首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In many Caenorhabditis elegans pre-mRNAs, the RNA sequence between the 5' cap and the first 3' splice site is replaced by trans-splicing a short spliced leader (SL) from the Sm snRNP, SL1. C. elegans also utilizes a similar Sm snRNP, SL2, to trans-splice at sites between genes in polycistronic pre-mRNAs from operons. How do SL1 and SL2 snRNPs function in different contexts? Here we show that the SL1 snRNP contains a complex of SL75p and SL21p, which are homologs of novel proteins previously reported in the Ascaris SL snRNP. Interestingly, we show that the SL2 snRNP does not contain these proteins. However, SL75p and SL26p, a paralog of SL21p, are components of another Sm snRNP that contains a novel snRNA species, Sm Y. Knockdown of SL75p is lethal. However, knockdown of either SL21p or SL26p alone leads to cold-sensitive sterility, whereas knockdown of both SL21p and SL26p is lethal. This suggests that these two proteins have overlapping functions even though they are associated with different classes of snRNP. These phenotypic relationships, along with the association of SL26p with SL75p, imply that, like the SL1 RNA/Sm/SL75p/SL21p complex, the Sm Y/Sm/SL75p/SL26p complex is associated with trans-splicing.  相似文献   

3.
Seven Sm proteins, E, F, G, D1, D2, D3 and B/B', assemble in a stepwise manner onto the single-stranded Sm site element (PuAU(4-6)GPu) of the U1, U2, U4 and U5 spliceosomal snRNAs, resulting in a doughnut-shaped core RNP structure. Here we show by UV cross-linking experiments using an Sm site RNA oligonucleotide (AAUUUUUGA) that several Sm proteins contact the Sm site RNA, with the most efficient cross-links observed for the G and B/B' proteins. Site-specific photo-cross-linking revealed that the G and B/B' proteins contact distinct uridines (in the first and third positions, respectively) in a highly position-specific manner. Amino acids involved in contacting the RNA are located at equivalent regions in both proteins, namely in loop L3 of the Sm1 motif, which has been predicted to jut into the hole of the Sm ring. Our results thus provide the first evidence that, within the core snRNP, multiple Sm protein-Sm site RNA contacts occur on the inner surface of the heptameric Sm protein ring.  相似文献   

4.
The U1, U2, U4, U5, and U6 small nuclear ribonucleoproteins (snRNPs) form essential components of spliceosomes, the machinery that removes introns from pre-mRNAs in eukaryotic cells. A critical initial step in the complex process of snRNP biogenesis is the assembly of a group of common core proteins (Sm proteins) on spliceosomal snRNA. In this study we show by multiple independent methods that the protein pICln associates with Sm proteins in vivo and in vitro. The binding of pICln to Sm proteins interferes with Sm protein assembly on spliceosomal snRNAs and inhibits import of snRNAs into the nucleus. Furthermore, pICln prevents the interaction of Sm proteins with the survival of motor neurons (SMN) protein, an interaction that has been shown to be critical for snRNP biogenesis. These findings lead us to propose a model in which pICln participates in the regulation of snRNP biogenesis, at least in part by interfering with Sm protein interaction with SMN protein.  相似文献   

5.
The Sm binding sites of different spliceosomal U small nuclear RNAs (snRNAs), the RNA structural elements required for interaction with common snRNP proteins, have been considered to be similar or identical. Here we show that this is not the case. Instead, structural and sequence features unique to U1 or U5 snRNAs that contribute to common protein binding are identified. The determinants of Sm protein binding in both RNAs are complex, consisting in U5 of minimally two and in U1 of minimally four separate structural elements. Even the most conserved features of the two RNAs, single-stranded regions whose generalized sequence is PuA(U)nGPu, are not functionally interchangeable in protein binding. At least one of the newly defined RNA elements functions in assembly with the common proteins, but is not required for their stable binding thereafter. U1, but not U5, snRNP requires a trimethyl guanosine cap structure for its transport to the nucleus. This is not a consequence of the differences in common snRNP binding to the two RNAs, but is due to structural features of U1 RNA that do not contribute to Sm protein binding.  相似文献   

6.
The U1 small nuclear ribonucleoprotein particle (U1 snRNP), a cofactor in pre-mRNA splicing, contains three proteins, termed 70K, A, and C, that are not present in the other spliceosome-associated snRNPs. We studied the binding of the A and C proteins to U1 RNA, using a U1 snRNP reconstitution system and an antibody-induced nuclease protection technique. Antibodies that reacted with the A and C proteins induced nuclease protection of the first two stem-loops of U1 RNA in reconstituted U1 snRNP. Detailed analysis of the antibody-induced nuclease protection patterns indicated the existence of relatively long-range protein-protein interactions in the U1 snRNP, with the 5' end of U1 RNA and its associated specific proteins interacting with proteins bound to the Sm domain near the 3' end. UV cross-linking experiments in conjunction with an A-protein-specific antibody demonstrated that the A protein bound directly to the U1 RNA rather than assembling in the U1 snRNP exclusively via protein-protein interactions. This conclusion was supported by additional experiments revealing that the A protein could bind to U1 RNA in the absence of bound 70K and Sm core proteins.  相似文献   

7.
U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5′‐splice site early during spliceosome assembly. It represents a prototype spliceosomal subunit containing a paradigmatic Sm core RNP. The crystal structure of human U1 snRNP obtained from natively purified material by in situ limited proteolysis at 4.4 Å resolution reveals how the seven Sm proteins, each recognize one nucleotide of the Sm site RNA using their Sm1 and Sm2 motifs. Proteins D1 and D2 guide the snRNA into and out of the Sm ring, and proteins F and E mediate a direct interaction between the Sm site termini. Terminal extensions of proteins D1, D2 and B/B′, and extended internal loops in D2 and B/B′ support a four‐way RNA junction and a 3′‐terminal stem‐loop on opposite sides of the Sm core RNP, respectively. On a higher organizational level, the core RNP presents multiple attachment sites for the U1‐specific 70K protein. The intricate, multi‐layered interplay of proteins and RNA rationalizes the hierarchical assembly of U snRNPs in vitro and in vivo.  相似文献   

8.
The survival of motor neurons (SMN) complex mediates the assembly of small nuclear ribonucleoproteins (snRNPs) involved in splicing and histone RNA processing. A crucial step in this process is the binding of Sm proteins onto the SMN protein. For Sm B/B', D1, and D3, efficient binding to SMN depends on symmetrical dimethyl arginine (sDMA) modifications of their RG-rich tails. This methylation is achieved by another entity, the PRMT5 complex. Its pICln subunit binds Sm proteins whereas the PRMT5 subunit catalyzes the methylation reaction. Here, we provide evidence that Lsm10 and Lsm11, which replace the Sm proteins D1 and D2 in the histone RNA processing U7 snRNPs, associate with pICln in vitro and in vivo without receiving sDMA modifications. This implies that the PRMT5 complex is involved in an early stage of U7 snRNP assembly and hence may have a second snRNP assembly function unrelated to sDMA modification. We also show that the binding of Lsm10 and Lsm11 to SMN is independent of any methylation activity. Furthermore, we present evidence for two separate binding sites in SMN for Sm/Lsm proteins. One recognizes Sm domains and the second one, the sDMA-modified RG-tails, which are present only in a subset of these proteins.  相似文献   

9.
Sm proteins form stable ribonucleoprotein (RNP) complexes with small nuclear (sn)RNAs and are core components of the eukaryotic spliceosome. In vivo, the assembly of Sm proteins onto snRNAs requires the survival motor neurons (SMN) complex. Several reports have shown that SMN protein binds with high affinity to symmetric dimethylarginine (sDMA) residues present on the C-terminal tails of SmB, SmD1, and SmD3. This post-translational modification is thought to play a crucial role in snRNP assembly. In human cells, two distinct protein arginine methyltransferases (PRMT5 and PRMT7) are required for snRNP biogenesis. However, in Drosophila, loss of Dart5 (the fruit fly PRMT5 ortholog) has little effect on snRNP assembly, and homozygous mutants are completely viable. To resolve these apparent differences, we examined this topic in detail and found that Drosophila Sm proteins are also methylated by two methyltransferases, Dart5/PRMT5 and Dart7/PRMT7. Unlike dart5, we found that dart7 is an essential gene. However, the lethality associated with loss of Dart7 protein is apparently unrelated to defects in snRNP assembly. To conclusively test the requirement for sDMA modification of Sm proteins in Drosophila snRNP assembly, we constructed a fly strain that exclusively expresses an isoform of SmD1 that cannot be sDMA modified. Interestingly, these flies were viable, and snRNP assays revealed no defects in comparison to wild type. In contrast, dart5 mutants displayed a strong synthetic lethal phenotype in the presence of a hypomorphic Smn mutation. We therefore conclude that dart5 is required for viability when SMN is limiting.  相似文献   

10.
The biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) in higher eukaryotes requires the functions of several cellular proteins and includes nuclear as well as cytoplasmic phases. In the cytoplasm, a macromolecular complex containing the survival motor neuron (SMN) protein, Gemin2-8 and Unrip mediates the ATP-dependent assembly of Sm proteins and snRNAs into snRNPs. To carry out snRNP assembly, the SMN complex binds directly to both Sm proteins and snRNAs; however, the contribution of the individual components of the SMN complex to its composition, interactions, and function is poorly characterized. Here, we have investigated the functional role of Gemin8 using novel monoclonal antibodies against components of the SMN complex and RNA interference experiments. We show that Gemin6, Gemin7, and Unrip form a stable cytoplasmic complex whose association with SMN requires Gemin8. Gemin8 binds directly to SMN and mediates its interaction with the Gemin6/Gemin7 heterodimer. Importantly, loss of Gemin6, Gemin7, and Unrip interaction with SMN as a result of Gemin8 knockdown affects snRNP assembly by impairing the SMN complex association with Sm proteins but not with snRNAs. These results reveal the essential role of Gemin8 for the proper structural organization of the SMN complex and the involvement of the heteromeric subunit containing Gemin6, Gemin7, Gemin8, and Unrip in the recruitment of Sm proteins to the snRNP assembly pathway.  相似文献   

11.
T Achsel  H Brahms  B Kastner  A Bachi  M Wilm    R Lührmann 《The EMBO journal》1999,18(20):5789-5802
We describe the isolation and molecular characterization of seven distinct proteins present in human [U4/U6.U5] tri-snRNPs. These proteins exhibit clear homology to the Sm proteins and are thus denoted LSm (like Sm) proteins. Purified LSm proteins form a heteromer that is stable even in the absence of RNA and exhibits a doughnut shape under the electron microscope, with striking similarity to the Sm core RNP structure. The purified LSm heteromer binds specifically to U6 snRNA, requiring the 3'-terminal U-tract for complex formation. The 3'-end of U6 snRNA was also co-precipitated with LSm proteins after digestion of isolated tri-snRNPs with RNaseT(1). Importantly, the LSm proteins did not bind to the U-rich Sm sites of intact U1, U2, U4 or U5 snRNAs, indicating that they can only interact with a 3'-terminal U-tract. Finally, we show that the LSm proteins facilitate the formation of U4/U6 RNA duplices in vitro, suggesting that the LSm proteins may play a role in U4/U6 snRNP formation.  相似文献   

12.
The common neurodegenerative disease spinal muscular atrophy is caused by reduced levels of the survival of motor neurons (SMN) protein. SMN associates with several proteins (Gemin2 to Gemin6) to form a large complex which is found both in the cytoplasm and in the nucleus. The SMN complex functions in the assembly and metabolism of several RNPs, including spliceosomal snRNPs. The snRNP core assembly takes place in the cytoplasm from Sm proteins and newly exported snRNAs. Here, we identify three distinct cytoplasmic SMN complexes, each representing a defined intermediate in the snRNP biogenesis pathway. We show that the SMN complex associates with newly exported snRNAs containing the nonphosphorylated form of the snRNA export factor PHAX. The second SMN complex identified contains assembled Sm cores and m(3)G-capped snRNAs. Finally, the SMN complex is associated with a preimport complex containing m(3)G-capped snRNP cores bound to the snRNP nuclear import mediator snurportin1. Thus, the SMN complex is associated with snRNPs during the entire process of their biogenesis in the cytoplasm and may have multiple functions throughout this process.  相似文献   

13.
Seven Sm proteins (B/B', D1, D2, D3, E, F and G proteins) containing a common sequence motif form a globular core domain within the U1, U2, U5 and U4/U6 spliceosomal snRNPs. Based on the crystal structure of two Sm protein dimers we have previously proposed a model of the snRNP core domain consisting of a ring of seven Sm proteins. This model postulates that there is only a single copy of each Sm protein in the core domain. In order to test this model we have determined the stoichiometry of the Sm proteins in yeast spliceosomal snRNPs. We have constructed seven different yeast strains each of which produces one of the Sm proteins tagged with a calmodulin-binding peptide (CBP). Further, each of these strains was transformed with one of seven different plasmids coding for one of the seven Sm proteins tagged with protein A. When one Sm protein is expressed as a CBP-tagged protein from the chromosome and a second protein was produced with a protein A-tag from the plasmid, the protein A-tag was detected strongly in the fraction bound to calmodulin beads, demonstrating that two different tagged Sm proteins can be assembled into functional snRNPs. In contrast when the CBP and protein A-tagged forms of the same Sm protein were co-expressed, no protein A-tag was detectable in the fraction bound to calmodulin. These results indicate that there is only a single copy of each Sm protein in the spliceosomal snRNP core domain and therefore strongly support the heptamer ring model of the spliceosomal snRNP core domain.  相似文献   

14.
The spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6 and U5 share eight proteins B', B, D1, D2, D3, E, F and G which form the structural core of the snRNPs. This class of common proteins plays an essential role in the biogenesis of the snRNPs. In addition, these proteins represent the major targets for the so-called anti-Sm auto-antibodies which are diagnostic for systemic lupus erythematosus (SLE). We have characterized the proteins F and G from HeLa cells by cDNA cloning, and, thus, all human Sm protein sequences are now available for comparison. Similar to the D, B/B' and E proteins, the F and G proteins do not possess any of the known RNA binding motifs, suggesting that other types of RNA-protein interactions occur in the snRNP core. Strikingly, the eight human Sm proteins possess mutual homology in two regions, 32 and 14 amino acids long, that we term Sm motifs 1 and 2. The Sm motifs are evolutionarily highly conserved in all of the putative homologues of the human Sm proteins identified in the data base. These results suggest that the Sm proteins may have arisen from a single common ancestor. Several hypothetical proteins, mainly of plant origin, that clearly contain the conserved Sm motifs but exhibit only comparatively low overall homology to one of the human Sm proteins, were identified in the data base. This suggests that the Sm motifs may also be shared by non-spliceosomal proteins. Further, we provide experimental evidence that the Sm motifs are involved, at least in part, in Sm protein-protein interactions. Specifically, we show by co-immunoprecipitation analyses of in vitro translated B' and D3 that the Sm motifs are essential for complex formation between B' and D3. Our finding that the Sm proteins share conserved sequence motifs may help to explain the frequent occurrence in patient sera of anti-Sm antibodies that cross-react with multiple Sm proteins and may ultimately further our understanding of how the snRNPs act as auto-antigens and immunogens in SLE.  相似文献   

15.
Nuclear mRNA precursors are spliced by a large macromolecular complex called the spliceosome which contains, in most eucaryotes, five small nuclear RNAs (snRNAs) each in the form of a small ribonucleoprotein particle (the U1, U2, U5, and U4/U6 snRNPs). Although secondary structures have been derived for all five spliceosomal snRNAs based on phylogenetic, biochemical, and genetic data, little tertiary structure information is available. Here we use the general cross-linking reagent nitrogen mustard [bis-(2-chloroethyl)methylamine] to detect tertiary interactions within U2 snRNA. After the cross-linking of deproteinized HeLa nuclear extract, two intramolecularly cross-linked U2 species with anomalous electrophoretic mobility can be detected (X-U2#1 and X-U2#2). The 3' and 5' boundaries of each cross-link were determined by rapid enzymatic RNA sequencing of end-labeled RNA. X-U2#1 is cross-linked between the region U41-U55 and G105 or G106, X-U2#2 between U53 and G97 or G98. We then tested the ability of the two cross-linked species to bind snRNP proteins in vitro (in nuclear extract or S100) and in vivo (in Xenopus oocytes). X-U2#2 reconstituted efficiently both in vitro and in vivo but X-U2#1 did not, as judged by immunoprecipitation with antibodies specific for Sm- and U2-specific proteins. Since the cross-link in X-U2#2 involves the Sm binding site but does not block snRNP assembly, our data strongly suggest that the Sm binding site lies on the surface of the native snRNP.  相似文献   

16.
Zhang R  So BR  Li P  Yong J  Glisovic T  Wan L  Dreyfuss G 《Cell》2011,146(3):384-395
The SMN complex mediates the assembly of heptameric Sm protein rings on small nuclear RNAs (snRNAs), which are essential for snRNP function. Specific Sm core assembly depends on Sm proteins and snRNA recognition by SMN/Gemin2- and Gemin5-containing subunits, respectively. The mechanism by which the Sm proteins are gathered while preventing illicit Sm assembly on non-snRNAs is unknown. Here, we describe the 2.5?? crystal structure of Gemin2 bound to SmD1/D2/F/E/G pentamer and SMN's Gemin2-binding domain, a key assembly intermediate. Remarkably, through its extended conformation, Gemin2 wraps around the crescent-shaped pentamer, interacting with all five Sm proteins, and gripping its bottom and top sides and outer perimeter. Gemin2 reaches into the RNA-binding pocket, preventing RNA binding. Interestingly, SMN-Gemin2 interaction is abrogated by a spinal muscular atrophy (SMA)-causing mutation in an SMN helix that mediates Gemin2 binding. These findings provide insight into SMN complex assembly and specificity, linking snRNP biogenesis and SMA pathogenesis.  相似文献   

17.
A E Mayes  L Verdone  P Legrain    J D Beggs 《The EMBO journal》1999,18(15):4321-4331
Seven Sm proteins associate with U1, U2, U4 and U5 spliceosomal snRNAs and influence snRNP biogenesis. Here we describe a novel set of Sm-like (Lsm) proteins in Saccharomyces cerevisiae that interact with each other and with U6 snRNA. Seven Lsm proteins co-immunoprecipitate with the previously characterized Lsm4p (Uss1p) and interact with each other in two-hybrid analyses. Free U6 and U4/U6 duplexed RNAs co-immunoprecipitate with seven of the Lsm proteins that are essential for the stable accumulation of U6 snRNA. Analyses of U4/U6 di-snRNPs and U4/U6.U5 tri-snRNPs in Lsm-depleted strains suggest that Lsm proteins may play a role in facilitating conformational rearrangements of the U6 snRNP in the association-dissociation cycle of spliceosome complexes. Thus, Lsm proteins form a complex that differs from the canonical Sm complex in its RNA association(s) and function. We discuss the possible existence and functions of alternative Lsm complexes, including the likelihood that they are involved in processes other than pre-mRNA splicing.  相似文献   

18.
Messenger RNA processing in trypanosomes by cis and trans splicing requires spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6, and U5, as well as the spliced leader (SL) RNP. As in other eukaryotes, these RNPs share a core structure of seven Sm polypeptides. Here, we report that the identity of the Sm protein constituents varies between spliceosomal snRNPs: specifically, two of the canonical Sm proteins, SmB and SmD3, are replaced in the U2 snRNP by two novel, U2 snRNP-specific Sm proteins, Sm15K and Sm16.5K. We present a model for the variant Sm core in the U2 snRNP, based on tandem affinity purification-tagging and in vitro protein-protein interaction assays. Using in vitro reconstitutions with canonical and U2-specific Sm cores, we show that the exchange of two Sm subunits determines discrimination between individual Sm sites. In sum, we have demonstrated that the heteroheptameric Sm core structure varies between spliceosomal snRNPs, and that modulation of the Sm core composition mediates the recognition of small nuclear RNA-specific Sm sites.  相似文献   

19.
The U7 snRNP involved in histone RNA 3' end processing is related to but biochemically distinct from spliceosomal snRNPs. In vertebrates, the Sm core structure assembling around the noncanonical Sm-binding sequence of U7 snRNA contains only five of the seven standard Sm proteins. The missing Sm D1 and D2 subunits are replaced by U7-specific Sm-like proteins Lsm10 and Lsm11, at least the latter of which is important for histone RNA processing. So far, it was unknown if this special U7 snRNP composition is conserved in invertebrates. Here we describe several putative invertebrate Lsm10 and Lsm11 orthologs that display low but clear sequence similarity to their vertebrate counterparts. Immunoprecipitation studies in Drosophila S2 cells indicate that the Drosophila Lsm10 and Lsm11 orthologs (dLsm10 and dLsm11) associate with each other and with Sm B, but not with Sm D1 and D2. Moreover, dLsm11 associates with the recently characterized Drosophila U7 snRNA and, indirectly, with histone H3 pre-mRNA. Furthermore, dLsm10 and dLsm11 can assemble into U7 snRNPs in mammalian cells. These experiments demonstrate a strong evolutionary conservation of the unique U7 snRNP composition, despite a high degree of primary sequence divergence of its constituents. Therefore, Drosophila appears to be a suitable system for further genetic studies of the cell biology of U7 snRNPs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号