首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The relationship between choline availability and the synthesis of acetylcholine in discrete brain regions was studied in animals treated with the organophosphorus cholinesterase inhibitor paraoxon. Administration of paraoxon (0.23 mg/kg) inhibited acetylcholinesterase activity by approx 90% in the striatum, hippocampus and cerebral cortex and increased acetylcholine levels to 149%, 124% and 152% of control values, respectively. Free choline levels were unaltered by paraoxon in the hippocampus and cerebral cortex, but were significantly decreased in the striatum to 74% of control. When animals were injected with choline chloride (60 mg/kg), 60 min prior to the administration of paraoxon, the paraoxon-induced choline depletion in the striatum was prevented and the paraoxon-induced acetylcholine increase was potentiated from 149% to 177% of control values. Choline pretreatment had no significant effect in either the hippocampus or cerebral cortex, brain regions that did not exhibit a decrease in free choline levels after paraoxon administration. Results indicate that choline administration, which had no significant effect on acetylcholine levels by itself, increased acetylcholine synthesis in the striatum in the presence of acetylcholinesterase inhibition. However, this effect was not apparent in either the hippocampus or the cerebral cortex at similar levels of enzyme inhibition. It appears that choline generated from the hydrolysis of acetylcholine may play a significant role in the regulation of neurotransmitter synthesis in the striatum, but not in the other brain areas studied. The evidence supports the concept that the regulatory mechanisms controlling the synthesis of acetylcholine in striatal interneurons may differ from those in other brain regions.  相似文献   

2.
High affinity transport of choline into synaptosomes of rat brain   总被引:33,自引:13,他引:20  
—The accumulation of [3H]choline into synaptosome-enriched homogenates of rat corpus striatum, cerebral cortex and cerebellum was studied at [3H]choline concentrations varying from 0.5 to 100 μm . The accumulation of [3H]choline in these brain regions was saturable. Kinetic analysis of the accumulation of the radiolabel was performed by double-reciprocal plots and by least squares iterative fitting of a substrate-velocity curve to the data. With both of these techniques, the data were best satisfied by two transport components, a high affinity uptake system with Km. values of 1.4 μM (corpus striatum), and 3.1 μM (ceμ(cerebral cortex) and a low affinity uptake system with respective Km. values of 93 and 33 μM for these two brain regions. In the cerebellum choline was accumulated only by the low affinity system. When striatal homogenates were fractionated further into synaptosomes and mitochondria and incubated with varying concentrations of [3H]choline, the high affinity component of choline uptake was localized to the synaptosomal fraction. The high affinity uptake system required sodium, was sensitive to various metabolic inhibitors and was associated with considerable formation of [3H]acetylcholine. The low affinity uptake system was much less dependent on sodium, and was not associated with a marked degree of [3H]acetylcholine formation. Hemicholinium-3 and acetylcholine were potent inhibitors of the high affinity uptake system. A variety of evidence suggests that the high affinity transport represents a selective accumulation of choline by cholinergic neurons, while the low affinity uptake system has some less specific function.  相似文献   

3.
During insulin stupor in mice, acetylcholine levels in cerebral cortex, cerebellum. brainstem, striatum, and hippocampus were unchanged from control values despite brain glucose concentrations 3-10% of normal, whereas choline levels rose 2.4-3.6-fold in all five CNS regions. Brain acetylcholine and choline levels did not change during recovery following glucose injection. The data suggest that. in hypoglycemic stupor, (1) overall rates of acetylcholine synthesis and degradation remain balanced within each of the CNS regions studied: (2) the biochemical mechanism that elevates brain choline levels is unlikely to be related only to cholinergic synaptic processes: and (3) brain choline levels need not rise for stupor to occur.  相似文献   

4.
The kinetic parameters of choline accumulation by synaptosomes prepared from different regions of guinea-pig brain (cortex, brainstem, and cerebellum) were determined. Choline was accumulated by a high affinity transport process for all regions tested and the apparent Michaelis constants were similar. However, the apparent maximal velocities of choline accumulation for the brain regions differed; the differences were related to the amount of acetylcholine formed by the respective regions. The results suggested that the maximal velocity of the high affinity transport process may reflect the density of cholinergic nerve endings within brain regions.  相似文献   

5.
Piribedil, (1–2″-pyrimidyl)-4-piperonyl piperazine), an agent proposed for the treatment of Parkinson's disease, was found to increase acetylcholine levels in the rat striatum and diencephalon but not in the mesencephalon, cerebellum or hemispheres. The effect was most marked in the striatum (greater than 100%) and long-lasting (at least 8 hours after a single administration of 60 mg/kg i.p.). Striatal choline levels were also increased by piribedil but did not parallel at all times and doses the effect on acetylcholine. Furthermore, choline levels were increased in all brain regions except the hemispheres. Striatal choline acetyltransferase and acetylcholinesterase were not affected by in vitro or in vivo treatment with even high doses of piribedil. α-Methyl-p-tyrosine was ineffective in blocking piribedil while pimozide, a blocker of dopamine receptors, completely antagonized the action of piribedil on striatal acetylcholine. It is concluded that piribedil produced the increase in striatal acetylcholine by directly stimulating dopamine receptors.  相似文献   

6.
Abstract— The effects of LiCl on cholinergic function in rat brain in vitro and in vivo have been investigated. The high affinity transport of choline and the synthesis of acetylcholine in synaptosomes were reduced when part (25-75%) of the NaCl in the buffer was replaced with LiCl or sucrose. This appeared to be due to lack of Na+ rather than to Li+, as addition of LiCl to normal buffer had little effect. Following an injection of LiCl (10mmol/kg, i.p.) into rats the concentration of a pulsed dose of [2H4]choline (20 μmol/kg, i.v., 1 min) and its conversion to [2H4]acetylcholine, and the concentrations of [2H2]acetylcholine and [2H0]choline were measured in the striatum, cortex, hippocampus and cerebellum. The [2H4]choline and [2H4]acetylcholine were initially (15 min after LiCl) reduced (to ?30% in the cortex) and later (24 h after LiCl) increased (to + 50% in the striatum). There was a corresponding initial increase (to +50% in the cerebellum) and later decrease (to ?30% in the hippocampus) of the endogenous acetylcholine and choline. These results indicate an initial decrease and later increase in the utilization of acetylcholine after acute treatment with LiCl. Following 10 days of treatment with LiCl there was an increased rate of synthesis of [2H4]acetylcholine from pulsed [2H4]choline in the striatum, hippocampus and cortex (P < 0.05). The high affinity transport of [2H4]choline and its conversion to [2H4]acetylcholine was activated (131% of control; P < 0.01) in synaptosomes isolated from brains of 10-day treated rats. Investigation of synaptosomes isolated from striatum, hippocampus and cortex revealed that only striatal [2H4]acetylcholine synthesis was significantly stimulated. Kinetic analysis demonstrated that the apparent KT for choline was decreased by 30% in striatal synaptosomes isolated from rats treated for 10 days with LiCl. Striatal synaptosomes from 10-day treated rats compared to striatal synaptosomes from untreated rats also released acetylcholine at a stimulated rate in a medium containing 35 mM-KCl. These results indicate that LiCl treatment stimulates cholinergic activity in certain brain regions and this may play a significant role in the therapeutic effect of LiCl in neuropsychiatric disorders.  相似文献   

7.
Regional Distribution of Kininase in Rat Brain   总被引:1,自引:1,他引:0  
Kininase activity, which inactivates kinins, was measured in seven regions of the rat brain (i.e., the cerebral cortex, cerebellum, striatum, midbrain, hippocampus, hypothalamus, medulla oblongata), and in the spinal cord with a bioassay method using bradykinin as the substrate. Specific kininase activities in the cerebellum and striatum were higher than those in the other five regions or the spinal cord. Angiotensin-converting enzyme activity, which was measured fluorometrically using Hip-His-Leu as substrate, showed high activity in the striatum and cerebellum. These findings suggest that the presence of high concentrations of peptidases plays a role in the degradation of kinins and/or other peptides in these areas.  相似文献   

8.
—Glutamic acid decarboxylase was determined in seven brain regions: hypo-thalamus; midbrain; thalamus; corpus striatum; cerebral cortex-hippocampus; medulla-pons; and cerebellum, of suckling rats subjected to Vitamin B6 deficiency for 2 weeks from birth; of adult rats subjected to the deficiency for 5 weeks and of their respective controls. Large regional variations in the enzyme activity were found in brains of both adult and suckling control rats. The activity of the enzyme (assayed without pyridoxal phosphate) and its saturation with endogenous cofactor were markedly reduced in all brain regions of both suckling and adult pyridoxine-deficient rats. The apoenzyme (activity assayed with pyridoxal phosphate), in adult rat brain, showed no change with the deficiency in all regions except in the cerebellum where it increased slightly. In pyridoxine-deficient suckling rat brain, the apoenzyme increased substantially in all regions suggesting a process of enzyme induction. The increase in apoenzyme varied from region to region.  相似文献   

9.
Abstract— The concentrations of the polyamines and putrescine were measured in the brains of human infants during fetal and early postnatal development. The concentrations of the amines were also measured in the brains of children who were malnourished during the first 2 years of life. In the brains of the adequately-nourished infants there were differences in the developmental profiles of the amines between different regions of the brain, and the changes in polyamine concentrations paralleled changes in nucleic acid accumulation. The concentration of putrescine was much higher than that of the polyamines in all regions of the brain, and in the brain stem there were marked increases in putrescine concentration at the time of most rapid rate of myelination. Putrescine also increased markedly in the forebrain at the time of neuroblast multiplication in the fetus. In children malnourished during the first year of life there were reductions in the concentrations of spermidine and putrescine in the forebrain and brainstem, but spermine was unaffected. Malnutrition had no effect on the concentration of any of the amines in the cerebellum.  相似文献   

10.
The posttranslational incorporation of arginine into proteins catalyzed by arginyl-tRNA protein transferase was determined in vitro in different rat brain regions. The incorporation was found in all the regions studied, although with different specific activities (pmol [14C]arginine incorporated/mg protein). Of the regions studied, hippocampus had the highest specific activity followed by striatum, medulla oblongata, cerebellum, and cerebral cortex. Electrophoretic analysis of the [14C]arginyl proteins from the different regions followed by autoradiography and scanner densitometry showed at least 13 polypeptide bands that were labeled with [14C]arginine. The radioactive bands were qualitatively coincident with protein bands revealed by Coomassie Blue. There were peaks that showed different proportions of labeling in comparison with peaks of similar molecular mass from total brain. Most notable because of their high proportions were those of molecular mass 125 kDa in hippocampus, striatum, and cerebral cortex; 112 and 98 kDa in striatum and cerebellum; and 33 kDa in hippocampus and striatum. In lower proportions than in total brain were the peaks of 33 kDa in medulla oblongata and cerebral cortex and of 125 kDa in medulla oblongata.  相似文献   

11.
Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches.  相似文献   

12.
衰老大鼠的某些脑区组织中游离氨基酸水平的改变   总被引:2,自引:1,他引:1  
使用D 半乳糖建立衰老大鼠模型组与同龄、同饲的正常对照组大鼠的某些脑区游离氨基酸 (FAA)水平的比较发现 :( 1 )衰老模型组的海马、纹状体以及皮层等脑区中谷氨酸 (Glu)、天门冬氨酸 (Asp)水平明显降低 ;( 2 )γ 氨基丁酸 (GABA)水平在衰老模型组大鼠的海马 ,纹状体以及小脑等脑区中明显升高 ;( 3)衰老模型组的皮层、小脑、海马、纹状体等脑区的牛磺酸 (Tau)水平明显下降。以此探讨动物衰老与脑区游离氨基酸水平的关系  相似文献   

13.
The levels of the S-100 and 14-3-2 proteins were determined in a number of regions of mouse brain at intervals from 1 day to 30 months of age. Both S-100 and 14-3-2 were found in measurable amounts as early as the first day of postnatal age but did not begin to accumulate rapidly in the forebrain, brain stem and cerebellum of the mouse brain until some time between the 7th and 14th days. From days 14 to 28 the levels of S-100 and 14-3-2 in each region continued to increase rapidly with the exception of the forebrain where the rate of accumulation of S-100 appeared to lag considerably behind that in the other regions. The proteins continued to accumulate at a rapid rate until approximately 6 months of age. From 6 to 30 months of age, the levels of 14-3-2 remained relatively stable in cerebellum, hippocampus and hypothalamus and appeared to decrease slightly in striatum and cerebral cortex. In the case of S-100, the level of the protein increased in all regions of brain from 6 to 30 months but the increase was most pronounced in the hippocampus, hypothalamus and striatum. The principal conclusion derived from this study is that the biochemical development and aging of the central nervous system are regionally selective processes.  相似文献   

14.
衰老对大鼠脑区氨基酸水平的影响   总被引:4,自引:1,他引:3  
本文测定了正常青龄组(3月龄)和老龄组(20月龄)大鼠不同脑区(皮层、小脑海马、纹状体和下丘脑)谷氨酸、天门冬氨酸、甘氨酸、r-氨基丁酸和牛磺酸的含量。结果表明:在衰老过程中大鼠某些脑区谷氨酸、天门冬氨酸、甘氨酸和牛磺酸水平显著降低;而纹状体γ-氨基丁酸含量则显著升高。  相似文献   

15.
The effects of metabotropic glutamate receptor (mGluR) agonists on inositol phosphates (IP) accumulation were investigated in slices of the cerebral cortex, hippocampus, striatum and cerebellum of adult Sprague-Dawley rats. EC50 values for 1S, 3R-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) did not differ significantly between various brain areas (range 10−5 M), quisqualate was the most potent in all the brain areas (range 10−7−10−6 M), except the cerebellum (10−5 M), ibotenate was the most potent in the striatum (range 10−6 M) and the least potent in the cerebral cortex and hippocampus (range 10−4 M). The efficacy in the four brain areas showed the following trend of ranking order for ACPD and quisqualate: hippocampus > striatum > cerebral cortex > cerebellum, and for ibotenate: hippocampus > cerebral cortex > striatum > cerebellum, although the observed differences reached the level of statistical significance only in the case of ACPD (hippocampus and striatum vs cerebellum) and ibotenate (hippocampus vs cerebellum). Co-incubation of the agonists at maximally effective concentrations in any pairwise combination resulted in no substantial additivity of IP accumulation. D,L-1-amino-3-phosphonopropionic acid (AP3) and D,L-2-amino-4-phosphonobutyric acid (AP4) at 0.5 mM concentration antagonized ACPD-induced IP accumulation by about 70 and 45%, respectively, without differences between brain areas. On the other hand, the antagonistic effects ofl-serine-o-phosphate (SOP) at 1 mM concentration were the highest in the hippocampus (75%) and the lowest in the cerebellum (25%). The comparative data indicate considerable regional receptor heterogeneity, in terms of different ratios of response to the agonists (but not antagonists, except SOP). There is a robust responsiveness of mGluRs not only in the hippocampus and cerebral cortex, but also in the striatum which exhibits the highest affinity to both quisqualate and ibotenate.  相似文献   

16.
We have previously shown that short-lasting reduction of cerebral blood flow by bilateral clamping of carotid arteries (BCCA) results in long-lasting increase in regional GABA concentration and decrease in seizure susceptibility in rats. In the present experiments, the effect of BCCA on GABA turnover and the enzymes involved in GABA synthesis and degradation were studied in rats. Regional GABA turnover was measured by means of GABA accumulation induced by the GABA-transaminase (GABA-T) inhibitor aminooxyacetic acid (AOAA). Fourteen days after BCCA, GABA turnover was significantly increased in hippocampus, substantia nigra and cortex, but not different from sham-operated controls in several other brain regions, including striatum, hypothalamus and cerebellum. The activity of glutamate decarboxylase (GAD) measured ex vivo did not show any changes in investigated structures, while the activity of GABA-T was slightly increased in hippocampus. The increased GABA turnover in some brain regions may explain our previous findings of increased GABA content in these brain regions and decreased sensitivity of BCCA treated animals to the GABAA-receptor antagonist bicuculline.  相似文献   

17.
The muscarinic receptors in membranes prepared from guinea pig brain were studied using a radiolabeled antagonist, [3H]quinuclidinyl benzilate (QNB). The apparent dissociation constant of the QNB-receptor complex (K d ) was similar in all regions, but the concentration of receptors was highest in the striatum, cerebral cortex, and hippocampus and lowest in the cerebellum. Similar distributions have been reported for other species, although the concentration of receptors in guinea pig brain is higher than in other species. Acetylcholine inhibited QNB binding with a Hill coefficient of 0.4–0.6. The concentration of acetylcholine required to inhibit binding by 50% (I50) was lowest in the brain stem and more than 10 times higher in the hippocampus. Similar results have been reported for mouse brain. The activity of acetylcholinesterase was highest in the striatum, where the concentration of muscarinic receptors is highest, but did not vary greatly in other brain regions.RMD was seconded to the University of Melbourne to undertake this study.  相似文献   

18.
The effects of status epilepticus on the concentration, synthesis, release, and subcellular localization of acetylcholine, the concentration of choline, and the activity of acetylcholinesterase in rat brain regions were studied. Generalized convulsive status epilepticus was induced by the administration of pilocarpine to lithium-treated rats. The concentration of acetylcholine in the cortex, hippocampus, and striatum decreased prior to the onset of spike activity or status epilepticus. Once status epilepticus began, the concentration of acetylcholine increased over time in the cortex and hippocampus, reaching peak levels that were 461% and 304% of control levels, respectively, after 2 h of seizures. Such high in vivo levels of acetylcholine had not been reported previously following any treatment. During status epilepticus, the concentration of acetylcholine in the striatum returned to control levels after the initial depression, but did not accumulate to high levels as it did in the other two regions. The in vivo cortical efflux of acetylcholine was also increased during the seizures. Choline levels were increased by status epilepticus in all three brain regions. Inhibition of seizures by pretreatment with atropine blocked the increases of acetylcholine and choline. Synaptosomes prepared from the cortex and from the hippocampus of rats with status epilepticus had elevated concentrations of acetylcholine: in the hippocampus the acetylcholine was principally in the cytoplasmic fraction, whereas in the cortex the acetylcholine was elevated in both the cytoplasmic and the vesicular fractions. The extra acetylcholine was in a releasable compartment, since increased K+ in the media or ouabain increased the release of acetylcholine from cortical slices to a greater extent in tissue from seized rats than from controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Depleted uranium (DU) is used to reinforce armor shielding and increase penetrability of military munitions. Although the data are conflicting, DU has been invoked as a potential etiological factor in Gulf War syndrome. We examined regional brain DU accumulation following surgical implantation of metal pellets in male Sprague-Dawley rats for 3 or 6 mo. Prior to surgery, rats were randomly divided into five groups: Nonsurgical control (NS Control); 0 DU pellets/20 tantalum (Ta) pellets (Sham); 4 DU pellets/16 Ta pellets (Low); 10 DU pellets/10 Ta pellets (Medium); 20 DU pellets/0 Ta pellets (High). Rats were weighed weekly as a measure of general health, with no statistically significant differences observed among groups in either cohort. At the conclusion of the respective studies, animals were perfused with phosphate-buffered saline, pH 7.4, to prevent contamination of brain tissue with DU from blood. Brains were removed and dissected into six regions: cerebellum, brainstem (pons and medulla), midbrain, hippocampus, striatum, and cortex. The uranium content was measured in digested samples as its 238U isotope by high-resolution inductively coupled plasma-mass spectrometry. After 3 mo postimplantation, DU significantly accumulated in all brain regions except the hippocampus in animals receiving the highest dose of DU (p<0.05). By 6 mo, however, significant accumulation was measured only in the cortex, midbrain, and cerebellum (p<0.01). Our data suggest that DU implanted in peripheral tissues can preferentially accumulate in specific brain regions.  相似文献   

20.
The mechanism by which cannabinoid compounds produce their effects in the rat brain was evaluated in this investigation. Cannabinoid receptors, quantitated by [3H]CP-55,940 binding, were found in greatest abundance in the rat cortex, cerebellum, hippocampus, and striatum, with smaller but significant binding also found in the hypothalamus, brainstem, and spinal cord. Using rat brain slice preparations, we evaluated the effect of desacetyllevonantradol on basal and forskolin-stimulated cyclic AMP accumulation in the regions exhibiting the greatest cannabinoid receptor density. Desacetyllevonantradol (10 microM) reduced cyclic AMP levels in the hippocampus, frontal cortex, and striatum. In the cerebellum, however, the response to desacetyllevonantradol was biphasic with cyclic AMP accumulation being decreased at lower and increased at higher concentrations. Desacetyllevonantradol reduced cyclic AMP accumulation in isoproterenol-stimulated slices in the cortex and cerebellum, but not in the hippocampus. Cells that responded to vasoactive intestinal peptide with an increase in cyclic AMP accumulation in the hippocampus and cortex also responded to desacetyllevonantradol. The modulation of cyclic AMP accumulation by desacetyllevonantradol could be attenuated following stereotaxic implantation of pertussis toxin, supporting the involvement of a G protein in the cannabinoid response in the brain. However, other actions of cannabinoid compounds may also affect the cyclic AMP levels in brain slice preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号