首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Hepatic arylsulfatase C (ASC) and steroid sulfatase (SS) from six of eleven mammals (rat, dog, baboon, cow, goat, and sheep) coeluted from DEAE-Sephacel as a single anionic species. A minor cationic peak of ASC and SS activity was also recovered from solubilized microsomes derived from the domestic cat. Characterization of the cationic activities indicated they were most likely contributed by a protein structurally related to the anionic isozyme. Properties of ASC and SS activities occurring in these seven species were most consistent with the presence of both activities in the same enzyme. 2. Guinea-pig liver SS activity was partitioned between an alkylsulfatase (hydrolyzing dehydroepiandrosterone sulfate (DHEAS)) and an arylsulfatase (hydrolyzing both estrone sulfate (E1S) and 4-methylumbelliferyl sulfate (4MUS) at a common active site). These enzymes were physically separable by ion-exchange chromatography and possessed distinct immunological and chemical properties. 3. Porcine, squirrel, and human livers possessed a major isozyme of ASC that lacked both E1S- and DHEAS-sulfatase activities. The human hepatic ASC was separable from SS by electrophoresis and was partially resolved from SS by DEAE-Sephacel chromatography. The ASC isozyme lacking SS activity was heat-labile in all three species.  相似文献   

2.
Characterization of arylsulfatase C isozymes from human liver and placenta   总被引:1,自引:0,他引:1  
Arylsulfatase C and steroid sulfatase were thought to be identical enzymes. However, recent evidence showed that human arylsulfatase C consists of two isozymes, s and f. In this study, the biochemical properties of the s form partially purified from human placenta were compared with those of the f form from human liver. Only the placental s form has steroid sulfatase activity and hydrolyses estrone sulfate, dehydroepiandrosterone sulfate and cholesterol sulfate. The liver f form has barely detectable activity towards these sterol sulfates. With the artificial substrate, 4-methylumbelliferyl sulfate, both forms demonstrated a similar KM but the liver enzyme has a pH optimum of 6.9 while the placental form displayed two optima at 7.3 and 5.5. The molecular weight of the native enzyme determined with gel filtration was 183,000 for the s form and 200,000 for the f form and their pI's were also similar at 6.5. However, the T50, temperature at which half of the enzyme activity was lost, was 49.5 degrees C for the f form and 56.8 degrees C for the s form. Polyclonal antibodies raised against the placental form reacted specifically against the s and not the f form. They immuno-precipitated concomitantly greater than 80% of the total placental arylsulfatase C and steroid sulfatase activities while less than 20% of the liver enzyme was immuno-precipitable. In conclusion, the two isozymes s and f of arylsulfatase C in humans purified from placenta and liver, respectively, have similar KM, pI' and native molecular weight. However, they are distinct proteins with different substrate specificity, pH optima, heat-lability and antigenic properties. Only the s form is confirmed to be steroid sulfatase.  相似文献   

3.
The activity of steroid 21-sulfatase, the enzyme that catalyzes the hydrolysis of deoxycorticosterone sulfate (DOC-SO4) is demonstrable in human placenta. Thus, it is possible that this placental enzyme, by way of the hydrolysis of either DOC-SO4 or 21-hydroxypregnenolone mono- or di-sulfate of fetal origin, may be important in the biosynthesis of DOC, which is present in the plasma of pregnant women in high concentration. To investigate this issue further, we evaluated steroid 21-sulfatase activity in microsomal preparations of a sulfatase-deficient placenta. Immediately after delivery, at term, of a living male fetus with sulfatase deficiency, a microsome-enriched fraction of placental tissue was prepared; sulfatase activity was evaluated by use of three substrates, viz. dehydroisoandrosterone sulfate (DS), estrone sulfate (E1-SO4), and DOC-SO4, in various concentrations. Similar incubations were conducted with aliquots of a microsome-enriched fraction prepared from placental tissue of a normal fetus that was delivered, at term, within minutes of the time of delivery of the infant with sulfatase deficiency. In microsomal fractions from the normal placenta, each of the steroid sulfates was hydrolyzed. In the absence of microsomes, and in the presence of microsomal fractions from the sulfatase-deficient placenta, the hydrolysis of DOC-SO4 and DS was not detected. Moreover, in microsomes prepared from the sulfatase-deficient placenta, E1-SO4 was hydrolyzed at a rate that was only 10% of that in incubations with microsomal preparations of the normal placenta. We conclude that with sulfatase deficiency, the placenta is deficient not only in sulfatase activity for steroid-3-sulfates but for steroid 21-sulfates, e.g. DOC-SO4, as well.  相似文献   

4.
Steroid sulfatase (EC 3.1.6.2) is an enzyme that removes the sulfate group from 3β-hydroxysteroid sulfates. This enzyme is best known for its role in estrogen production via the fetal adrenal–placental pathway during pregnancy; however, it also has important functions in other physiological and pathological steroid pathways. The objective of this study was to examine the distribution of steroid sulfatase in normal human tissues and in breast cancers using immunohistochemistry, employing a newly developed steroid sulfatase antibody. A rabbit polyclonal antiserum was generated against a peptide representing a conserved region of the steroid sulfatase protein. In Western blotting experiments using human placental microsomes, this antiserum crossreacted with a 65 kDa protein, the reported size of steroid sulfatase. The antiserum also crossreacted with single protein bands in Western blots of microsomes from two human breast cancer cell lines (MDA-MB-231 and MCF-7) and from rat liver; however, there were some size differences in the immunoreactive bands among tissues. The steroid sulfatase antibody was used in immunohistochemical analyses of individual human tissue slides as well as a human tissue microarray. For single tissues, human placenta and liver showed strong positive staining against the steroid sulfatase antibody. ER+/PR+ breast cancers also showed relatively strong levels of steroid sulfatase immunoreactivity. Normal human breast showed moderate levels of steroid sulfatase immunoreactivity, while ER−/PR− breast cancer showed weak immunoreactivity. This confirms previous reports that steroid sulfatase is higher in hormone-dependent breast cancers. For the tissue microarray, most tissues showed some detectable level of steroid sulfatase immunoreactivity, but there were considerable differences among tissues, with skin, liver and lymph nodes having the highest immunoreactivity and brain tissues having the lowest. These data reveal the utility of immunohistochemistry in evaluation of steroid sulfatase activity among tissues. The newly developed antibody should be useful in studies of both humans and rats.  相似文献   

5.
Summary We report on three independent cases with a partial deficiency of placental steroid sulfatase (E.C.3.1.6.2). Upon routine pregnancy monitoring these patients were detected on the basis of low estriol excretion and failing induction of labor. In all three cases a male was delivered and subsequently the diagnosis of partial deficiency of placental steroid sulfatase was confirmed enzymatically in placenta homogenates. In one case, fibroblast cultures were established from skin explants of mother and son. In fibroblasts of the child, as in placental tissue, the activity of steroid sulfatase was only 34% of normal. Similar values were obtained for arylsulfatase C, though this enzyme is clearly separable from steroid sulfatase by electrophoresis. In cells of the mother, enzyme activities were unremarkable.  相似文献   

6.
In 5 placental homogenates the Km of steroid sulfatase for DHEA sulfate increased from 15.4 in Tris buffer to 26.8 microM in phosphate (both buffers 0.1 M, pH 7.4), P less than 0.05. In 3 pooled ovarian preparations the Km increased from 14.3 microM in Tris to 33.0 microM in phosphate, P less than 0.01. There was no significant difference between the ovarian and placental values for Km in either Tris or phosphate (P greater than 0.5), and the increase in the Km produced by phosphate in ovarian tissue was not significantly different from that in the placenta (P greater than 0.5). In the placentas the Vmax in Tris was 1420 pmol/min/mg protein and this fell to 523 pmol/min/mg protein in phosphate (P less than 0.005). The Vmax was 50-fold higher in the placenta than in the ovary in either Tris or phosphate (both P less than 0.001). In the ovary, the Vmax was 27.6 pmol/min/mg protein in Tris and 11.0 pmol/min/mg protein in phosphate (P less than 0.05). The reduction of Vmax produced by phosphate in the ovary was not significantly different from that in the placenta (P greater than 0.5). The slope of the 1/v vs 1/S plot (Km/Vmax) increased 4.7-fold in the placentas and 5.8-fold in the ovaries in phosphate over that in Tris (both P less than 0.001); the increase in the placentas was not significantly different from that in the ovaries (P greater than 0.5). Phosphate ion acts as a mixed inhibitor of both placental and ovarian steroid sulfatase.  相似文献   

7.
Antibodies raised against steroid sulfatase purified from human placenta were used to follow the biosynthesis of this enzyme in human skin fibroblasts. Steroid sulfatase is synthesized as a membrane-bound Mr-63 500 polypeptide with asparagine-linked oligosaccharide chains. Within 2 days, newly synthesized steroid sulfatase is processed to a mature Mr-61 000 form. The decrease in size is due to processing of the oligosaccharide chains, which are cleavable by endoglucosaminidase H in both the early and the mature form of steroid sulfatase. The processing involves mannosidase(s) sensitive to 1-deoxy-manno-nojirimycin. The half-life of the steroid sulfatase polypeptides is 4 days. Synthesis of steroid-sulfatase-related polypeptides and steroid sulfatase activity were not detectable in fibroblasts from four patients with X-linked ichthyosis.  相似文献   

8.
The steryl-sulfatase of normal human placental microsomes was solubilized and enriched about 350-fold. Chromatography on Sepharose 6B of the purified enzyme preparation revealed a single protein peak which eluted according to an apparent molecular mass of 270 +/- 30 kDa; when electrophorized on sodium dodecyl sulfate polyacrylamide gel the sulfatase migrated according to a molecular mass of 64 +/- 4 kDa. Estrogensulfatase activity was co-purified with the steryl-sulfatase activity; obviously, both activities belong to the same enzyme species. The purified sulfatase was injected into three rabbits. Antisera produced by the rabbits yielded a single sharp immunoprecipitation line in Ouchterlony double diffusion experiments when tested with the isolated sulfatase or with a solubilized microsomal fraction of normal placentas. The activity of sulfatase preparations incubated with antiserum was precipitated by addition of polyethylene glycol followed by centrifugation; none of the antibodies reacting with the sulfatase therefore appeared to interfere with its enzymatic activity. Using these antisera, steryl-sulfatase protein could be detected by immunoblotting analysis in solubilized microsomal fractions of normal placentas but not in solubilized microsomal fractions of three steryl-sulfatase activity-deficient placentas. This finding argues in favour of human placental steryl-sulfatase deficiency being due to extremely diminished or absent enzyme protein in the placenta.  相似文献   

9.
Steroid sulfatase was purified approximately 170-fold from normal human placental microsomes and properties of the enzyme were investigated. The major steps in the purification procedure included solubilization with Triton X-100, column chromatofocusing, and hydrophobic interaction chromatography on phenylsepharose CL-4B. The purified sulfatase showed a molecular weight of 500-600 kDa on HPLC gel filtration, whereas the enzyme migrated as a molecular mass of 73 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The isoelectric point of steroid sulfatase was estimated to be 6.7 by isoelectric focusing in polyacrylamide gel in the presence of 2% Triton X-100. The addition of phosphatidylcholine did not enhance the enzyme activity in the placental microsomes obtained from two patients with placental sulfatase deficiency (PSD) after solubilization and chromatofocusing. This result indicates that PSD is the result of a defect in the enzyme rather than a defect in the membrane-enzyme structure. Amino acid analysis revealed that the purified human placental sulfatase did not contain cysteine residue. The Km and Vmax values of the steroid sulfatase for dehydroepiandrosterone sulfate (DHA-S) were 7.8 microM and 0.56 nmol/min, while those for estrone sulfate (E1-S) were 50.6 microM and 0.33 nmol/min, respectively. The results of the kinetic study suggest the substrate specificity of the purified enzyme, but further studies should be done with different substrates and inhibitors.  相似文献   

10.
The possible role of intrauterine estrogen sulfatase and steroid sulfatase around the time of parturition in the guinea pig was investigated. [3H]Estrone sulfate or [3H]pregnenolone sulfate was incubated with intrauterine tissues. Estrogen sulfatase was found in placenta, endometrium, decidua basalis, amnion and chorion. The presence of steroid sulfatase was established in endometrium and decidua basalis but not in placenta or the fetal membranes. Examination of activities in early (days 32-35), mid (days 44-46) and late (within 5 days of parturition) gestation revealed no significant change in estrogen sulfatase specific activity in decidua basalis. However, in chorion and endometrium this activity was seen to increase approx. 12-fold (P less than 0.001) and 2.8-fold (P less than 0.001), respectively, from early to late gestation. In placenta, estrogen sulfatase activity appeared to increase 2.4-fold (P less than 0.001) and in amnion it decreased 2.8-fold (P less than 0.002). Steroid sulfatase activity in decidua basalis did not change during gestation, while activity in endometrium was found to increase by a factor of 5.3 (P less than 0.001), from early to late gestation. The increases, both in estrogen sulfatase activity in chorion, endometrium and placenta and in steroid sulfatase activity in endometrium, occurred primarily within the final 3 weeks of gestation. In contrast, the decrease in estrogen sulfatase activity in amnion occurred principally between the fifth and sixth weeks of gestation. Analysis of radiolabelled metabolites indicated that estradiol and progesterone could be produced via estrogen sulfatase and steroid sulfatase activities in certain tissues. Subcellular fractionation of tissues revealed that the greatest specific activity and total activity, in all cases, was associated with the 105,000 g pellet. Significant activity was also detected in the 750 and 10,000 g pellets but not in the 105,000 g supernatant. Radioimmunoassay of endogenous estradiol-17 beta (estradiol) in chorion extracts revealed a 6.3-fold increase in the hormone from mid to late gestation. Estradiol levels in endometrium and myometrium did not appear to change during this time. It was concluded that increased estrogen sulfatase activity in guinea pig chorion in late gestation occurs along with elevated levels of the hormone estradiol which may be important for parturition in this species.  相似文献   

11.
Summary Patients with recessive X-linked ichthyosis Patients with recessive X-linked ichthyosis (RXLI), one hereditary form of scaly skin, lack activity of the enzyme steroid sulfatase in all tissues studied. To investigate the molecular defect underlying the lack of enzyme activity, we prepared antisera against normal enzyme by injecting normal placental microsomal suspensions or partially purified steroid sulfatase into rabbits. Antibody activity was assessed by immunoprecipitation of detergent solubilized steroid sulfatase. In addition, we prepared rabbit antisera against RXLI placental microsomal suspensions. To detect immunologically cross-reactive material in patients' placentas, extracts were studied by immunoblot techniques and by competition with normal enzyme for antibody binding. Patients' extracts did not contain immunoreactive material co-migrating on electrophoresis with purified enzyme nor did they inhibit immunoprecipitation of normal enzyme. Sera from rabbits immunized with RXLI placental microsomes contain no antibodies to normal steroid sulfatase, as judged by their failure to immunoprecipitate normal enzyme or to react with normal steroid sulfatase on immunoblot. Thus the mutation in RXLI appears to reduce steroid sulfatase enzyme protein as well as enzyme activity. Portions of this material have appeared in abstract form in Clinical Research 31:564A, 1983 and 32:138A, 1984  相似文献   

12.
Three cDNA clones with inserts of 1.2-1.6 kb that reacted both with antibodies and oligonucleotides specific for steroid sulfatase were isolated from a human placental library in lambda gt11. The 5'-end of one of the inserts, STS-3, was sequenced and colinearity with the amino acid sequence of 3 peptides of steroid sulfatase encompassing 64 amino acids was demonstrated. STS-3 hybridized with 2.5, 4.6 and 6.3 kb species in poly(A)+RNA and with 2.5, 4 and 9 kb fragments of EcoRI digested human DNA. The frequency of the EcoRI fragments in DNA from females was approximately twice that in DNA from males. DNA from two patients with steroid sulfatase deficiency and X-linked ichthyosis did not hybridize with STS-3. DNA from a third patient showed a normal hybridization pattern. It is concluded that steroid sulfatase deficiency is a genetically heterogenous disorder.  相似文献   

13.
Multiple sulfatase deficiency is a lysosomal storage disorder, which can be divided into group I with severe and group II with moderate deficiencies in sulfatases. Antibodies raised against steroid sulfatase purified from human placenta were used to follow the biosynthesis and stability of this enzyme in multiple sulfatase-deficiency fibroblasts. Fibroblasts from both groups synthesized steroid sulfatase of apparently normal size and stability, while the apparent rate of enzyme synthesis and catalytic properties of steroid sulfatase were affected to a variable extent. Cell lines were observed, that synthesized normal amounts of steroid-sulfatase polypeptides, which were catalytically inactive, as well as cell lines that synthesized diminished amounts of catalytically active steroid sulfatase.  相似文献   

14.
Tibolone (Org OD14) is a synthetic steroid used for post-menopausal hormone replacement therapy (HRT). Since HRT might increase breast cancer risk, it is important to determine the possible effects of tibolone on breast tissues. Tibolone and its metabolites Org 4094, Org 30126 and Org OM38 have been reported to inhibit estrone sulfatase activity in MCF-7 and T47D breast cancer cell lines, which suggest beneficial effects on hormone dependent breast cancer by reducing local production of free estrogens. Breast adipose stromal cells (ASCs) contain aromatase activity-an obligatory step in the biosynthesis of estrogens-and possibly contain sulfatase activity. We investigated the effects of tibolone, its metabolites and the pure progestin Org 2058 on PGE(2)-stimulated aromatase activity and on sulfatase activity in human ASC primary cultures and on sulfatase activity in MCF-7 and T47D cell lines. In MCF-7, tibolone and metabolites, but not Org 2058, were found to inhibit sulfatase activity. In T47D, tibolone inhibited sulfatase only at 10(-6)M, although weakly. ASC had high sulfatase activity, which was inhibited by 10(-6)M of tibolone, Org 4094 and Org 30126, but not by Org OM38 or Org 2058. Surprisingly, aromatase activity in ASC was increased by both tibolone and Org 2058 at 10(-6)M. As ligand binding assay results and immunohistochemistry indicated the absence of progesterone and estrogen receptors in ASC, these effects on aromatase and sulfatase activity in ASC likely take place by other routes. Because tibolone and its metabolites inhibit sulfatase activity, and because tibolone only increases aromatase activity at a high concentration, we conclude that effects of tibolone on the breast are probably safe.  相似文献   

15.
A new, simple, fast and highly practicable sulfatase assay and its application is described. Sterol sulfatase sulfohydrolase (EC 3.1.6.2) activity is determined by a two-phase scintillation technique separating the unreacted [4-14C]dehydroepiandrosterone sulfate from carbon-14-labeled products. The principle of the separation relies on the limited emulsifying capacity of the dioxane-based scintillation solution for water and the different partition of dehydroepiandrosterone sulfate and sulfate-free steroid products between the scintillation fluid and the aqueous phase as recently applied for determination of aromatase activity [1]. [7-3H]Dehydroepiandrosterone sulfate can also be used as a substrate for this assay. This test was applied to studies of microsomal sulfatase prepared from human term placenta and to the detection of sulfatase activity in human skin biopsies. Using placental microsomes, the Km of dehydroepiandrosterone sulfate was determined to be 5.0 X 10(7)M. Sulfatase activity in frozen scrotal skin was found to be 2-3 fold than with vaginal skin. Using an incubation time of 24h/skin sulfatase can be detected in biopsies as small as 2.5 mm2. The sulfatase assay can be applied for routine detection of human placental sulfatase deficiency and, furthermore, the application of this assay has to be demonstrated for the analysis of sulfatase activity in patients with congenital ichthyosis (X-chromosomal, recessive type).  相似文献   

16.
The activity of several enzymes of regulatory importance for the pathways of glycolysis, gluconeogenesis and lipogenesis was investigated in the placenta and liver of pregnant rats and in the liver of non-pregnant female rats. The rats received daily hormonal treatments on Days 15 to 17 of pregnancy and enzyme activities were measured on Day 18. Chorionic gonadotropin induced minor changes in enzyme activity, apart from a decrease in the activity of hepatic enzymes of lipogenesis in non-pregnant rats. Triamcinolone induced a marked increase in enzymes of gluconeogenesis and a decrease in the activity of pyruvate k kinase in the liver of pregnant and non-pregnant rats; in contrast, inverse changes in activity, these enzymes were observed in the placenta. This response in the placenta was considered to arise not from direct hormone effect, but from the accompanying hyperglycemia and hyperinsulinemia. Triamcinolone also increased the activity of hepatic acetyl-CoA carboxylase in pregnant and non-pregnant rats, whereas it reduced the activity of this enzyme in the placent. Estrogen produced changes similar to those of triamcinolone in the liver and placenta, except that it depressed the activity of acetyl-CoA carboxylase in both tissues. Progesterone had little effect on placental and hepatic enzymes. In general, the changes induced by these hormones in the placenta affected fewer enzymes than in the liver, were less extensive in magnitude and not necessarily in the same direction as in the liver. This indicates that the regulatory placental enzymes are subject to specific control mechanisms not necessarily influenced by direct hormone action.  相似文献   

17.
A family with an obstetric history consistent with placental sulfatase deficiency has X-linked ichthyosis. Steroid sulfatase deficiency was confirmed in placenta, leukocytes, and cultured skin fibroblasts of affected males; arylsulfatase A diminution was also observed in these tissues of both affected males and 2 generations of related females. No symptoms of metachromatic leukodystrophy are present in any family members. In this family, placental sulfatase deficiency, and arylsulfatase A pseudodeficiency are nonallelic.  相似文献   

18.
To study the effects of dehydroepiandrosterone sulfate (DHA-S) on placental steroid metabolism and maternal steroidal profiles at term, the following in vivo and in vitro experiments were performed. Two hundred mg of DHA-S was given to five pregnant women 30 minutes prior to delivery. After delivery, the placenta was collected and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) and sulfatase activity was determined by measuring the rate of conversion of pregnenolone to progesterone and DHA-S to DHA. The amount of C21-delta 4-steroid in the placental tissue was measured by gas chromatography mass spectrometry (GC-MS) and compared with the control groups. The maternal serum concentration of several steroids was also measured by GC-MS before and after the administration of DHA-S. 3 beta-HSD activity in the placentae from the mothers who received DHA-S before delivery was significantly lower than in the controls. On the other hand, no significant change was observed in the activity of sulfatase. The serum concentration of progesterone (P) and 20 alpha-dihydro-P (20-P) before DHA-S loading decreased following the administration whereas estradiol (E), DHA, and androstenedione (A) levels increased. To study the direct effect of DHA-S and its related steroids on placental 3 beta-HSD activity, placental tissue samples were incubated with pregnenolone in vitro. Several other steroids were added simultaneously into the medium. It was observed that placental 3 beta-HSD activity was directly inhibited by DHA-S. These results indicate that DHA-S inhibits 3 beta-HSD activity in the placenta and subsequently causes a reduction in P and 20-P.  相似文献   

19.
Human placental steroid sulfatase: purification and properties   总被引:2,自引:0,他引:2  
Steroid sulfatase is recovered quantitatively from the 105,000 g h supernatant of human placental microsomes extracted with Triton X-100. The solubilized enzyme has been purified using conventional techniques. Throughout the purification procedure, steroid sulfatase appears to be heterogeneous as evidenced by certain, but not all, criteria. Following polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the final preparation exhibits a major component and varying amounts of two minor ones. Antibodies raised in rabbits with the heterogeneous immunogen give rise to a single precipitation line when the native enzyme is analyzed by double immunodiffusion or by immunoelectrophoresis. In addition, using aged preparations of microsomes and immunoaffinity techniques, steroid sulfatase activity was found to be associated with the fastest migrating minor component. This finding would suggest that the apparent heterogeneity of purified steroid sulfatase is linked to degradation processes occurring within the microsomal preparations. Steroid sulfatase has a Stokes radius of 56 A, a sedimentation coefficient of 4.85 +/- 0.15S (in Triton-containing buffers) and binds 1.3 g of Triton X-100-per g of protein. The molecular weight of the Triton-protein complex was calculated to be 166,000 in which the glycoprotein portion contribution is about 43% (72,000). In contrast, the apparent molecular weight of the major polypeptide determined on calibrated SDS-gels is 62,000. The purified enzyme exhibits two pH optima with cholesterol sulfate as substrate, an acidic one at pH 5.0 and a second one at pH 7.5. The Km values for cholesterol sulfate, dehydroandrosterone sulfate and p-nitrophenylsulfate were 5.26, 14 and 1,320 microM, respectively.  相似文献   

20.
Localization and expression of steroid sulfatase in human fallopian tubes   总被引:2,自引:0,他引:2  
Localization of steroid sulfatase, a membrane-bound microsomal enzyme, in human fallopian tubes was immunohistochemically investigated, and expression of RNA was confirmed by competitive RT-PCR. Human fallopian tubes were obtained from 10 patients in follicular and early luteal phases during gynecological laparotomy. An anti-human rabbit polyclonal antibody was prepared against sulfatase protein purified from human placenta. Total RNA was isolated from epithelium of fallopian tubes. A heterologous RNA competitor was designed, and competitive RT-PCR was carried out. Steroid sulfatase was localized to the cytoplasm of epithelial cells. With respect to the positive staining of cells, the number of positive secretory cells was higher than that of ciliated cells. A significantly higher number of positive cells was found in tissue obtained from the early luteal phase than that found in tissue from the follicular phase. An abundant expression of sulfatase mRNA in early luteal phase was also observed. This study demonstrates, for the first time, that steroid sulfatase is localized to human epithelial cells and that steroid sulfatase staining and mRNA expression changes with the menstrual cycle. These results suggest that sulfatase in the fallopian tube may be involved in controlling the local steroid environment, which appears to regulate aspects of the physiological reproductive function of the fallopian tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号