首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt-dependent oligomerization of nucleosomal arrays is related to fiber-fiber interactions and global chromosome structure. Previous studies have shown that the H2A/H2B and H3/H4 N-terminal domain (NTD) pairs are able to mediate array oligomerization. However, because of technical barriers, the function(s) of the individual core histone NTDs have not been investigated. To address this question, all possible combinations of "tailless" nucleosomal arrays were assembled from native and NTD-deleted recombinant Xenopus core histones and tandemly repeated 5 S rDNA. The recombinant arrays were characterized by differential centrifugation over the range of 0-50 mm MgCl2 to determine how each NTD affects salt-dependent oligomerization. Results indicate that all core histone NTDs participate in the oligomerization process and that the NTDs function additively and independently. These observations provide direct biochemical evidence linking all four core histone NTDs to the assembly and maintenance of global chromatin structures.  相似文献   

2.

Background  

The phenotype of an organism is an outcome of both its genotype, encoding the primary sequence of proteins, and the developmental orchestration of gene expression. The substrate of gene expression in eukaryotes is the chromatin, whose fundamental units are nucleosomes composed of DNA wrapped around each two of the core histone types H2A, H2B, H3 and H4. Key regulatory steps involved in the determination of chromatin conformations are posttranslational modifications (PTM) at histone tails as well as the assembly of histone variants into nucleosomal arrays. Although the mechanistic background is fragmentary understood, it appears that the chromatin signature of metazoan cell types is inheritable over generations. Even less understood is the conservation of epigenetic mechanisms among eukaryotes and their origins.  相似文献   

3.
The relationships between the core histone N termini and linker histones during chromatin assembly and salt-dependent chromatin condensation were investigated using defined chromatin model systems reconstituted from tandemly repeated 5 S rDNA, histone H5, and either native "intact" core histone octamers or "tailless" histone octamers lacking their N-terminal domains. Nuclease digestion and sedimentation studies indicate that H5 binding and the resulting constraint of entering and exiting nucleosomal DNA occur to the same extent in both tailless and intact chromatin arrays. However, despite possessing a normal chromatosomal structure, tailless chromatin arrays can neither condense into extensively folded structures nor cooperatively oligomerize in MgCl(2). Tailless nucleosomal arrays lacking linker histones also are unable to either fold extensively or oligomerize, demonstrating that the core histone N termini perform the same functions during salt-dependent condensation regardless of whether linker histones are components of the array. Our results further indicate that disruption of core histone N termini function in vitro allows a linker histone-containing chromatin fiber to exist in a decondensed state under conditions that normally would promote extensive fiber condensation. These findings have key implications for both the mechanism of chromatin condensation, and the regulation of genomic function by chromatin.  相似文献   

4.
We describe the cloning and analysis of Drosophila nucleosome assembly protein 1 (dNAP-1), a core histone-binding protein that functions with other chromatin assembly activities in a Drosophila chromatin assembly factor 1-containing fraction (dCAF-1 fraction) in the ATP-facilitated assembly of regularly spaced nucleosomal arrays from purified core histones and DNA. Purified, recombinant dNAP-1 acts cooperatively with a factor(s) in the dCAF-1 fraction in the efficient and DNA replication-independent assembly of chromatin. In the presence of histone H1, the repeat length of the chromatin is similar to that of native chromatin from Drosophila embryos. By coimmunoprecipitation analysis, dNAP-1 was found to be associated with histones H2A and H2B in a crude whole-embryo extract, which suggests that dNAP-1 is bound to the histones in vivo. Studies of the localization of dNAP-1 in the Drosophila embryo revealed that the factor is present in the nucleus during S phase and is predominantly cytoplasmic during G2 phase. These data suggest that NAP-1 acts as a core histone shuttle which delivers the histones from the cytoplasm to the chromatin assembly machinery in the nucleus. Thus, NAP-1 appears to be one component of a multifactor chromatin assembly machinery that mediates the ATP-facilitated assembly of regularly spaced nucleosomal arrays.  相似文献   

5.
6.
SWI-SNF is an ATP-dependent chromatin remodeling complex required for expression of a number of yeast genes. Previous studies have suggested that SWI-SNF action may remove or rearrange the histone H2A-H2B dimers or induce a novel alteration in the histone octamer. Here, we have directly tested these and other models by quantifying the remodeling activity of SWI-SNF on arrays of (H3-H4)(2) tetramers, on nucleosomal arrays reconstituted with disulfide-linked histone H3, and on arrays reconstituted with histone H3 derivatives site-specifically modified at residue 110 with the fluorescent probe acetylethylenediamine-(1,5)-naphthol sulfonate. We find that SWI-SNF can remodel (H3-H4)(2) tetramers, although tetramers are poor substrates for SWI-SNF remodeling compared with nucleosomal arrays. SWI-SNF can also remodel nucleosomal arrays that harbor disulfide-linked (H3-H4)(2) tetramers, indicating that SWI-SNF action does not involve an obligatory disruption of the tetramer. Finally, we find that although the fluorescence emission intensity of acetylethylenediamine-(1,5)-naphthol sulfonate-modified histone H3 is sensitive to octamer structure, SWI-SNF action does not alter fluorescence emission intensity. These data suggest that perturbation of the histone octamer is not a requirement or a consequence of ATP-dependent nucleosome remodeling by SWI-SNF.  相似文献   

7.
Post-translational modifications of histones influence both chromatin structure and the binding and function of chromatin-associated proteins. A major limitation to understanding these effects has been the inability to construct nucleosomes in vitro that harbor homogeneous and site-specific histone modifications. Here, we describe a native peptide ligation strategy for generating nucleosomal arrays that can harbor a wide range of desired histone modifications. As a first test of this method, we engineered model nucleosomal arrays in which each histone H3 contains a phosphorylated serine at position 10 and performed kinetic analyses of Gcn5-dependent histone acetyltransferase activities. Recombinant Gcn5 shows increased histone acetyltransferase activity on nucleosomal arrays harboring phosphorylated H3 serine 10 and is consistent with peptide studies. However, in contrast to analyses using peptide substrates, we find that the histone acetyltransferase activity of the Gcn5-containing SAGA complex is not stimulated by H3 phosphorylation in the context of nucleosomal arrays. This difference between peptide and array substrates suggests that the ability to generate specifically modified nucleosomal arrays should provide a powerful tool for understanding the effects of post-translational histone modifications.  相似文献   

8.
High speed supernatants of Xenopus laevis oocyte nuclei efficiently assemble DNA into nucleosomes in vitro under physiological salt conditions. The assembly activity cofractionates with two histone complexes composed of the acidic protein N1/N2 in complex with histones H3 and H4, and nucleoplasmin in complex with histones H2B and H2A. Both histone complexes have been purified and their nucleosome assembly activities have been analysed separately and in combination. While the histones from the N1/N2 complexes are efficiently transferred to DNA and induce supercoils into relaxed circular plasmid DNA, the nucleoplasmin complexes show no supercoil induction, but can also transfer their histones to DNA. In combination, the complexes act synergistically in supercoil induction thereby increasing the velocity and the number of supercoils induced. Electron microscopic analysis of the reaction products shows fully packaged nucleoprotein structures with the typical nucleosomal appearance resulting in a compaction ratio of 2.8 under low ionic strength conditions. The high mobility group protein HMG-1, which is also present in the soluble nuclear homogenate from X. laevis oocytes, is not required for nucleosome core assembly. Fractionation experiments show that the synergistic effect in the supercoiling reaction can be exerted by histones H3 and H4 bound to DNA and the nucleoplasmin complexes alone. This indicates that it is not the synchronous action of both complexes which is required for nucleosome assembly, but that their cooperative action can be resolved into two steps: deposition of H3 and H4 from the N1/N2 complexes onto the DNA and completion of nucleosome core formation by addition of H2B and H2A from the nucleoplasmin complexes.  相似文献   

9.
The ATPase ISWI can be considered the catalytic core of several multiprotein nucleosome remodeling machines. Alone or in the context of nucleosome remodeling factor, the chromatin accessibility complex (CHRAC), or ACF, ISWI catalyzes a number of ATP-dependent transitions of chromatin structure that are currently best explained by its ability to induce nucleosome sliding. In addition, ISWI can function as a nucleosome spacing factor during chromatin assembly, where it will trigger the ordering of newly assembled nucleosomes into regular arrays. Both nucleosome remodeling and nucleosome spacing reactions are mechanistically unexplained. As a step toward defining the interaction of ISWI with its substrate during nucleosome remodeling and chromatin assembly we generated a set of nucleosomes lacking individual histone N termini from recombinant histones. We found the conserved N termini (the N-terminal tails) of histone H4 essential to stimulate ISWI ATPase activity, in contrast to other histone tails. Remarkably, the H4 N terminus, but none of the other tails, was critical for CHRAC-induced nucleosome sliding and for the generation of regularity in nucleosomal arrays by ISWI. Direct nucleosome binding studies did not reflect a dependence on the H4 tail for ISWI-nucleosome interactions. We conclude that the H4 tail is critically required for nucleosome remodeling and spacing at a step subsequent to interaction with the substrate.  相似文献   

10.
Within the first cell cycle following fertilization the average nucleosomal repeat length of sea urchin male pronuclear chromatin declines by 30-40 base pairs to a value typical of that found in the embryo. This decline occurs after a lag of about 30 min postfertilization, and is accompanied by replication of the male chromatin and accumulation of cleavage-stage (CS) core histone variants. When replication is inhibited by greater than 95% with aphidicolin, the decline in repeat length still occurs, although it is slightly retarded. The decline in repeat length also occurs when protein synthesis is blocked by greater than 98% and DNA synthesis by 60-70% with emetine. The adjustment of nucleosome repeat length therefore can occur in vivo without extensive movement of replication forks across the length of the chromatin, or normal progression of the cell cycle, and appears to require no proteins synthesized postfertilization. Blocking of DNA synthesis or protein synthesis also does not prevent the normal histone variant transitions involved in male pronuclear chromatin remodeling. Although their accumulation is slowed, CS core variants eventually become the predominant male pronuclear histones in their classes when replication is inhibited. Since a shortening of the average nucleosomal repeat length of approximately 10-20% is not sufficient to account for this large acquisition of CS variants, some of the sperm (Sp) core histones are probably displaced from the replication-blocked pronucleus. Therefore, accumulation of CS H2A and CS H2B are temporally correlated with the repeat length transition, whereas replication, normal progression of the cell cycle, and the early histone transitions involving SpH1 and SpH2B are not.  相似文献   

11.
12.
The malarial parasite Plasmodium falciparum has two nucleosome assembly proteins, PfNapS and PfNapL (Chandra, B. R., Olivieri, A., Silvestrini, F., Alano, P., and Sharma, A. (2005) Mol. Biochem. Parasitol. 142, 237-247). We show that both PfNapS and PfNapL interact with histone oligomers but only PfNapS is able to deposit histones onto DNA. This property of PfNapS is divalent cation-dependent and ATP-independent. Deletion of the terminal subdomains of PfNapS abolishes its nucleosome assembly capabilities, but the truncated protein retains its ability to bind histones. Both PfNapS and PfNapL show binding to the linker histone H1 suggesting their probable role in extraction of H1 from chromatin fibers. Our data suggests distinct sites of interaction for H1 versus H3/H4 on PfNapS. We show that PfNapS and PfNapL are phosphorylated both in vivo and in vitro by casein kinase-II, and this modification is specifically inhibited by heparin. Circular dichroism, fluorescence spectroscopy, and chymotrypsin fingerprinting data together suggest that PfNapL may undergo very small and subtle structural changes upon phosphorylation. Specifically, phosphorylation of PfNapL increases its affinity 3-fold for core histones H3, H4, and for the linker histone H1. Finally, we demonstrate that PfNapS is able to extract histones from both phosphorylated and unphosphorylated PfNapL, potentially for histone deposition onto DNA. Based on these results, we suggest that the P. falciparum NapL is involved in the nucleocytoplasmic relay of histones, whereas PfNapS is likely to be an integral part of the chromatin assembly motors in the parasite nucleus.  相似文献   

13.
We examine in vitro nucleosome assembly by nucleosome assembly protein-1 (NAP-1) and ATP-utilizing chromatin assembly and remodeling factor (ACF). In contrast to previous studies that used relaxed, circular plasmids as templates, we have found that negatively supercoiled templates reveal the distinct roles of NAP-1 and ACF in histone deposition and the formation of an ordered nucleosomal array. NAP-1 can efficiently deposit histones onto supercoiled plasmids. Furthermore, NAP-1 exhibits a greater affinity for histones H2A-H2B than does naked DNA, but in the presence of H3-H4, H2A-H2B are transferred from NAP-1 to the plasmid templates. These observations underscore the importance of a high affinity between H2A-H2B and NAP-1 for ordered transfer of core histones onto DNA. In addition, recombinant ACF composed of imitation switch and Acf1 can extend closely packed nucleosomes, which suggests that recombinant ACF can mobilize nucleosomes. In the assembly reaction with a supercoiled template, ACF need not be added simultaneously with NAP-1. Regularly spaced nucleosomes are generated even when recombinant ACF is added after core histones are transferred completely onto the DNA. Atomic force microscopy, however, suggests that NAP-1 alone fails to accomplish the formation of fine nucleosomal core particles, which are only formed in the presence of ACF. These results suggest a model for the ordered deposition of histones and the arrangement of nucleosomes during chromatin assembly in vivo.  相似文献   

14.
15.
The tails of histone proteins are central players for all chromatin-mediated processes. Whereas the N-terminal histone tails have been studied extensively, little is known about the function of the H2A C-terminus. Here, we show that the H2A C-terminal tail plays a pivotal role in regulating chromatin structure and dynamics. We find that cells expressing C-terminally truncated H2A show increased stress sensitivity. Moreover, both the complete and the partial deletion of the tail result in increased histone exchange kinetics and nucleosome mobility in vivo and in vitro. Importantly, our experiments reveal that the H2A C-terminus is required for efficient nucleosome translocation by ISWI-type chromatin remodelers and acts as a novel recognition module for linker histone H1. Thus, we suggest that the H2A C-terminal tail has a bipartite function: stabilisation of the nucleosomal core particle, as well as mediation of the protein interactions that control chromatin dynamics and conformation.  相似文献   

16.
17.
18.
Treatment of sea urchin eggs for 10 min prior to fertilization with the kinase inhibitor 6DMAP (6-dimethylaminopurine) reversibly inhibits swelling and loss of conical morphology of the male pronucleus. Male pronuclei inhibited with 1 mM 6DMAP for 25 min undergo phosphorylation of Sp H1 and Sp H2B histones as fully as do control nuclei. Therefore, Sp histone kinase, whose target sequences resemble those of the M-phase histone kinase, is not inhibited by 6DMAP, and Sp histone phosphorylation, although it may be necessary, is not sufficient for chromatin decondensation.  相似文献   

19.
20.
Phosphorylation of sea urchin histone CS H2A   总被引:1,自引:0,他引:1  
Phosphorylation of cleavage stage (CS) histones was studied during the first cell cycle in male pronuclei of the sea urchin. Histone CS H2A rapidly incorporated 32PO4 during the replication period, but not before. Peptide mapping and amino acid analysis of radiolabelled CS H2A showed that phosphorylation occurred mainly on serine residues located in the C-terminal region of the molecule. When DNA replication was inhibited with aphidicolin both CS H2A and CS H2B accumulated in male pronuclei at the same rate as in the control culture, whereas accumulation of H3 and H4 histones was reduced. Incorporation of 32PO4 by CS H2A doubled when DNA synthesis was inhibited with aphidicolin. Thus phosphorylation of CS H2A was correlated with transport of CS histones from the egg storage pool to the male pronucleus, but not with chromatin synthesis, indicating that this event precedes nucleosome formation. A role for phosphorylation and dephosphorylation of the CS H2A C-terminal region in modulating transport of stored CS histone dimers and their assembly into nucleosomes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号