reduction in jacalin and peanut agglutinin staining. Our studies suggest that mucin-type O-linked glycosylation may be required for normal development and that ppGaNTases may play a role in the regulation of apoptosis.  相似文献   

13.
14.
Further characterization of the free alpha subunit immunoreactive material, not combined with beta subunit in extracts of bovine pituitaries, shows that the only significant modifications, relative to alpha subunits themselves, are the oligosaccharide O-linked to threonine-43, and heterogeneity of the carboxyl terminus. Removal of the O-linked carbohydrate with a mixture of glycosidases from Streptococcus pneumoniae results in an alpha-like material capable of combining with lutropin beta subunit and, thus, the presence of the oligosaccharide is responsible for the inability of the free alpha-like material to combine with beta subunits. Amino acid compositions of tryptic peptides spanning the entire sequence indicate no change in amino acid sequence of the free alpha-like material as compared to lutropin alpha. Further, based on the similar behavior reverse phase high performance liquid chromatography of the tryptic peptides as compared to their lutropin alpha counterparts, it is concluded that no additional post-translational modifications are present. The N-linked oligosaccharides of the free alpha-like material most likely contain terminal O-sulfated N-acetylhexosamines (as do the asparagine-linked carbohydrates from the pituitary hormones) as indicated by the presence of 3 mol of sulfate/mol of free alpha-like material and the resistance of these oligosaccharides to enzymatic deglycosylation. The O-linked oligosaccharide does not contain sulfated residues.  相似文献   

15.
The biosynthesis and maturation of human sucrase-isomaltase (SI, EC 3.2.1.48-10), was studied in cultured small intestinal biopsy specimens and mucosa explants. Pulse-chase experiments with [35S]methionine revealed one high mannose intermediate of Mr = 210,000 (pro-SIh) which was processed at a slow rate to an endo H-resistant, mature form of Mr = 245,000 (pro-SIc). The fully core-glycosylated form (Mr = 212,000) was detected only when 1-deoxynojirimycin was added to the culture medium, thus indicating that the core sugars undergo rapid processing by rough endoplasmic reticulum membrane-bound glycosidases. The data presented showed that trypsin specifically and instantaneously (within 1 min) cleaves pro-SIc to two subunits Ic (Mr = 145,000) and Sc (Mr = 130,000). Elastase and chymotrypsin are not effective. Enzymic and chemical deglycosylations of SI with endo-beta-N-acetylglucosaminidase F/glycopeptidase F and trifluoromethanesulfonic acid (TFMS) as well as probing for the binding capacity of SI to Helix pomatia lectin demonstrated that pro-SIc, Ic, and Sc are N- and O-glycosylated. Furthermore, the results were indicative of a posttranslational O-glycosylation of pro-SI, since (i) the earliest detectable precursor form, pro-SIh, did not bind to H. pomatia lectin and (ii) its deglycosylation products with both endo-beta-N-acetylglucosamidase H and TFMS were identical. Both the Sc and Ic subunits contain eight N-linked glycan units, at least one of which is of the high mannose type and found on Sc. Finally, Sc, but not Ic, was shown to display at least four populations varying in their content of O-linked glycans. The heterogeneous O-glycosylation pattern of Sc could be correlated with the distal position of this subunit (and its O-glycosylation sites) within the pro-SI molecule, thus affecting the extent of O-linked oligosaccharide processing and their subsequent presentation on the mature molecule.  相似文献   

16.
This paper presents further investigation of the properties of carbohydrate II in the cell adhesion molecule, contact site A, fromDictyostelium discoideum.A purified contact site A was digested withAchromobacterprotease I to produce a 31-kDa fragment to which carbohydrate II was mainly bound and a 21-kDa fragment containing the NH2terminus of contact site A, which was identified as Ala-Pro-Thr-Ile-Thr-Ala. The NH2terminus of the 31-kDa fragment was Thr-Glu-Ala-Thr-Thr-Ser. It was estimated from the cDNA sequence data of contact site A that more than 20 Ser/Thr residues exist as target sites for the O-linked oligosaccharides in the 31-kDa fragment, but not for the N-linked oligosaccharides. These results suggest that carbohydrate II exists as clustered O-linked oligosaccharides in the COOH terminus of contact site A. The results of two-dimensional electrophoresis confirm that oligosaccharides of contact site A contain sialic acids. Immunoelectron microscopy was carried out to define the organelle in which O-glycosylation by carbohydrate II occurs and how carbohydrate II antigens are distributed on the cell surface. The results show that O-glycosylation can occur in the Golgi apparatus inD. discoideumas observed in other cells, although this O-glycosylation was inhibited by tunicamycin. Furthermore, gold particles were densely concentrated in cell–cell contact regions but sparsely distributed in noncontact regions.  相似文献   

17.
Type 2 diabetes is associated with alterations in protein kinase B (PKB/Akt) and mammalian target of rapamycin complex 1 (mTORC1) signalling. The proline-rich Akt substrate of 40-kDa (PRAS40) is a component of mTORC1, which has a regulatory function at the intersection of the PKB/Akt and mTORC1 signalling pathway. Phosphorylation of PRAS40-Thr246 by PKB/Akt, and PRAS40-Ser183 and PRAS40-Ser221 by mTORC1 results in dissociation from mTORC1, and its binding to 14-3-3 proteins. Although all phosphorylation sites within PRAS40 have been implicated in 14-3-3 binding, substitution of Thr246 by Ala alone is sufficient to abolish 14-3-3 binding under conditions of intact mTORC1 signalling. This suggests that phosphorylation of PRAS40-Thr246 may facilitate efficient phosphorylation of PRAS40 on its mTORC1-dependent sites. In the present study, we investigated the mechanism of PRAS40-Ser183 phosphorylation in response to insulin. Insulin promoted PRAS40-Ser183 phosphorylation after a euglycaemic–hyperinsulinaemic clamp in human skeletal muscle. The insulin-induced PRAS40-Ser183 phosphorylation was further evidenced in vivo in rat skeletal and cardiac muscle, and in vitro in A14 fibroblasts, 3T3L1 adipocytes and L6 myotubes. Inhibition of mTORC1 by rapamycin or amino acid deprivation partially abrogated insulin-mediated PRAS40-Ser183 phosphorylation in cultured cell lines. However, lowering insulin-induced PRAS40-Thr246 phosphorylation using wortmannin or palmitate in cell lines, or by feeding rats a high-fat diet, completely abolished insulin-mediated PRAS40-Ser183 phosphorylation. In addition, replacement of Thr246 by Ala reduced insulin-mediated PRAS40-Ser183 phosphorylation. We conclude that PRAS40-Ser183 is a component of insulin action, and that efficient phosphorylation of PRAS40-Ser183 by mTORC1 requires the phosphorylation of PRAS40-Thr246 by PKB/Akt.  相似文献   

18.
The galactosyl derivatives Galβ-Ser(N-Boc) and Galβ-Thr(N-Boc) of N-Boc-protected serine and threonine were prepared with galactose or lactose as the glycosyl donor employing β-galactosidase as the catalyst. Similarly, the mannosyl derivatives Manα-Ser(N-Boc) and Manα-Thr(N-Boc) were prepared with mannose as the glycosyl donor (equilibrium reaction) employing α-mannosidase as the catalyst.  相似文献   

19.
This report describes the structural analyses of the O- and N-linked oligosaccharides contained in glycoproteins synthesized by 48-hr-old Schistosoma mansoni schistosomula. Schistosomula were prepared by mechanical transformation of cercariae and were then incubated in media containing either [2-3H] mannose, [6-3H]glucosamine, or [6-3H]galactose to metabolically radiolabel the oligosaccharide moieties of newly synthesized glycoproteins. Analysis by SDS-polyacrylamide gel electrophoresis and fluorography demonstrated that many glycoproteins were metabolically radiolabeled with the radioactive mannose and glucosamine precursors, whereas few glycoproteins were labeled by the radioactive galactose precursor. Glycopeptide were prepared from the radiolabeled glycoproteins by digestion with pronase and fractionated by chromatography on columns of concanavalin A-Sepharose and pea lectin-agarose. The structures of the oligosaccharide chains in the glycopeptides were analyzed by a variety of techniques. The major O-linked sugars were not bound by concanavalin A-Sepharose and consisted of simple O-linked monosaccharides that were terminal O-linked N-acetylgalactosamine, the minor type, and terminal O-linked N-acetylglucosamine, the major type. The N-linked oligosaccharides were found to consist of high mannose- and complex-type chains. The high mannose-type N-linked chains, which were bound with high affinity by concanavalin A-Sepharose, ranged in size from Man6GlcNAc2 to Man9GlcNAc2. The complex-type chains contained mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. No sialic acid was present in any metabolically radiolabeled glycoproteins from schistosomula.  相似文献   

20.
Thyrotropin (TSH) and the gonadotropins; follitropin (FSH), lutropin (LH) and human chorionic gonadotropin (hCG) are a family of heterodimeric glycoprotein hormones. These hormones composed of two noncovalently linked subunits; a common alpha and a hormone specific beta subunits. Assembly of the subunits is vital to the function of these hormones. However, genetic fusion of the alpha and beta subunits of hFSH, hCG and hTSH resulted in active polypeptides. The glycoprotein hormone subunits contain one (TSH and LH) or two (alpha, FSHbeta and hCGbeta) asparagine-linked (N-linked) oligosaccharides. CGbeta subunit is distinguished among the beta subunits because of the presence of a carboxyl-terminal peptide (CTP) bearing four O-linked oligosaccharide chains. To examine the role of the oligosaccharide chains on the structure-function of glycoprotein hormones, chemical, enzymatic and site-directed mutagenesis were used. The results indicated that O-linked oligosaccharides play a minor role in receptor binding and signal transduction of the glycoprotein hormones. In contrast, the O-linked oligosaccharides are critical for in vivo half-life and bioactivity. Ligation of the CTP bearing four O-linked oligosaccharide sites to different proteins, resulted in enhancing the in vivo bioactivity and half-life of the proteins. The N-linked oligosaccharide chains have a minor role in receptor binding of glycoprotein hormones, but they are critical for bioactivity. Moreover, glycoprotein hormones lacking N-linked oligosaccharides behave as antagonists. In conclusion, the O-linked oligosaccharides are not important for in vitro bioactivity or receptor binding, but they play an important role in the in vivo bioactivity and half-life of the glycoprotein hormones. Addition of the O-linked oligosaccharide chains to the backbone of glycoprotein hormones could be an interesting strategy for designing long acting agonists of glycoprotein hormones. On the other hand, the N-linked oligosaccharides are not important for receptor binding, but they are critical for bioactivity of glycoprotein hormones. Deletion of the N-linked oligosaccharides resulted in the development of glycoprotein hormone antagonists. In the case of hTSH, development of an antagonist may offer a novel therapeutic strategy in the treatment of thyrotoxicosis caused by Graves' disease and TSH secreting pituitary adenoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号