共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The quantum yield for CO2 uptake was measured on a number of C3 and C4 monocot and dicot species. Under normal atmospheric conditions (330 microliters per liter CO2, 21% O2) and a leaf temperature of 30°C, the average quantum yields (moles CO2 per einstein) were as follows: 0.052 for C3 dicots, 0.053 for C3 grasses, 0.053 for NAD-malic enzyme type C4 dicots, 0.060 for NAD-malic enzyme type C4 grasses, 0.064 for phosphoenolpyruvate carboxykinase type C4 grasses, 0.061 for NADP-malic enzyme C4 dicots, and 0.065 for NADP-malic enzyme type C4 grasses. The quantum yield under normal atmospheric conditions was temperature dependent in C3 species, but apparently not in C4 species. Light and temperature conditions during growth appeared not to influence quantum yield. The significance of variation in the quantum yields of C4 plants was discussed in terms of CO2 leakage from the bundle sheath cells and suberization of apoplastic regions of the bundle sheath cells. 相似文献
3.
Quantum Yields for CO(2) Uptake in C(3) and C(4) Plants: Dependence on Temperature, CO(2), and O(2) Concentration 下载免费PDF全文
The quantum yields of C3 and C4 plants from a number of genera and families as well as from ecologically diverse habitats were measured in normal air of 21% O2 and in 2% O2. At 30 C, the quantum yields of C3 plants averaged 0.0524 ± 0.0014 mol CO2/absorbed einstein and 0.0733 ± 0.0008 mol CO2/absorbed einstein under 21 and 2% O2. At 30 C, the quantum yields of C4 plants averaged 0.0534 ± 0.0009 mol CO2/absorbed einstein and 0.0538 ± 0.0011 mol CO2/absorbed einstein under 21 and 2% O2. At 21% O2, the quantum yield of a C3 plant is shown to be strongly dependent on both the intercellular CO2 concentration and leaf temperature. The quantum yield of a C4 plant, which is independent of the intercellular CO2 concentration, is shown to be independent of leaf temperature over the ranges measured. The changes in the quantum yields of C3 plants are due to changes in the O2 inhibition. The evolutionary significance of the CO2 dependence of the quantum yield in C3 plants and the ecological significance of the temperature effects on the quantum yields of C3 and C4 plants are discussed. 相似文献
4.
The light dependence of quantum yields of Photosystem II (II) and of CO2 fixation were determined in C3 and C4 plants under atmospheric conditions where photorespiration was minimal. Calculations were made of the apparent quantum yield for CO2 fixation by dividing the measured rate of photosynthesis by the absorbed light [A/I=CO2 and of the true quantum yield by dividing the estimated true rate of photosynthesis by absorbed light [(A+Rl)/Ia=CO2·], where RL is the rate of respiration in the light. The dependence of the II/CO2 and II/CO2
* ratios on light intensity was then evaluated. In both C3 and C4 plants there was little change in the ratio of II/CO2 at light intensities equivalent to 10–100% of full sunlight, whereas there was a dramatic increase in the ratio at lower light intensities. Changes in the ratio of II/CO2 can occur because respiratory losses are not accounted for, due to changes in the partitioning of energy between photosystems or changes in the relationship between PS II activity and CO2 fixation. The apparent decrease in efficiency of utilization of energy derived from PS II for CO2 fixation under low light intensity may be due to respiratory loss of CO2. Using dark respiration as an estimate of RL, the calculated II/CO2
* ratio was nearly constant from full sunlight down to approx 5% of full sunlight, which suggests a strong linkage between the true rate of CO2 fixation and PS II activity under varying light intensity. Measurements of photosynthesis rates and II were made by illuminating upper versus lower leaf surfaces of representative C3 and C4 monocots and dicots. With the monocots, the rate of photosynthesis and the ratio of II/CO2 exhibited a very similar patterns with leaves illuminated from the adaxial versus the abaxial surface, which may be due to uniformity in anatomy and lack of differences in light acclimation between the two surfaces. With dicots, the abaxial surface had both lower rates of photosynthesis and lower II values than the adaxial surface which may be due to differences in anatomy (spongy versus palisade mesophyll cells) and/or light acclimation between the two surfaces. However, in each species the response of II/CO2 to varying light intensity was similar between the two surfaces, indicating a comparable linkage between PS II activity and CO2 fixation.Abbreviations A
measured rate of CO2 assimilation
- A+RL
true rate of CO2 assimilation; e
- CO2
estimate of electrons transported through PSII per CO2 fixed by RuBP carboxylase
- f
fraction of light absorbed by Photosystem II
- F'm
yield of PSII chlorophyll fluorescence due to a saturating flash of white light under steady-state photosynthesis
- Fs
variable yield of fluorescence under steady-state photosynthesis; PPFD-photosynthetic photon flux density
- Ia
absorbed PPFD
- PS II
Photosystem II
- Rd
rate of respiration in the dark
- RI
rate of respiration in the light estimated from measurement of Rd or from analysis of quantum yields
-
apparent quantum yield of CO2 assimilation under a given condition (A/absorbed PPFD)
-
true quantum yield of CO2 assimilation under a given condition [(A+RL)/(absorbed PPFD)]
-
quantum yield for photosynthetic O2 evolution
-
electrons transported via PS II per quantum absorbed by PS II
Supported by USDA Competitive Grant 90-37280-5706. 相似文献
5.
The quantum yields of photosynthetic O2 evolution were measuredin 15 species of C4 plants belonging to three different decarboxylationtypes (NADP-ME type, NAD-ME type and PEP-CK type) and 5 speciesof C3 plants and evaluated relative to the maximum theoreticalvalue of 0.125 mol oxygen quanta-1. At 25°C and 1% CO2,the quantum yield in C4 plants averaged 0.079 (differences betweensubgroups not significant) which was significantly lower thanthe quantum yield in C3 plants (average of 0.105 for 5 species).This lower quantum yield in C4 plants is thought to reflectthe requirement of energy in the C4 cycle. For the C4 NADP-MEtype plant Z. mays and NAD-ME type plant P. miliaceum, quantumyields were also measured over a range of CO2 levels between1 and 20%. In both species maximum quantum yields were obtainedunder 10% CO2 (0.105 O2 quanta-1 in Z. mays and 0.097 O2 quanta-1in P. miliaceum) indicating that at this CO2 concentration thequantum yields are similar to those obtained in C3 plants underCO2 saturation. The high quantum yield values in C4 plants undervery high CO2 may be accomplished by direct diffusion of atmosphericCO2 to bundle sheath cells, its fixation in the C3 pathway,and feedback inhibition of the C4 cycle by inorganic carbon. (Received June 6, 1995; Accepted August 15, 1995) 相似文献
6.
Chunnuan Deng Xiangliang Pan Shuzhi Wang Daoyong Zhang 《Biological trace element research》2014,160(2):268-275
Responses of photosystem I and II activities of Microcystis aeruginosa to various concentrations of Cu2+ were simultaneously examined using a Dual-PAM-100 fluorometer. Cell growth and contents of chlorophyll a were significantly inhibited by Cu2+. Photosystem II activity [Y(II)] and electron transport [rETRmax(II)] were significantly altered by Cu2+. The quantum yield of photosystem II [Y(II)] decreased by 29 % at 100 μg L?1 Cu2+ compared to control. On the contrary, photosystem I was stable under Cu2+ stress and showed an obvious increase of quantum yield [Y(I)] and electron transport [rETRmax(I)] due to activation of cyclic electron flow (CEF). Yield of cyclic electron flow [Y(CEF)] was enhanced by 17 % at 100 μg L?1 Cu2+ compared to control. The contribution of linear electron flow to photosystem I [Y(II)/Y(I)] decreased with increasing Cu2+ concentration. Yield of cyclic electron flow [Y(CEF)] was negatively correlated with the maximal photosystem II photochemical efficiency (F v/F m). In summary, photosystem II was the major target sites of toxicity of Cu2+, while photosystem I activity was enhanced under Cu2+ stress. 相似文献
7.
Anapleurotic CO(2) Fixation by Phosphoenolpyruvate Carboxylase in C(3) Plants 总被引:1,自引:6,他引:1 下载免费PDF全文
The role of phosphoenolpyruvate carboxylase in photosynthesis in the C3 plant Nicotiana tabacum has been probed by measurement of the 13C content of various materials. Whole leaf and purified ribulose bisphosphate carboxylase are within the range expected for C3 plants. Aspartic acid purified following acid hydrolysis of this ribulose bisphosphate carboxylase is enriched in 13C compared to whole protein. Carbons 1-3 of this aspartic acid are in the normal C3 range, but carbon-4 (obtained by treatment of the aspartic acid with aspartate β-decarboxylase) has an isotopic composition in the range expected for products of C4 photosynthesis (−5‰), and it appears that more than half of the aspartic acid is synthesized by phosphoenolpyruvate carboxylase using atmospheric CO2/HCO3−. Thus, a primary role of phosphoenolpyruvate carboxylase in C3 plants appears to be the anapleurotic synthesis of four-carbon acids. 相似文献
8.
Investigation of the CO(2) Dependence of Quantum Yield and Respiration in Eucalyptus pauciflora 总被引:6,自引:3,他引:6 下载免费PDF全文
In leaves of C3 plants, the rate of nonphotorespiratory respiration appears to be higher in darkness than in the light. This change from a high to a low rate of carbon loss with increasing photon flux density leads to an increase in the apparent quantum yield of photosynthetic CO2 assimilation at low photon flux densities (Kok effect). The mechanism of this suppression of nonphotorespiratory respiration is not understood, but biochemical evidence and the observation that a Kok effect is often not observed under low O2, has led to the suggestion that photorespiration might be involved in some way. This hypothesis was tested with snowgum (Eucalyptus pauciflora Sieb. ex Spreng.) using gas exchange methods. The test was based on the assumption that if photorespiration were involved, then it would be expected that the intercellular partial pressure of CO2 would also have an influence on the Kok effect. Under normal atmospheric levels of CO2 and O2, a Kok effect was found. Changing the intercellular partial pressure of CO2, however, did not affect the estimate of nonphotorespiratory respiraton, and it was concluded that its decrease with increasing photon flux density did not involve photorespiration. Concurrent measurements showed that the quantum yield of net assimilation of CO2 increased with increasing intercellular partial pressure of CO2, and this increase agreed closely with predictions based on recent models of photosynthesis. 相似文献
9.
During the last Ice age, CO2 concentration ([CO2]) was 180-200 μmol/mol compared with the modern value of 380 μmol/mol,and global temperatures were ~8 ℃ cooler. Relatively little is known about the responses of C3 and C4 species to longterm exposure to glacial conditions. Here Abutilon theophrasti Medik. (C3) and Amaranthus retroflexus L. (C4) were grown at 200 μmol/mol CO2 with current (30/24 ℃) and glacial (22/16 ℃) temperatures for 22 d. Overall, the C4 species exhibited a large growth advantage over the C3 species at low [CO2]. However, this advantage was reduced at low temperature, where the C4 species produced 5× the total mass of the C3 species versus 14× at the high temperature.This difference was due to a reduction In C4 growth at low temperature, since the C3 species exhibited similar growth between temperatures. Physiological differences between temperatures were not detected for either species, although photorespirationlnet photosynthesis was reduced in the C3 species grown at low temperature, suggesting evidence of improved carbon balance at this treatment. This system suggests that C4 species had a growth advantage over C3 species during low [CO2] of the last ice age, although concurrent reductions in temperatures may have reduced this advantage. 相似文献
10.
Experiments were carried out to investigate the long-term influenceof humidity on the short-term responses of stomata and CO2 assimilationto vapor pressure difference in Oryza sativa (rice, C3 species)and Panicum maximum (green panic, C4 species). Plants were grownfor four weeks in growth chambers set at 35% and 85% relativehumidity at 25C air temperature, 38+2 Pa CO2 partial pressureand 1,700µmol m-2s-1 photon flux density. Soil was saturatedwith water in both humidity treatments. Low humidity pretreatmentscaused low leaf conductance and low rates of transpiration andCO2 assimilation in O. sativa, but small changes in stomatalresponses to humidity and in CO2 assimilation were found inP. maximum. From the short-term gas exchange experiments, itwas noted that the responsiveness of leaf conductance to vaporpressure difference were affected by humidity pretreatmentsin O. sativa, whereas unaffected in P. maximum. In O. sativameasurements of CO2 assimilation as a function of internal CO2partial pressure (A-Ci curve) indicated that low humidity pretreatmentsreduced the CO2 assimilation at high internal CO2 partial pressure,but the initial slope of the A-Ci curve was unaffected. Furthermore,plant characteristics such as total dry weight and leaf areaof plants subjected to low umidity were lower than plants subjectedto high humidity. The reductions in O. sativa, however, werelarger than in P. maximum. Stomatal frequency from low humiditygrown plant was higher than that from high humidity grown plantsin both species although there is no significant difference.The data indicated that if the short term inhibition of netCO2 assimilation at a high vapor pressure difference was imposedduring vegetative growth, the photosynthetic biochemistry andthe resultant plant growth were largely depressed in O. sativa,a C3 species. (Received May 26, 1992; Accepted November 2, 1992) 相似文献
11.
Suppression of Quantum Yield of Photosystem II by Hyperosmotic Stress in Chlamydomonas reinhardtii 总被引:1,自引:0,他引:1
Addition of ethylene glycol (EG) or NaCl to cells of Chlamydomonasreinhardtii induced transient non-photochemical quenching ofChl fluorescence correlated with the inhibition of photosyntheticoxygen evolution. The induction of the quenching and subsequentrecovery proceeded not only in the light but also in the dark.The quenching was almost unaffected by the protonophore nigericin,suggesting the involvement of a type of non-photochemical quenchingattributable to a state 2 transition. Higher concentrationsof EG or NaCl caused a delay of the recovery of the maximumfluorescence yield (Fm'). Dark reduction rate of P700+ afterthe application of a flash light in the presence of DCMU wasenhanced by the hyperosmotic shock, suggesting a stimulatedreduction of the intersystem electron carriers. It is proposedthat the osmotic stress stimulates electron donation from stromalcomponents via the NAD(P)H dehydrogenase, which results in thereduction of the intersystem chain and triggering of a state2 transition leading to stimulated cyclic PSI activity. (Received May 16, 1995; Accepted July 26, 1995) 相似文献
12.
Jennifer Cunniff Glynis Jones Michael Charles Colin P. Osborne 《Global Change Biology》2017,23(1):380-393
Limitation of plant productivity by the low partial pressure of atmospheric CO2 (Ca) experienced during the last glacial period is hypothesized to have been an important constraint on the origins of agriculture. In support of this hypothesis, previous work has shown that glacial Ca limits vegetative growth in the wild progenitors of both C3 and C4 founder crops. Here, we present data showing that glacial Ca also reduces grain yield in both crop types. We grew four wild progenitors of C3 (einkorn wheat and barley) and C4 crops (foxtail and broomcorn millets) at glacial and postglacial Ca, measuring grain yield and the morphological and physiological components contributing to these yield changes. The C3 species showed a significant increase in unthreshed grain yield of ~50% with the glacial to postglacial increase in Ca, which matched the stimulation of photosynthesis, suggesting that increases in photosynthesis are directly translated into yield at subambient levels of Ca. Increased yield was controlled by a higher rate of tillering, leading to a larger number of tillers bearing fertile spikes, and increases in seed number and size. The C4 species showed smaller, but significant, increases in grain yield of 10–15%, arising from larger seed numbers and sizes. Photosynthesis was enhanced by Ca in only one C4 species and the effect diminished during development, suggesting that an indirect mechanism mediated by plant water relations could also be playing a role in the yield increase. Interestingly, the C4 species at glacial Ca showed some evidence that photosynthetic capacity was upregulated to enhance carbon capture. Development under glacial Ca also impacted negatively on the subsequent germination and viability of seeds. These results suggest that the grain production of both C3 and C4 crop progenitors was limited by the atmospheric conditions of the last glacial period, with important implications for the origins of agriculture. 相似文献
13.
Maroco João P. Ku Maurice S. B. Furbank Robert T. Lea Peter J. Leegood Richard C. Edwards Gerald E. 《Photosynthesis research》1998,58(1):91-101
The CO2 dependence of rates of CO2 fixation (A) and photochemistry of PS II at 5, 15 and 30% O2 were analyzed in the C4 plant Amaranthus edulis having a C4 cycle deficiency [phosphoenolpyruvate carboxylase (PEPC) mutants], and in the C4 plant Flaveria bidentis having a C3 cycle deficiency [Rubisco small subunit antisense (SSU)]. In the wild type (WT) A. edulis and its heterozygous mutant having less than 50% WT PEPC activity there was a similar dependence of A and PS II photochemistry on varying CO2, although the CO2 saturated rates were 25% lower in heterozygous plants. The homozygous plants having less than 2% PEPC of the WT had significant levels of photorespiration at ambient levels of CO2 and required about 30 times ambient levels for maximum rates of A. Despite variation in the capacity of the C4 cycle, more than 91% of PS II activity was linearly associated with A under varying CO2 at 5, 15 and 30% O2. However, the WT plant had a higher PS II activity per CO2 fixed under saturating CO2 than the homozygous mutant, which is suggested to be due to elimination of the C4 cycle and its associated requirement for ATP from a Mehler reaction. In the SSU F. bidentis plants, a decreased rate of A (35%) and PS II activity (33%) accompanied a decrease in Rubisco capacity. There was some increase in alternative electron sinks at high CO2 when the C3 cycle was constrained, which may be due to increased flux through the C4 cycle via an ATP generating Mehler reaction. Nevertheless, even with constraints on the function of the C4 or C3 cycle by genetic modifications, analyses of CO2 response curves under varying levels of O2 indicate that CO2 assimilation is the main determinant of PS II activity in C4 plants. 相似文献
14.
The ultimate goal of this research is to construct a new direct CO2 fixation system using photosystems in living algae. Here, we report light-driven formate production from CO2 by using cyanobacterial photosystem I (PS I). Formate, a chemical hydrogen carrier and important industrial material, can be produced from CO2 by using the reducing power and the catalytic function of formate dehydrogenase (FDH). We created a bacterial FDH mutant that experimentally switched the cofactor specificity from NADH to NADPH, and combined it with an in vitro-reconstituted cyanobacterial light-driven NADPH production system consisting of PS I, ferredoxin (Fd), and ferredoxin-NADP+-reductase (FNR). Consequently, light-dependent formate production under a CO2 atmosphere was successfully achieved. In addition, we introduced the NADPH-dependent FDH mutant into heterocysts of the cyanobacterium Anabaena sp. PCC 7120 and demonstrated an increased formate concentration in the cells. These results provide a new possibility for photo-biological CO2 fixation. 相似文献
15.
Interactive Effects of Elevated CO2 and Growth Temperature on the Tolerance of Photosynthesis to Acute Heat Stress in C3 and C4 Species 总被引:1,自引:0,他引:1
E. William Hamilton Ⅲ 《植物学报(英文版)》2008,50(11):1375-1387
Determining effects of elevated CO2 on the tolerance of photosynthesis to acute heat-stress (heat wave) is necessary for predicting plant responses to global warming, as photosynthesis is thermolabile and acute heat-stress and atmospheric CO2 will increase in the future. Few studies have examined this, and past results are variable, which may be due to methodological variation. To address this, we grew two C3 and two C4 species at current or elevated CO2 and three different growth temperatures (GT). We assessed photosynthetic thermotolerance in both unacclimated (basal tolerance) and preheat-stressed (preHS = acclimated) plants. In C3 species, basal thermotolerance of net photosynthesis (Pn) was increased In high CO2, but in C4 species, Pn thermotlerance was decreased by high CO2 (except Zea maya at low GT); CO2 effects in preHS plants were mostly small or absent, though high CO2 was detrimental in one C3 and one C4 species at warmer GT. Though high CO2 generally decreased stomatal conductance, decreases in Pn during heat stress were mostly due to non-stomatal effects. Photosystem II (PSII) efficiency was often decreased by high CO2 during heat stress, especially at high GT; CO2 effects on post-PSll electron transport were variable. Thus, high CO2 often affected photosynthetic theromotolerance, and the effects varied with photosynthetic pathway, growth temperature, and acclimation state. Most importantly, in heat-stressed plants at normal or warmer growth temperatures, high CO2 may often decrease, or not benefit as expected, tolerance of photosynthesis to acute heat stress. Therefore, interactive effects of elevated CO2 and warmer growth temperatures on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity. 相似文献
16.
高等植物碳循环基因工程研究进展 总被引:1,自引:0,他引:1
高等植物根据其CO2同化方式的不同,可分为C3植物、C4植物和CAM植物。由于C4植物特殊的光合作用方式,其光合能力明显高于C3植物。然而,大多数农作物都是C3植物。为了改善C3植物的光合能力,人们试图通过转基因的方法来改造C3作物,以提高主要农作物如水稻(Oryza sativa)、小麦(Triticum aestivum)和大豆(Glycine max)等的光合生产力,并在这些方面做了很多有益的尝试。该文主要综述了通过转基因方法改善碳循环能力的一些进展,并对一些尚需深入研究的问题进行了探讨。 相似文献
17.
高等植物根据其CO2同化方式的不同, 可分为C3植物、C4植物和CAM植物。由于C4植物特殊的光合作用方式, 其光合能力明显高于C3植物。然而, 大多数农作物都是C3植物。为了改善C3植物的光合能力, 人们试图通过转基因的方法来改造C3作物, 以提高主要农作物如水稻(Oryz a sativa)、小麦(Tri ticum aestivum)和大豆(Glycine max)等的光合生产力, 并在这些方面做了很多有益的尝试。该文主要综述了通过转基因方法改善碳循环能力的一些进展, 并对一些尚需深入研究的问题进行了探讨。 相似文献
18.
19.
Temperature effects on the photosynthetic response of C3 plants to long-term CO2 enrichment 总被引:7,自引:0,他引:7
To assess the long-term effect of increased CO2 and temperature on plants possessing the C3 photosynthetic pathway, Chenopodium album plants were grown at one of three treatment conditions: (1) 23 °C mean day temperature and a mean ambient partial pressure of CO2 equal to 350 bar; (2) 34 °C and 350 bar CO2; and (3) 34 °C and 750 bar CO2. No effect of the growth treatments was observed on the CO2 reponse of photosynthesis, the temperature response of photosynthesis, the content of Ribulose-1,5-bisphosphate carboxylase (Rubisco), or the activity of whole chain electron transport when measurements were made under identical conditions. This indicated a lack of photosynthetic acclimation in C. album to the range of temperature and CO2 used in the growth treatments. Plants from every treatment exhibited similar interactions between temperature and CO2 on photosynthetic activity. At low CO2 (< 300 bar), an increase in temperature from 25 to 35 °C was inhibitory for photosynthesis, while at elevated CO2 (> 400 bar), the same increase in temperature enhanced photosynthesis by up to 40%. In turn, the stimulation of photosynthesis by CO2 enrichment increased as temperature increased. Rubisco capacity was the primary limitation on photosynthetic activity at low CO2 (195 bar). As a consequence, the temperature response of A was relatively flat, reflecting a low temperature response of Rubisco at CO2 levels below its km for CO2. At elevated CO2 (750 bar), the temperature response of electron transport appeared to control the temperature dependency of photosynthesis above 18 °C. These results indicate that increasing CO2 and temperature could substantially enhance the carbon gain potential in tropical and subtropical habitats, unless feedbacks at the whole plant or ecosystem level limit the long-term response of photosynthesis to an increase in CO2 and temperature.Abbreviations A
net CO2 assimilation rate
- C
a
ambient partial pressure of CO2
- C
i
intercellular partial pressure of CO2
- Rubisco
Ribulose-1,5-bisphosphate carboxylase
- VPD
vapor pressure difference between leaf and air 相似文献
20.
Martin Krönke Andrew F. Geczy Ulrich Hadding Dieter Bitter-Suermann 《Immunogenetics》1977,5(1):461-466
The C4, Bf, and GPLA phenotypes of homo- and heterozygous C4-deficient guinea pigs were studied. The electrophoretic patterns suggest that the deficiency in circulating C4 results from an impaired structural gene, allelic to the C4F, C4S, and C4S1 alleles at the C4 locus. In family studies, support for linkage of C4 and Bf to theGPLA system was obtained. The defective gene appears to be the fourth allele, which is rare, in the polymorphism of the fourth component of guinea pig complement.Abbreviations used in this paper are as follows Bf
locus for properdin factor B
- MHC
major histocompatibility complex
- GPLA
major histocompatibility complex of the guinea pig 相似文献