首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of a heme ligand, cyanide, on pure ovine prostaglandin H synthase have been examined in detail as one approach to elucidating the role of the heme cofactor in cyclooxygenase and peroxidase catalysis by the synthase. Cyanide bound to the synthase heme with an affinity (Kd) of 0.19 mM, and inhibited the peroxidase activity of the synthase, with a KI value of 0.23 mM. Cyanide increased the sensitivity of the cyclooxygenase to inhibition by the peroxide scavenger, glutathione peroxidase. This increased sensitivity to inhibition reflected an increase in the level of peroxide required to activate the cyclooxygenase, from 21 nM in absence of cyanide to over 300 nM when 2.5 mM cyanide was present. The increase in peroxide activator requirement with increasing cyanide concentration closely paralleled the formation of the holoenzyme-cyanide complex. These effects of low levels of cyanide suggest that the heme prosthetic group of the synthase participates in the efficient activation of the cyclooxygenase by peroxide. Cyanide blocked the stimulation of cyclooxygenase velocity by phenol, but not the phenol-induced increase in overall oxygen consumption. This blockade by cyanide was noncompetitive with respect to phenol and was characterized by a KI of 4 mM. The higher KI value for this effect suggests that cyanide can also interact at a site other than the heme prosthetic group. The role of the heme prosthetic group in promoting efficient activation of the cyclooxygenase by peroxide appears to be central to the ability of the synthase to amplify the ambient peroxide concentration rapidly.  相似文献   

2.
3.
The kinetics of the reversible binding of cyanide by the ferric cytochrome c' from Chromatium vinosum have been studied over the pH range 6.9-9.6. The reaction is extremely slow at neutral pH compared to the reactions of other high-spin ferric heme proteins with cyanide. The observed bimolecular rate constant at pH 7.0 is 2.25 X 10(-3) M-1 s-1, which is approximately 10(7)-fold slower than that for peroxidases, approximately 10(5)-fold slower than those for hemoglobin and myoglobin, and approximately 10(2)-fold to approximately 10(3)-fold slower than that recently reported for the Glycera dibranchiata hemoglobin, which has anomalously slow cyanide rate constants of 4.91 X 10(-1), 3.02 X 10(-1), and 1.82 M-1 s-1 for components II, III, and IV, respectively [Mintorovitch, J., & Satterlee, J. D. (1988) Biochemistry 27, 8045-8050; Mintorovitch, J., Van Pelt, D., & Satterlee, J. D. (1989) Biochemistry 28, 6099-6104]. The unusual ligand binding property of this cytochrome c' is proposed to be associated with a severely hindered heme coordination site. Cyanide binding is also characterized by a nonlinear cyanide concentration dependence of the observed rate constant at higher pH values, which is interpreted as involving a change in the rate-determining step associated with the formation of an intermediate complex between the cytochrome c' and cyanide prior to coordination. The pH dependence of both the binding constant for the formation of the intermediate complex and the association rate constant for the subsequent coordination to the heme can be attributed to the ionization of HCN, where cyanide ion binding is the predominant process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The sensitivity of the apo- and holoenzyme forms of prostaglandin H synthase to trypsin have been investigated. Both the cyclooxygenase and peroxidase activities associated with the synthase were rapidly lost from the apoenzyme when incubated with trypsin. However, both activities were resistant to trypsin in the holoenzyme, suggesting that some structural change accompanies heme binding. Inactive protein present in some holoenzyme preparations, although indistinguishable from the synthase subunit by polyacrylamide gel electrophoresis, was also hydrolyzed by trypsin.  相似文献   

5.
The reduction of prostaglandin H synthase compound II by ascorbic acid in the presence of diethyldithiocarbamate was studied in 0.1 M phosphate buffer (pH 8.0) at 4.0 +/- 0.5 degrees C, by rapid scan spectrometry and transient state kinetics. A saturation effect and nonzero intercept were observed in the plot of pseudo-first-order rate constant versus ascorbic acid concentration. The saturation behavior suggests formation of a complex between prostaglandin H synthase compound II and ascorbic acid, whereas the nonzero intercept is attributable to the reaction of compound II of prostaglandin H synthase with diethyldithiocarbamate present in the system as a stabilizing agent. A rate equation has been derived which includes all pathways for the conversion of prostaglandin H synthase compound II back to native enzyme. Kinetic parameters for the reduction of compound II by ascorbic acid were obtained. They are the second-order rate constant of (1.4 +/- 0.5) X 10(5) M-1, S-1, for the formation of the compound II-ascorbic acid complex, the first-order rate constant of (14 +/- 4) S-1 for the oxidation-reduction reaction of the complex and its dissociation, and a parameter, Km of 92 +/- 10 microM analogous to the Michaelis-Menten constant. Thus we demonstrate that a quantitative kinetic study on the prostaglandin H synthase reactions can be performed in the presence of diethyldithiocarbamate.  相似文献   

6.
Prostanoids are a group of potent bioactive lipids produced by oxygenation of arachidonate or one of several related polyunsaturated fatty acids. Cellular prostaglandin biosynthesis is tightly regulated, with a large part of the control exerted at the level of cyclooxygenase catalysis by prostaglandin H synthase (PGHS). The two known isoforms of PGHS have been assigned distinct pathophysiological functions, and their cyclooxygenase activities are subject to differential cellular control. This review considers the contributions to cellular catalytic control of the two PGHS isoforms by intracellular compartmentation, accessory proteins, arachidonate levels, and availability of hydroperoxide activator.  相似文献   

7.
Bioactivation of xenobiotics by prostaglandin H synthase   总被引:4,自引:0,他引:4  
Prostaglandin H synthase (PHS) catalyzes the oxidation of arachidonic acid to prostaglandin H2 in reactions which utilize two activities, a cyclooxygenase and a peroxidase. These enzymatic activities generate enzyme- and substrate-derived free radical intermediates which can oxidize xenobiotics to biologically reactive intermediates. As a consequence, in the presence of arachidonic acid or a peroxide source, PHS can bioactivate many chemical carcinogens to their ultimate mutagenic and carcinogenic forms. In general, PHS-dependent bioactivation is most important in extrahepatic tissues with low monooxygenase activity such as the urinary bladder, renal medulla, skin and lung. Mutagenicity assays are useful in the detection of compounds which are converted to genotoxic metabolites during PHS oxidation. In addition, the oxidation of xenobiotics by PHS often form metabolites or adducts to cellular macromolecules which are specific for peroxidase- or peroxyl radical-dependent reactions. These specific metabolites and/or adducts have served as biological markers of xenobiotic bioactivation by PHS in certain tissues. Evidence is presented which supports a role for PHS in the bioactivation of several polycyclic aromatic hydrocarbons and aromatic amines, two classes of carcinogens which induce extrahepatic neoplasia. It should be emphasized that the toxicities induced by PHS-dependent bioactivation of xenobiotics are not limited to carcinogenicity. Examples are given which demonstrate a role for PHS in pulmonary toxicity, teratogenicity, nephrotoxicity and myelotoxicity.  相似文献   

8.
9.
Prostaglandin H synthase catalyzes the first step in the conversion of polyunsaturated fatty acids to prostaglandins, thromboxanes, and prostacyclins. The enzyme is normally bound to the endoplasmic reticulum membrane, but can be purified to homogeneity after solubilization with detergent. The topologies of the microsomal and the pure detergent-solubilized forms of the synthase were compared by an examination of their sensitivity to degradation by proteases, of the effect of heme on this protease sensitivity, and of the sizes of proteolytic fragments produced. For the microsomal synthase, the localization of proteolytic fragments was also determined. Analysis of the microsomal proteins after proteolytic digests involved separation by polyacrylamide gel electrophoresis and selective detection of the synthase-derived polypeptides with a polyclonal antibody against the pure synthase. With both the microsomal and the pure synthase, incubation with trypsin led to a progressive loss of cyclooxygenase activity and cleavage of the synthase subunit (70K Da) into two fragments of 38K and 33K Da. Incubation of the detergent-solubilized form of the synthase with proteinase K and chymotrypsin also produced a very similar pair of fragments (38K and 33K Da). After incubation of the microsomes with trypsin both the 38K and 33K Da fragments from the synthase remained bound to the membrane; no cyclooxygenase activity was released in soluble form from the microsomes by trypsin. Further, neither trypsin nor proteinase K released soluble radiolabeled peptides from microsomes whose synthase had been labeled with [acetyl-14C]-aspirin. With the microsomal synthase the sensitivity to protease (66% of the cyclooxygenase activity was lost after 90 min incubation with proteinase K) was enhanced by depletion of heme (84% of activity lost) and was decreased by addition of heme (only 20% of activity lost), just as had been previously demonstrated for the detergent-solubilized synthase. At each of several intervals during an incubation of the pure synthase with trypsin the extent of cleavage of the synthase polypeptide correlated reasonably well with the extent of loss of cyclooxygenase activity; a similar relation between proteolytic cleavage and loss of activity was observed in digests of the pure synthase supplemented with differing amounts of heme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Prostaglandin H synthase catalyzes the first step in the synthesis of prostaglandins from arachidonic acid. The peroxidase activity of this enzyme can support the oxidation of xenobiotics, particularly aromatic amines. This pathway of metabolism may contribute to the activation of carcinogenic aromatic amines in target tissues such as the skin, lung, and bladder. In this review, recent work on this subject is summarized. I emphasize the elucidation of the structures of aromatic amine oxidation products, and their interactions with biological macromolecules. Prostaglandin H synthase supports the activation of benzidine to a mutagenic species in the Ames (Salmonella typhimurium) test, and our studies of the mechanism of this activation are described.  相似文献   

11.
12.
Treatment of the holoenzyme form of prostaglandin H synthase with oxygen gas in the presence of excess dithionite has been found to selectively oxidize the enzyme's heme cofactor. Both the cyclooxygenase and peroxidase activities of the PGH synthase were restored upon addition of hematin. A convenient procedure has been developed to prepare milligram amounts of apo-PGH synthase from the holoenzyme. This procedure appears to involve a reactive species generated during cooxidation of dithionite and heme. The reactive species differs from that generated during the cyclooxgenase catalytic reactions which inactivates the enzyme. The heme in hemoglobin and hematin is destroyed by the same treatment. Direct addition of hydrogen peroxide converted holo-PGH synthase to the apoenzyme, but with extensive loss of enzymatic activity.  相似文献   

13.
Isolation of the cDNA for human prostaglandin H synthase   总被引:5,自引:0,他引:5  
Prostaglandin H Synthase (PGHS, cyclooxygenase) is a 67 kd protein which catalyzes the first step in prostaglandin synthesis. The primary amino acid sequence and the molecular mechanisms regulating expression are unknown. We report here isolation of a cDNA clone for the enzyme from human vascular endothelial cells for use in such studies. High titre, polyclonal antiserum against PGHS was developed in rabbits. The antiserum was monospecific, reacted with cyclooxygenase on Western blots at a limiting dilution of 1:500,000 and immunoprecipitated cyclooxygenase synthesized by in vitro translation of PGHS messenger RNA. It was used to screen a lambda gt11 cDNA expression library from human endothelial cells. Three positive clones were isolated. Following plaque purification, one clone reacted strongly with two other polyclonal antisera independently raised against highly purified cyclooxygenase and the aspirin-acetylated enzyme. Western blot analysis confirmed production of a large approximately 180 kd fusion protein of cyclooxygenase and beta-galactosidase. The cDNA insert of approximately 2.2 kilo base pairs was excised and subcloned into plasmid pUC8. A 24 nucleotide DNA probe, synthesized according to the amino acid sequence of the aspirin-acetylation site of cyclooxygenase, hybridized strongly with the 2.2 kbp cDNA insert. It is concluded that the 2.2 kbp cDNA insert represents a cDNA clone for human cyclooxygenase, which also expresses the aspirin-acetylation site. This is the first reported isolation of the cDNA for this enzyme, and will facilitate further studies on the primary sequence and on the regulation of the enzyme at the molecular level.  相似文献   

14.
To characterize further the prosthetic group of PGH synthase (EC 1.14.99.1), titrations of the apoenzyme with hemin were investigated by EPR. The first hemin bound per polypeptide showed an EPR signal at g = 6.7 and 5.3 (rhombicity 9%) and was tentatively assigned to the hemin effective as prosthetic group of PGH synthase. Additional hemin bound showed a less rhombic signal (g = 6.3 and 5.8, rhombicity 3%) presumably due to nonspecific hydrophobic binding sites not effective in catalysis.  相似文献   

15.
Previous studies have shown that acetaminophen (APAP) is converted by prostaglandin H synthase (PGHS) to both one-electron oxidized products and the two-electron oxidized product, N-acetyl-p-benzoquinone imine (NAPQI). The present study further characterizes this reaction and shows that relatively low concentrations (20-200 microM) of APAP stimulate PGHS activity in ram seminal vesicle microsomes, whereas high concentrations (greater than 10 mM) inhibit the conversion of arachidonic acid (AA) to 15-hydroperoxy-9,11-peroxidoprosta-5,13-dienoic acid (PGG2). Stimulatory and inhibitory activities apparently involve the reduction of oxidized complexes of PGHS, and stimulatory and inhibitory activities roughly correlate with the electrochemical half-wave oxidation potentials of a series of hydroxyacetanilides. Using APAP as a probe, it was found that at low concentrations, APAP is converted in a cooxidation reaction with arachidonic acid to a dimer, 4'4"'-dihydroxy-3', 3"'-biacetanilide (bi-APAP), and other polymeric products. Moreover, an electrophilic metabolite of acetaminophen, NAPQI, was detected directly and also detected indirectly by its reaction with glutathione (GSH) to form 3'-(S-glutathionyl)acetaminophen (GS-APAP). The formation of all products was inhibited by indomethacin and the reductants, ascorbic acid and butylated hydroxyanisole (BHA). However, in the presence of GSH, ascorbic acid only partially inhibited the formation of GS-APAP while almost completely inhibiting the formation of bi-APAP. The same products of APAP (bi-APAP and NAPQI) were formed by PGHS and hydrogen peroxide in reactions that were not inhibited by indomethacin. At high concentrations of APAP that inhibit PGHS, the formation of products in the presence of arachidonic acid but not H2O2 was inhibited. These findings are generally consistent with a mechanism of acetaminophen oxidation by PGHS that involves common intermediate enzyme forms for both cyclooxygenase- and hydroperoxidase-catalyzed reactions. At least one of the intermediate complexes is reduced by relatively low concentrations of APAP and stimulates PGHS, whereas another intermediate complex is reduced by APAP at higher concentrations to inhibit the enzyme.  相似文献   

16.
Interrelations between peroxidase and cyclooxygenase reactions catalyzed by prostaglandin endoperoxide synthase (prostaglandin H synthase) were analyzed in terms of the mutual influence of these reactions. The original branched-chain mechanism predicts competition between these two reactions for enzyme, so that peroxidase cosubstrate should inhibit the cyclooxygenase reaction and the cyclooxygenase substrate is expected to inhibit the peroxidase reaction. In stark contrast, the peroxidase reducing substrate is well known to strongly stimulate the cyclooxygenase reaction. In the present work the opposite effect, the influence of the cyclooxygenase substrate on the peroxidase reaction was studied. Experiments were conducted on the effect of arachidonic acid on the consumption of p-coumaric acid by prostaglandin H synthase and 5-phenyl-4-pentenyl-1-hydroperoxide. Neither the steady-state rates nor the total extent of p-coumaric acid consumption was affected by the addition of arachidonic acid. This suggests that the cyclooxygenase substrate does not influence observable velocities of the peroxidase reaction, namely oxidation and regeneration of the resting enzyme. The data support coupling of the cyclooxygenase and peroxidase reactions. A combination of the branched-chain and tightly coupled mechanisms is proposed, which includes a tyrosyl radical active enzyme intermediate regenerated through the peroxidase cycle. Numerical integration of the proposed reaction scheme agrees with the observed relations between peroxidase and cyclooxygenase reactions in the steady state.  相似文献   

17.
1. The equilibrium and kinetics of cyanide binding to ferroperoxidase were investigated. At pH9.1 the equilibrium and kinetic measurements agree closely and disclose a single process with an affinity constant of 1.1x10(3)m(-1) and combination and dissociation velocity constants of 29m(-1).s(-1) and 2.5x10(-2)s(-1) respectively. 2. At pH values below 8 the affinity constant falls until at pH6.0 the ferroperoxidase.cyanide complex is no longer formed. This is shown to be associated with the formation of ferriperoxidase.cyanide complex in the mixture even in the presence of excess of sodium dithionite. 3. Rapid-pH-jump experiments show a fast pseudo-first-order interconversion between ferroperoxidase.cyanide complex at pH9.1 and ferriperoxidase.cyanide complex at pH6.0. 4. The kinetics of binding of cyanide to dithionite-reduced peroxidase at pH6.0 are complicated and radically different from those observed at pH9.1. 5. Above pH8 the change of affinity constant with pH is consistent with the undissociated species, HCN, being bound by the ferroperoxidase. The enthalpy for this process measured both by equilibrium and kinetic methods is about -8kcal/mol. 6. The binding of cyanide to reconstituted peroxidases, proto, meso and deutero, was investigated. 7. The results are discussed in relation to known data on cyanide binding to other haemoproteins.  相似文献   

18.
Prostaglandin H synthase was incubated with [14C]arachidonate and then analyzed by polyacrylamide gel electrophoresis under denaturing conditions and by high pressure liquid chromatography. A maximum of 1 mol of arachidonate metabolite was found to become attached per mol of synthase subunit in a time-dependent process that was much slower than the rate of self-catalyzed inactivation of the cyclooxygenase activity. Incubation of a mixture of the synthase and ovalbumin with [14C]arachidonate resulted in a selective attachment of radiolabel to the synthase. These results suggest the presence of a single site on the synthase that is susceptible to reaction with an arachidonate metabolite.  相似文献   

19.
In this study, we investigated the effects of various nitrogen oxide (NO(x)) species on the extent of prostaglandin H(2) synthase-1 (PGHS-1) nitration in purified protein and in vascular smooth muscle cells. We also examined PGHS-1 activity under these conditions and found the degree of nitration to correlate inversely with enzyme activity. In addition, since NO(x) species are thought to invoke damage during the pathogenesis of atherosclerosis, we examined human atheromatous tissue for PGHS-1 nitration. Both peroxynitrite and tetranitromethane induced Tyr nitration of purified PGHS-1, whereas 1-hydroxy-2-oxo-3-(N-methyl-aminopropyl)-3-methyl-1-triazene (NOC-7; a nitric oxide-releasing compound) did not. Smooth muscle cells treated with peroxynitrite showed PGHS-1 nitration. The extent of nitration by specific NO(x) species was determined by electrospray ionization mass spectrometry. Tetranitromethane was more effective than peroxynitrite, NOC-7, and nitrogen dioxide at nitrating a tyrosine-containing peptide (12%, 5%, 1%, and <1% nitration, respectively). Nitrogen dioxide and, to a lesser extent, peroxynitrite, induced dityrosine formation. Using UV/Vis spectroscopy, it was estimated that the reaction of PGHS-1 with excess peroxynitrite yielded two nitrated tyrosines/PGHS-1 subunit. Finally, atherosclerotic tissue obtained from endarterectomy patients was shown to contain nitrated PGHS-1. Thus, prolonged exposure to elevated levels of peroxynitrite may cause oxidative damage through tyrosine nitration.  相似文献   

20.
Selinsky BS  Gupta K  Sharkey CT  Loll PJ 《Biochemistry》2001,40(17):5172-5180
Nonsteroidal antiinflammatory drugs (NSAIDs) block prostanoid biosynthesis by inhibiting prostaglandin H(2) synthase (EC 1.14.99.1). NSAIDs are either rapidly reversible competitive inhibitors or slow tight-binding inhibitors of this enzyme. These different modes of inhibition correlate with clinically important differences in isoform selectivity. Hypotheses have been advanced to explain the different inhibition kinetics, but no structural data have been available to test them. We present here crystal structures of prostaglandin H(2) synthase-1 in complex with the inhibitors ibuprofen, methyl flurbiprofen, flurbiprofen, and alclofenac at resolutions ranging from 2.6 to 2.75 A. These structures allow direct comparison of enzyme complexes with reversible competitive inhibitors (ibuprofen and methyl flurbiprofen) and slow tight-binding inhibitors (alclofenac and flurbiprofen). The four inhibitors bind to the same site and adopt similar conformations. In all four complexes, the enzyme structure is essentially unchanged, exhibiting only minimal differences in the inhibitor binding site. These results argue strongly against hypotheses that explain the difference between slow tight-binding and fast reversible competitive inhibition by invoking global conformational differences or different inhibitor binding sites. Instead, they suggest that the different apparent modes of NSAID binding may result from differences in the speed and efficiency with which inhibitors can perturb the hydrogen bonding network around Arg-120 and Tyr-355.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号