首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report striking differences in the substrate specificities of two human SR proteins, SF2/ASF and SC35, in constitutive splicing. beta-Globin pre-mRNA (exons 1 and 2) is spliced indiscriminately with either SR protein. Human immunodeficiency virus tat pre-mRNA (exons 2 and 3) and immunoglobulin mu-chain (IgM) pre-mRNA (exons C3 and C4) are preferentially spliced with SF2/ASF and SC35, respectively. Using in vitro splicing with mutated or chimeric derivatives of the tat and IgM pre-mRNAs, we defined specific combinations of segments in the downstream exons, which mediate either positive or negative effects to confer SR protein specificity. A series of recombinant chimeric proteins consisting of domains of SF2/ASF and SC35 in various combinations was used to localize trans-acting domains responsible for substrate specificity. The RS domains of SF2/ASF and SC35 can be exchanged without effect on substrate specificity. The RNA recognition motifs (RRMs) of SF2/ASF are active only in the context of a two-RRM structure, and RRM2 has a dominant role in substrate specificity. In contrast, the single RRM of SC35 can function alone, but its substrate specificity can be influenced by the presence of an additional RRM. The RRMs behave as modules that, when present in different combinations, can have positive, neutral, or negative effects on splicing, depending upon the specific substrate. We conclude that SR protein-specific recognition of specific positive and negative pre-mRNA exonic elements via one or more RRMs is a crucial determinant of the substrate specificity of SR proteins in constitutive splicing.  相似文献   

2.
3.
The splicing of the c-src exon N1 is controlled by an intricate combination of positive and negative RNA elements. Most previous work on these sequences focused on intronic elements found upstream and downstream of exon N1. However, it was demonstrated that the 5' half of the N1 exon itself acts as a splicing enhancer in vivo. Here we examine the function of this regulatory element in vitro. We show that a mutation in this sequence decreases splicing of the N1 exon in vitro. Proteins binding to this element were identified as hnRNP A1, hnRNP H, hnRNP F, and SF2/ASF by site-specific cross-linking and immunoprecipitation. The binding of these proteins to the RNA was eliminated by a mutation in the exonic element. The activities of hnRNP A1 and SF2/ASF on N1 splicing were examined by adding purified protein to in vitro splicing reactions. SF2/ASF and another SR protein, SC35, are both able to stimulate splicing of c-src pre-mRNA. However, splicing activation by SF2/ASF is dependent on the N1 exon enhancer element whereas activation by SC35 is not. In contrast to SF2/ASF and in agreement with other systems, hnRNP A1 repressed c-src splicing in vitro. The negative activity of hnRNP A1 on splicing was compared with that of PTB, a protein previously demonstrated to repress splicing in this system. Both proteins repress exon N1 splicing, and both counteract the enhancing activity of the SR proteins. Removal of the PTB binding sites upstream of N1 prevents PTB-mediated repression but does not affect A1-mediated repression. Thus, hnRNP A1 and PTB use different mechanisms to repress c-src splicing. Our results link the activity of these well-known exonic splicing regulators, SF2/ASF and hnRNP A1, to the splicing of an exon primarily controlled by intronic factors.  相似文献   

4.
SR proteins are essential splicing factors involved in the use of both constitutive and alternative exons. We previously showed that the SR proteins SRp20 and ASF/SF2 have antagonistic activities on SRp20 pre-mRNA splicing. SRp20 activates exon 4 recognition in its pre-mRNA, whereas ASF/SF2 inhibits this recognition. In experiments aimed at testing the specificity of SRp20 and ASF/SF2 for exon 4 splicing regulation, we show here that this specificity lies in the RNA binding domains of SRp20 and ASF/SF2 and not in the RS domains. Surprisingly, a deletion of 14 amino acids at the end of ASF/SF2-RBD2 converts ASF/SF2 from an inhibitor to an activator of exon 4 splicing. We found that ASF3 also inhibits exon 4 recognition, thus acting similarly to ASF/SF2, while SC35 activates a cryptic 5' splice site downstream of exon 3 and, in doing so, represses exon 4 use. In contrast, Tra2 and the SR proteins 9G8 and SRp40 do not appear to affect exon 4 splicing.  相似文献   

5.
6.
The essential splicing factor ASF/SF2 activates or represses splicing depending on where on the pre-mRNA it binds. We have shown previously that ASF/SF2 inhibits adenovirus IIIa pre-mRNA splicing by binding to an intronic repressor element. Here we used MS2-ASF/SF2 fusion proteins to show that the second RNA binding domain (RBD2) is both necessary and sufficient for the splicing repressor function of ASF/SF2. Furthermore, we show that the completely conserved SWQDLKD motif in ASF/SF2-RBD2 is essential for splicing repression. Importantly, this heptapeptide motif is unlikely to be directly involved in RNA binding given its position within the predicted structure of RBD2. The activity of the ASF/SF2-RBD2 domain in splicing was position-dependent. Thus, tethering RBD2 to the IIIa intron resulted in splicing repression, whereas RBD2 binding at the second exon had no effect on IIIa splicing. The splicing repressor activity of RBD2 was not unique to the IIIa pre-mRNA, as binding of RBD2 at an intronic position in the rabbit beta-globin pre-mRNA also resulted in splicing inhibition. Taken together, our results suggest that ASF/SF2 encode distinct domains responsible for its function as a splicing enhancer or splicing repressor protein.  相似文献   

7.
The activity of the SR protein family of splicing factors in constitutive or alternative splicing requires direct interactions with the pre-mRNA substrate. Thus it is important to define the high affinity targets of the various SR species and to evaluate their ability to discriminate between defined RNA targets. We have analyzed the binding specificity of the 30-kDa SR protein 9G8, which contains a zinc knuckle in addition to the RNA binding domain (RBD). Using a SELEX approach, we demonstrate that 9G8 selects RNA sequences formed by GAC triplets, whereas a mutated zinc knuckle variant selects different RNA sequences, centered around a (A/U)C(A/U)(A/U)C motif, indicating that the zinc knuckle is involved in the RNA recognition specificity of 9G8. In contrast, SC35 selects sequences composed of pyrimidine or purine-rich motifs. Analyses of RNA-protein interactions with purified recombinant 30-kDa SR proteins or in nuclear extracts, by means of UV crosslinking and immunoprecipitation, demonstrate that 9G8, SC35, and ASF/SF2 recognize their specific RNA targets with high specificity. Interestingly, the RNA sequences selected by the mutated zinc knuckle 9G8 variant are efficiently recognized by SRp20, in agreement with the fact that the RBD of 9G8 and SRp20 are similar. Finally, we demonstrate the ability of 9G8 and of its zinc knuckle variant, or SRp20, to act as efficient splicing transactivators through their specific RNA targets. Our results provide the first evidence for cooperation between an RBD and a zinc knuckle in defining the specificity of an RNA binding domain.  相似文献   

8.
9.
10.
We have identified multiple distinct splicing enhancer elements within protein-coding sequences of the constitutively spliced human β-globin pre-mRNA. Each of these highly conserved sequences is sufficient to activate the splicing of a heterologous enhancer-dependent pre-mRNA. One of these enhancers is activated by and binds to the SR protein SC35, whereas at least two others are activated by the SR protein SF2/ASF. A single base mutation within another enhancer element inactivates the enhancer but does not change the encoded amino acid. Thus, overlapping protein coding and RNA recognition elements may be coselected during evolution. These studies provide the first direct evidence that SR protein-specific splicing enhancers are located within the coding regions of constitutively spliced pre-mRNAs. We propose that these enhancers function as multisite splicing enhancers to specify 3′ splice-site selection.  相似文献   

11.
12.
Lin S  Xiao R  Sun P  Xu X  Fu XD 《Molecular cell》2005,20(3):413-425
SR proteins are a family of sequence-specific RNA binding proteins originally discovered as essential factors for pre-mRNA splicing and recently implicated in mRNA transport, stability, and translation. Here, we used a genetic complementation system derived from conditional knockout mice to address the function and regulation of SR proteins in vivo. We demonstrate that ASF/SF2 and SC35 are each required for cell viability, but, surprisingly, the effector RS domain of ASF/SF2 is dispensable for cell survival in MEFs. Although shuttling SR proteins have been implicated in mRNA export, prevention of ASF/SF2 from shuttling had little impact on mRNA export. We found that shuttling and nonshuttling SR proteins are segregated in an orderly fashion during mRNP maturation, indicating distinct recycling pathways for different SR proteins. We further showed that this process is regulated by differential dephosphorylation of the RS domain, thus revealing a sorting mechanism for mRNP transition from splicing to export.  相似文献   

13.
The cellular protein p32 was isolated originally as a protein tightly associated with the essential splicing factor ASF/SF2 during its purification from HeLa cells. ASF/SF2 is a member of the SR family of splicing factors, which stimulate constitutive splicing and regulate alternative RNA splicing in a positive or negative fashion, depending on where on the pre-mRNA they bind. Here we present evidence that p32 interacts with ASF/SF2 and SRp30c, another member of the SR protein family. We further show that p32 inhibits ASF/SF2 function as both a splicing enhancer and splicing repressor protein by preventing stable ASF/SF2 interaction with RNA, but p32 does not block SRp30c function. ASF/SF2 is highly phosphorylated in vivo, a modification required for stable RNA binding and protein-protein interaction during spliceosome formation, and this phosphorylation, either through HeLa nuclear extracts or through specific SR protein kinases, is inhibited by p32. Our results suggest that p32 functions as an ASF/SF2 inhibitory factor, regulating ASF/SF2 RNA binding and phosphorylation. These findings place p32 into a new group of proteins that control RNA splicing by sequestering an essential RNA splicing factor into an inhibitory complex.  相似文献   

14.
Mutually exclusive splicing of exons 6A and 6B from the chicken beta-tropomyosin gene involves numerous regulatory sequences. Previously, we identified a G-rich intronic sequence (S3) downstream of exon 6B. This element consists of six G-rich motifs, mutations of which abolish splicing of exon 6B. In this paper, we investigated the cellular factors that bind to this G-rich element. By using RNA affinity chromatography, we identified heterogeneous nuclear ribonucleoprotein (hnRNP) A1, the SR proteins ASF/SF2 and SC35, and hnRNP F/H as specific components that are assembled onto the G-rich element. By using hnRNP A1-depleted HeLa nuclear extract and add-back experiments, we show that hnRNP A1 has a negative effect on splicing of exon 6B. In agreement with in vitro data, artificial recruitment of hnRNP A1, as a fusion with the MS2 coat protein, also represses splicing of exon 6B ex vivo. In contrast, ASF/SF2 and SC35 activate splicing of exon 6B. As observed with other systems, hnRNP A1 counteracts the stimulating effect of the SR proteins. Moreover, cross-linking experiments show that both ASF/SF2 and SC35 are able to displace binding of hnRNP A1 to the G-rich element, suggesting that the binding sites for these proteins are overlapping. These data indicate that the G-rich sequence is a composite element that acts as an enhancer or as a silencer, depending on which proteins bind to them.  相似文献   

15.
Exons 6A and 6B of the chicken beta-tropomyosin gene are mutually exclusive and selected in a tissue-specific manner. Exon 6A is present in non-muscle and smooth muscle cells, while exon 6B is present in skeletal muscle cells. In this study we have investigated the mechanism underlying exon 6A recognition in non-muscle cells. Previous reports have identified a pyrimidine-rich intronic enhancer sequence (S4) downstream of exon 6A as essential for exon 6A 5'-splice site recognition. We show here that preincubation of HeLa cell extracts with an excess of RNA containing this sequence specifically inhibits exon 6A recognition by the splicing machinery. Splicing inhibition by an excess of this RNA can be rescued by addition of the SR protein ASF/SF2, but not by the SR proteins SC35 or 9G8. ASF/SF2 stimulates exon 6A splicing through specific interaction with the enhancer sequence. Surprisingly, SC35 behaves as an inhibitor of exon 6A splicing, since addition to HeLa nuclear extracts of increasing amounts of the SC35 protein completely abolish the stimulatory effect of ASF/SF2 on exon 6A splicing. We conclude that exon 6A recognition in vitro depends on the ratio of the ASF/SF2 to SC35 SR proteins. Taken together our results suggest that variations in the level or activity of these proteins could contribute to the tissue-specific choice of beta-tropomyosin exon 6A. In support of this we show that SR proteins isolated from skeletal muscle tissues are less efficient for exon 6A stimulation than SR proteins isolated from HeLa cells.  相似文献   

16.
17.
hnRNP A1 is a pre-mRNA binding protein that antagonizes the alternative splicing activity of splicing factors SF2/ASF or SC35, causing activation of distal 5' splice sites. The structural requirements for hnRNP A1 function were determined by mutagenesis of recombinant human hnRNP A1. Two conserved Phe residues in the RNP-1 submotif of each of two RNA recognition motifs appear to be involved in specific RNA-protein interactions and are essential for modulating alternative splicing. These residues are not required for general pre-mRNA binding or RNA annealing activity. The C-terminal Gly-rich domain is necessary for alternative splicing activity, for stable RNA binding and for optimal RNA annealing activity. hnRNP A1B, which is an alternatively spliced isoform of hnRNP A1 with a longer Gly-rich domain, binds more strongly to pre-mRNA but has only limited alternative splicing activity. In contrast, hnRNP A2 and B1, which have 68% amino acid identity with hnRNP A1, bind more weakly to pre-mRNA and have stronger splice site switching activities than hnRNP A1. We propose that specific combinations of antagonistic hnRNP A/B and SR proteins are involved in regulating alternative splicing of distinct subsets of cellular premRNAs.  相似文献   

18.
J Zhu  A Mayeda  A R Krainer 《Molecular cell》2001,8(6):1351-1361
SR proteins recognize exonic splicing enhancer (ESE) elements and promote exon use, whereas certain hnRNP proteins bind to exonic splicing silencer (ESS) elements and block exon recognition. We investigated how ESS3 in HIV-1 tat exon 3 blocks splicing promoted by one SR protein (SC35) but not another (SF2/ASF). hnRNP A1 mediates silencing by binding initially to a required high-affinity site in ESS3, which then promotes further hnRNP A1 association with the upstream region of the exon. Both SC35 and SF2/ASF recognize upstream ESE motifs, but only SF2/ASF prevents secondary hnRNP A1 binding, presumably by blocking its cooperative propagation along the exon. The differential antagonism between a negative and two positive regulators exemplifies how inclusion of an alternative exon can be modulated.  相似文献   

19.
Human pre-mRNA splicing factor SF2/ASF has an activity required for general splicing in vitro and promotes utilization of proximal alternative 5' splice sites in a concentration-dependent manner by opposing hnRNP A1. We introduced selected mutations in the N-terminal RNA recognition motif (RRM) and the C-terminal Arg/Ser (RS) domain of SF2/ASF, and assayed the resulting recombinant proteins for constitutive and alternative splicing in vitro and for binding to pre-mRNA and mRNA. Mutants inactive in constitutive splicing can affect alternative splice site selection, demonstrating that these activities involve distinct molecular interactions. Specific protein-RNA contact mediated by Phe56 and Phe58 in the RNP-1 submotif of the SF2/ASF RRM are essential for constitutive splicing, although they are not required for RRM-mediated binding to pre-mRNA. The RS domain is also required for constitutive splicing activity and both Arg and Ser residues are important. Analysis of domain deletion mutants demonstrated strong synergy between the RRM and a central degenerate RRM repeat in binding to RNA. These two domains are sufficient for alternative splicing activity in the absence of an RS domain.  相似文献   

20.
Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain interactions, and/or promoting RNA base-pairing through their RS domains. An RS domain tethered at an exonic splicing enhancer can function as a splicing activator, and RS domains play prominent roles in current models of SR protein functions. However, we previously reported that the RS domain of the SR protein SF2/ASF is dispensable for in vitro splicing of some pre-mRNAs. We have now extended these findings via the identification of a short inhibitory domain at the SF2/ASF N-terminus; deletion of this segment permits splicing in the absence of this SR protein's RS domain of an IgM pre-mRNA substrate previously classified as RS-domain-dependent. Deletion of the N-terminal inhibitory domain increases the splicing activity of SF2/ASF lacking its RS domain, and enhances its ability to bind pre-mRNA. Splicing of the IgM pre-mRNA in S100 complementation with SF2/ASF lacking its RS domain still requires an exonic splicing enhancer, suggesting that an SR protein RS domain is not always required for ESE-dependent splicing activation. Our data provide additional evidence that the SF2/ASF RS domain is not strictly required for constitutive splicing in vitro, contrary to prevailing models for how the domains of SR proteins function to promote splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号