首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The 1H, 15N and 13C backbone and 1H and 13C beta resonance assignments of the long-chain flavodoxin from Azotobacter chroococcum (the 20-kDa nifF product, flavodoxin-2) in its oxidized form were made at pH 6.5 and 30°C using heteronuclear multidimensional NMR spectroscopy. Analysis of the NOE connectivities, together with amide exchange rates, 3JHnH coupling constants and secondary chemical shifts, provided extensive solution secondary structure information. The secondary structure consists of a five-stranded parallel -sheet and five -helices. One of the outer regions of the -sheet shows no regular extended conformation, whereas the outer strand 4/6 is interrupted by a loop, which is typically observed in long-chain flavodoxins. Two of the five -helices are nonregular at the N-terminus of the helix. Loop regions close to the FMN are identified. Negatively charged amino acid residues are found to be mainly clustered around the FMN, whereas a cluster of positively charged residues is located in one of the -helices. Titration of the flavodoxin with the Fe protein of the A. chroococcum nitrogenase enzyme complex revealed that residues Asn11, Ser68 and Asn72 are involved in complex formation between the flavodoxin and Fe protein. The interaction between the flavodoxin and the Fe protein is influenced by MgADP and is of electrostatic nature.Abbreviations SQ semiquinone - FMN riboflavin 5-monophosphate; nif, nitrogen fixation - TSP 3-(trimethylsilyl)propionate sodium salt - DSS 2,2-dimethyl-2-silapentane-5-sulfonate sodium salt Supplementary Material is available on request, comprising a Materials and Methods section for the expression and purification of the A. chroococcum flavodoxin, a Table S1 containing the parameters of the titration of A. chroococcum flavodoxin with the Fe protein, and a Table S2 containing the 15N, HN, 13C, 1H, 13C, 1H and 13CO chemical shifts.To whom correspondence should be addressed.  相似文献   

2.
NMR dipole-dipole couplings between protein backbone nuclei (1H, 13C, 15N, 1HN,13C) offer enormous scope for the rapid determination of protein global folds. Here, we show that measurement of one-bond splittings in the protein backbone is facilitated by use of protein that is selectively isotopically enriched only in the backbone atoms. In particular, 1H-13C couplings can be measured simply and with high sensitivity by use of conventional heteronuclear single quantum correlation (HSQC) techniques.  相似文献   

3.
Cross-correlated relaxation rates involving the C-H dipolar interaction and the carbonyl (C) chemical shift anisotropy (CSA) have been measured using two complementary 3D experiments. We show that the protein backbone angle can be directly refined against such cross-correlated relaxation rates (H C,C) and the three-bond H/D isotope effect on the C chemical shifts (3C (ND)). By simultaneously using both experimental parameters as restraints during NMR structure calculations, a unique value for the backbone angle is defined. We have applied the new refinement method to the -Spectrin SH3 domain (a -sheet protein) and to the Sgs1p HRDC domain (an -helical protein) and show that the quality of the NMR structures is substantially improved, judging from the atomic coordinate precision and the Ramachandran map. In addition, the -refined NMR structures of the SH3 domain deviate less from the 1.8 Å crystal structure, suggesting an improved accuracy. The proposed refinement method can be used to significantly improve the quality of NMR structures and will be applicable to larger proteins.  相似文献   

4.
We report the determination of the global fold of human ubiquitin using protein backbone NMR residual dipolar coupling and long-range nuclear Overhauser effect (NOE) data as conformational restraints. Specifically, by use of a maximum of three backbone residual dipolar couplings per residue (Ni-HN i, Ni-Ci–1, HN i - Ci–1) in two tensor frames and only backbone HN-HN NOEs, a global fold of ubiquitin can be derived with a backbone root-mean-square deviation of 1.4 Å with respect to the crystal structure. This degree of accuracy is more than adequate for use in databases of structural motifs, and suggests a general approach for the determination of protein global folds using conformational restraints derived only from backbone atoms.  相似文献   

5.
Summary The influence of the alcohol concentration on the foaminess, , of-BSA-solutions is considered. This effect is calculated by means of the function (CBSA . f), where f=1 for pure protein solutions and f>1 for alcohol solutions. f is calculated by f = 2TTeff. Here, where TT is the turbidity temperature change due to solvent structure effects and TD, the temperature correction due to alcohol-protein interaction. The constants necessary to calculate TT and TD are tabulated. The agreement between the calculated and measured foaminess , as a function of the n-propanol concentration is satisfactory and for methanol or ethanol excellent.  相似文献   

6.
Residual dipolar couplings provide significant structural information for proteins in the solution state, which makes them attractive for the rapid determination of protein structures. While dipolar couplings contain inherent structural ambiguities, these can be reduced via an overlap similarity measure that insists that protein fragments assigned to overlapping regions of the sequence must have self-consistent structures. This allows us to determine a backbone fold (including the correct C–C bond orientations) using only residual dipolar coupling data from one ordering medium. The resulting backbone structures are of sufficient quality to allow for modeling of sidechain rotamer states using a rotamer prediction algorithm and a force field employing the Surface Generalized Born continuum solvation model. We demonstrate the applicability of the method using experimental data for ubiquitin. These results illustrate the synergies that are possible between protein structural database and molecular modeling methods and NMR spectroscopy, and we expect that the further development of these methods will lead to the extraction of high resolution structural information from minimal NMR data.  相似文献   

7.
Electric field-induced charge recombination in Photosystem II (PS II) was studied in osmotically swollen spinach chloroplasts (blebs) by measurement of the concomitant chlorophyll luminescence emission (electroluminescence). A pronounced dependence on the redox state of the two-electron gate QB was observed and the earlier failure to detect it is explained. The influence of the QB/QB oscillation on electroluminescence was dependent on the redox state of the oxygen evolving complex; at times around one millisecond after flash illumination a large effect was observed in the states S2 and S3, but not in the state S4 (actually Z+S3). The presence of the oxidized secondary electron donor, tyrosine Z+, appeared to prevent expression of the QB/QB effect on electroluminescence, possibly because this effect is primarily due to a shift of the redox equilibrium between Z/Z+ and the oxygen evolving complex.Abbreviations BSA bovine serum albumin - EDTA ethylene-diaminetetraacetic acid - EL electroluminescence - FCCP carbonylcyanide p-trifluoromethyloxyphenyl-hydrazone - HEPESI 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - I primary electron acceptor - MOPS 3-(N-morpholino) propane sulfonic acid - P680 primary electron donor of Photosystem II - P700 primary electron donor of Photosystem I - QA and QB secondary and tertiary electron acceptors of Photosystem II - Z secondary electron donor (D1 Tyr 161)  相似文献   

8.
Summary We have tritium labeled two nucleic acid molecules, an 8 kDa DNA oligomer and a 20 kDa hammerhead RNA for tritium NMR investigations. The DNA sequence studied has been previously used in homonuclear studies of DNA-bound water molecules and tritium NMR was expected to facilitate these investigations by eliminating the need to suppress the water resonance in tritium-detected 3H-1H NOESY experiments. We observed the anticipated through-space interactions found in B-form DNA in the NOESY experiments and an unexpected antiphase cross-peak at the water frequency. T1 measurements on the tritiated DNA molecule indicated that relaxation rates were also accelerated for tritium and protons. Tritium NMR spectra of the hammerhead RNA molecule indicated conformational dynamics in the conserved region of the molecule in the absence of Mg2+ and spermine, two components necessary for cleavage. The dynamics were also investigated by 15N-correlated 1H spectroscopy and persisted after the addition of Mg2+ and spermine.  相似文献   

9.
In bacterial reaction centers (RCs), changes of protonation state of carboxylic groups, of quinone-protein interactions as well as backbone rearrangements occuring upon QB photoreduction can be revealed by FTIR difference spectroscopy. The influence of compensatory mutations to the detrimental Asp L213 Asn replacement on QB /QB FTIR spectra of Rb. sphaeroides RCs was studied in three double mutants carrying a Asn M44 Asp, Arg M233 Cys, or Arg H177 His suppressor mutation. The proton uptake by Glu L212 upon QB formation, as reflected by the positive band at 1728 cm–1, is increased in the Asn M44 Asp and Arg H177 His suppressor RCs with respect to native RCs, and remains comparable to that observed in Asp L213 Asn mutant RCs. Only the Arg M233 Cys suppressor mutation affected the 1728 cm–1 band, reducing its amplitude to near native level. Thus, there is no clear correlation between the apparent extent of proton uptake by Glu L212 and the recovery of the proton transfer RC function. In all of the mutant spectra, several protein (amide I and amide II) and quinone anion (C...O/C...C) modes are perturbed compared to the spectrum of native RCs. These IR data show that all of the compensatory mutations alter the semiquinone-protein interactions and the backbone providing direct evidence of structural changes accompanying the restoration of efficient proton transfer in RCs containing the Asp L213 Asn lesion.  相似文献   

10.
Summary The backbone dynamics of free ribonuclease T1 and its complex with the competitive inhibitor 2GMP have been studied by 15N longitudinal and transverse relaxation experiments, combined with {1H, 15H} NOE measurements. The intensity decay of individual amide cross peaks in a series of (1H, 15N)-HSQC spectra with appropriate relaxation periods (Kay, L.E. et al. (1989) Biochemistry, 28, 8972–8979; Kay, L.E. et al. (1992) J. Magn. Reson., 97, 359–375) was fitted to a single exponential by using a simplex algorithm in order to obtain 15N T1 and T2 relaxation times. These experimentally obtained values were analysed in terms of the model-free approach introduced by Lipari and Szabo (Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559; 4559–4570). The microdyramical parameters accessible by this approach clearly indicate a correlation between the structural flexibility and the tertiary structure of ribonuclease T1, as well as restricted mobility of certain regions of the protein backbone upon binding of the inhibitor. The results obtained by NMR are compared to X-ray crystallographic data and to observations made in molecular dynamics simulations.  相似文献   

11.
pH-dependent inactivation of Photosystem (PS) II and related quenching of chlorophyll-a-fluorescence have been investigated in isolated thylakoids and PS II-particles and related to calcium release at the donor side of PS II. The capacity of oxygen evolution (measured under light saturation) decreases when the pH is high and the pH in the thylakoid lumen decreases below 5.5. Oxygen evolution recovers upon uncoupling. The pH-response of inactivation can be described by a 1 H+-transition with an apparent pK-value of about 4.7. The yield of variable fluorescence decreases in parallel to the inactivation of oxygen evolution. pH-dependent quenching requires light and can be inhibited by DCMU. In PS II-particles, inactivation is accompanied by a reversible release of Ca2+-ions (one Ca2+ released per 200 Chl). In isolated thylakoids, where a pH was created by ATP-hydrolysis, both inactivation of oxygen evolution (and related fluorescence quenching) by internal acidification and the recovery of that inactivation can be suppressed by calcium-channel blockers. In the presence of the Ca2+-ionophore A23187, recovery of Chl-fluorescence (after relaxation of the pH) is stimulated by external Ca2+ and retarded by EGTA. As shown previously (Krieger and Weis 1993), inactivation of oxygen evolution at low pH is accompanied by an upward shift of the midpoint redox-potential, Em, of QA. Here, we show that in isolated PS II particles the pH-dependent redox-shift (about 160 mV, as measured from redox titration of Chl-fluorescence) is suppressed by Ca2+-channel blockers and DCMU. When a redox potential of –80 to –120mV was established in a suspension of isolated thylakoids, the primary quinone acceptor, QA, was largely reduced in presence of a pH (created by ATP-hydrolysis) but oxidized in presence of an uncoupler. Ca2+-binding at the lumen side seems to control redox processes at the lumen- and stroma-side of PS II. We discuss Ca2+-release to be involved in the physiological process of high energy quenching.  相似文献   

12.
Summary In order to study some internal dynamic processes of the lac operator sequence, the 13C-labeled duplex 5d(C0G1C2T3C4A5C6A7A8T9T10) · d(A10A9T8T7G6T5G4A3G2C1G0)3 was used. The spreading of both the H1 and C1 resonances brought about an excellent dispersion of the 1H1-13C1 correlations. The spinlattice relaxation parameters R(Cz), R(Cx,y) and R(HzCz) were measured for each residue of the two complementary strands, except for the 3-terminal residues which were not labeled. Variation of the relaxation rates was found along the sequence. These data were analyzed in the context of the model-free formalism proposed by Lipari and Szabo [(1982) J. Am. Chem. Soc., 104, 4546–4570] and extended to three parameters by Clore et al. [(1990) Biochemistry, 29, 7387–7401; and (1990) J. Am. Chem. Soc., 112, 4989–4991]. A careful analysis using a least-squares program showed that our data must be interpreted in terms of a three-parameter spectral density function. With this approach, the global correlation time was found to be the same for each residue. All the C1-H1 fragments exhibited both slow (s = 1.5) and fast (f = 20 ps) restricted libration motions (S inf2 sups =0.74 to 1.0 and S inf2 supf =0.52 to 0.96). Relaxation processes were described as governed by the motion of the sugar relative to the base and in terms of bending of the whole duplex. The possible role played by the special structure of the AATT sequence is discussed. No evident correlation was found between the amplitude motions of the complementary residues. The 5-terminal residues showed large internal motions (S2=0.5), which describe the fraying of the double helix. Global examination of the microdynamical parameters S inf2 supf and S inf2 sups along the nucleotide sequence showed that the adenine residues exhibit more restricted fast internal motions (S inf2 supf =0.88 to 0.96) than the others, whereas the measured relaxation rates of the four nucleosides in solution were mainly of dipolar origin. Moreover, the fit of both R(Cz) and R(HzCz) experimental relaxation rates using an only global correlation time for all the residues, gave evidence of a supplementary relaxation pathway affecting R(Cx,y) for the purine residues in the (53) G4A3 and A10A9T8T7 sequences. This relaxation process was analyzed in terms of exchange stemming from motions of the sugar around the glycosidic bond on the millisecond time scale. It should be pointed out that these residues gave evidence of close contacts with the protein in the complex with the lac operator [Boelens et al. (1987) J. Mol. Biol., 193, 213–216] and that these motions could be implied in the lac-operator-lac-repressor recognition process.  相似文献   

13.
Summary Inhibition of growth of PY815 mouse mastocytoma cells in vitro by N6, O2-dibutyryladenosine 3,5 cyclic monophosphate (DB cyclic AMP) was accompanied by increases in intracellular cyclic AMP and histamine and minor changes in cytosolic cyclic AMP-dependent histone kinase activity. However, DEAE-cellulose chromatography revealed substantial changes in the relative proportions of the principal cyclic AMP-dependent protein kinases and in free cyclic AMP-binding protein after DB cyclic AMP treatment. The activity of cytosolic cyclic AMP-dependent protein kinase type I (PKI) decreased relative to cyclic AMP-dependent protein kinase type II (PKII) and there was an increase in a cytosol cyclic AMP-binding protein with little associated protein kinase activity. The relative changes in activity of PKI, PKII and cyclic AMP binding protein after DB cyclic AMP treatment may reflect events important in the regulation of growth and differentiation of mast cells.Abbreviations DB cyclic AMP N6,O2-dibutyryladenosine-3, 5-cyclic monophosphate - cyclic AMP adenosine 3,5-cyclic monophosphate - PKI type I cyclic AMP-dependent protein kinase - PKII type II cyclic AMP-dependent protein kinase  相似文献   

14.
Summary Sarcoplasmic reticulum (SR) vesicles from frog leg muscle were fused with a planar phospholipid bilayer by a method described previously for rabbit SR. As a result of the fusion, K+-selective conduction channels are inserted into the bilayer. Unlike the two-state rabbit channel, the frog channel displays three states: a nonconducting (closed) state and two conducting states and . In 0.1m K+ the single-channel conductances are 50 and 150 pS for and , respectively. The probabilities of appearearance of the three states are voltage-dependent, and transitions between the closed and states proceed through the state. Both open states follow a quantitatively identical selectivity sequence in channel conductance: K+>NH 4 + >Rb+>Na+>Li+>Cs+. Both open states are blocked by Cs+ asymmetrically in a voltage-dependent manner. The zero-voltage dissociation constant for blocking is the same for both open states, but the voltage-dependences of the Cs+ block for the two states differ in a way suggesting that the Cs+ blocking site is located more deeply inside the membrane in the than in the state.  相似文献   

15.
Summary A simple viscoelastic film model is presented, which predicts a breakdown electric potential having a dependence on the electric pulse length which approximates the available experimental data for the electric breakdown of lipid bilayers and cell membranes (summarized in the reviews of U. Zimmermann and J. Vienken, 1982,J. Membrane Biol. 67:165 and U. Zimmermann, 1982,Biochim. Biophys. Acta 694:227). The basic result is a formula for the time of membrane breakdown (up to the formation of pores): =(/C)/( m 2 0 2 U 4/24Gh 3+T 2/Gh–1), where is a proportionality coefficient approximately equal to ln(h/20),h being the membrane thickness and 0 the amplitude of the initial membrane surface shape fluctuation ( is usually of the order of unity), represents the membrane shear viscosity,G the membranes shear elasticity modules, m the membrane relative permittivity, 0=8.85×10–12 Fm,U the electric potential across the membrane, the membrane surface tension andT the membrane tension. This formula predicts a critical potentialU c ;U c =(24Gh 3/ m 2 0 2 )1/4 (for = andT=0). It is proposed that the time course of the electric field-induced membrane breakdown can be divided into three stages: (i) growth of the membrane surface fluctuations, (ii) molecular rearrangements leading to membrane discontinuities, and (iii) expansion of the pores, resulting in the mechanical breakdown of the membrane.  相似文献   

16.
Based on high-resolution structures of the free molecules accurate determination of structures of protein complexes by NMR spectroscopy is possible using residual dipolar couplings. In order, however, to be able to apply these methods, protein backbone resonances have to be assigned first. This NMR assignment process is particularly difficult and time consuming for protein sizes above 20 kDa. Here we show that, when NMR resonances belonging to a specific amino acid type are selected either by amino acid specific labeling, by their characteristic C/C chemical shifts or by dedicated NMR experiments, molecular alignment tensors of proteins up to 80 kDa can be determined without prior backbone resonance assignment. This offers the opportunity to greatly accelerate determination of three-dimensional structures of protein-protein and protein-ligand complexes, and validation of multimeric states of proteins. Moreover, exhaustive back-calculation can be performed using only 1DNH couplings. Therefore, it avoids expensive 13C-labeling and it gives access to orientational information for large proteins that strongly aggregate at concentrations above 50 M, i.e., experimental conditions where 3D triple resonance experiments are not sensitive enough to allow backbone resonance assignment.  相似文献   

17.
Summary The time-course of changes in skeletal muscle pH during arousal from hibernation in the Columbian ground squirrel was studied using31P NMR spectroscopy. In hibernation (T re 7–9°C), shoulder/neck muscle pH was 7.45±0.03 and Im was 0.60. In euthermia (T re 37°C), muscle pH was 7.24±0.05 and Im was 0.75. Thus the overall pH-temperature coefficient was-0.009 pH units/°C, indicating acidification of the muscle in hibernation. During the transition from hibernation to euthermia, however, the muscle shows a nonlinear pattern of pH change. In early arousal (T sh<20–25°C,T re<15°C) muscle pH does not change and muscle Im increases to 0.72. In later arousal (T sh>20–25°C,T re>15°C) muscle pH decreases gradually toward the euthermic value and muscle Im increases only slightly from 0.72 to 0.75. These results support the hypothesis that intracellular acidification of the muscle, present during hibernation, is reversed in early arousal. This may facilitate an increase in muscle metabolism and the contribution of maximal shivering thermogenesis to rewarming of the animal.Abbreviations Im dissociation ratio of protein imidazole buffergroups - NST non-shivering thermogenesis - BAT brown adipose tissue - dp H/dT temperature coefficient of pH - pH i intracellular pH - 31 P NMR 31Phosphorus nuclear magnetic resonance - P i chemical shift of inorganic phosphate relative to PCr - PCr phosphocreatine - T b body temperature - T re rectal temperature - T sh subcutaneous shoulder temperature - T a ambient temperature  相似文献   

18.
Summary Regulation of Na,K-ATPase mRNA isoform and mRNA expression by thyroid hormone (T3) in neonatal rat myocardium was examined. In euthyroid neonates between ages of 2 and 5 days, mRNA1, mRNA3, and mRNA1 abundances were nearly constant while mRNA2 was undetectable. During the interval between postnatal days 5 and 15, mRNA3 decreased to negligible levels and mRNA2 became expressed and increased in abundance to account for 20% of the mRNA pool by the 15th postnatal day. To examine the effect of T3 on this developmental program, neonates were injected with 75 g T3/100 g body weight or diluent alone on the second and third postnatal days and myocardial Na,K-ATPase subunit-mRNA abundances were determined on the third and fourth postnatal days. Because T3 treatment increased the RNA/DNA ratios of myocardial tissue, the subunit-mRNA abundances were normalized per unit DNA. Following 24 and 48 hr of T3 treatment, the abundances of mRNA1, mRNA3, and mRNA1 increased, while mRNA2 continued to remain undetectable during the 2-day interval between the second to fourth postnatal days. It is concluded that T3 augments the abundance of Na,K-ATPase subunit mRNAs that are already being expressed in the neonatal rat myocardium. The results further suggest that T3 does not act as a molecular switch in the developmental expression of the mRNA isoforms in rat myocardium during the first four postnatal days.  相似文献   

19.
Using the Boc-strategy, a step-by-step synthesis on the PAM solid supportof three aza-, iminoaza- and reduced aza-peptide homologues is described.From the same hydrazinocarbonyl peptide-PAM precursor, the coupling ofeither a Boc-amino acid or a Boc-amino aldehyde gives rise to an aza-peptideor an iminoaza-peptide containing theC-CO-NH-N-CO-NH-C orC-CH=N-N-CO-NH-C surrogate of the peptide motif, respectively. In situreduction of the latter by NaBH3CN leads to a reducedaza-peptide containing theC-CH2-NH-N-CO-NH-C moiety. The key step synthesis of thehydrazinocarbonyl peptide-PAM precursor is carried out by coupling on thegrowing peptide chain the N-Boc-aza-amino acid chloride obtained by theaction of triphosgene on the corresponding N-Boc-hydrazine. Thesemodifications have been introduced in position 1-2 of the YLGYLEQLLRbenzodiazepine-like decapeptide  相似文献   

20.
Summary Sequence-specific 1H and 15N resonance assignments have been made for all 145 non-prolyl residues and for the flavin cofactor in oxidized Desulfovibrio vulgaris flavodoxin. Assignments were obtained by recording and analyzing 1H–15N heteronuclear three-dimensional NMR experiments on uniformly 15N-enriched protein, pH 6.5, at 300 K. Many of the side-chain resonances have also been assigned. Observed medium-and long-range NOEs, in combination with 3JNH coupling constants and 1HN exchange data, indicate that the secondary structure consists of a five-stranded parallel -sheet and four -helices, with a topology identical to that determined previously by X-ray crystallographic methods. One helix, which is distorted in the X-ray structure, is non-regular in solution as well. Several protein-flavin NOEs, which serve to dock the flavin ligand to its binding site, have also been identified. Based on fast-exchange into 2H2O, the 1HN3 proton of the isoalloxazine ring is solvent accessible and not strongly hydrogen-bonded in the flavin binding site, in contrast to what has been observed in several other flavodoxins. The resonance assignments presented here can form the basis for assigning single-site mutant flavodoxins and for correlating structural differences between wild-type and mutant flavodoxins with altered redox potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号