首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Release factors (RF) 1 and 2 trigger the hydrolysis of the peptide from the peptidyl-tRNA during translation termination. RF1 binds to the ribosome in response to the stop codons UAG and UAA, whereas RF2 recognizes UAA and UGA. RF1 and RF2 have been shown to bind to several ribosomal proteins. To study this interaction in vivo, prfA1, a mutant form of RF1 has been used. A strain with the prfA1 mutation is temperature sensitive (Ts) for growth at 42 degrees C and shows an increased misreading of UAG and UAA. In this work we show that a point mutation in ribosomal protein S4 can, on the one hand, make the RF1 mutant strain Ts(+); on the other hand, this mutation increases the misreading of UAG, but not UAA, caused by prfA1. The S4 mutant allele, rpsD101, is a missense mutation (Tyr51 to Asp), which makes the cell cold sensitive. The behaviour of rpsD101 was compared to the well-studied S4 alleles rpsD12, rpsD14, and rpsD16. These three mutations all confer both a Ts (44 degrees C) phenotype and show a ribosomal ambiguity phenotype, which rpsD101 does not. The three alleles were sequenced and shown to be truncations of the S4 protein. None of the three mutations could compensate for the Ts phenotype caused by the prfA1 mutation. Hence, rpsD101 differs in all studied characteristics from the three above mentioned S4 mutants. Because rpsD101 can compensate for the Ts phenotype caused by prfA1 but enhances the misreading of UAG and not UAA, we suggest that S4 influences the interaction of RF1 with the decoding center of the ribosome and that the Ts phenotype is not a consequence of increased readthrough.  相似文献   

3.
Although the mechanisms for regulation of ribosomal protein gene expression have been established for gram-negative bacteria such as Escherichia coli, the regulation of these genes in gram-positive bacteria such as Bacillus subtilis has not yet been characterized. In this study, the B. subtilis rpsD gene, encoding ribosomal protein S4, was found to be subject to autogenous control. In E. coli, rpsD is located in the alpha operon, and S4 acts as the translational regulator for alpha operon expression, binding to a target site in the alpha operon mRNA. The target site for repression of B. subtilis rpsD by protein S4 was localized by deletion and oligonucleotide-directed mutagenesis to the leader region of the monocistronic rpsD gene. The B. subtilis rpsD leader exhibits little sequence homology to the E. coli alpha operon leader but may be able to form a pseudoknotlike structure similar to that found in E. coli.  相似文献   

4.
Bacillus subtilis mutants with alterations in ribosomal protein S4.   总被引:2,自引:1,他引:1       下载免费PDF全文
Two mutants with different alterations in the electrophoretic mobility of ribosomal protein S4 were isolated as spore-plus revertants of a streptomycin-resistant, spore-minus strain of Bacillus subtilis. The mutations causing the S4 alterations, designated rpsD1 and rpsD2, were located between the argGH and aroG genes, at 263 degrees on the B. subtilis chromosome, distant from the major ribosomal protein gene cluster at 12 degrees. The mutant rpsD alleles were isolated by hybridization using a wild-type rpsD probe, and their DNA sequences were determined. The two mutants contained alterations at the same position within the S4-coding sequence, in a region containing a 12-bp tandem duplication; the rpsD1 allele corresponded to an additional copy of this repeated segment, resulting in the insertion of four amino acids, whereas the rpsD2 allele corresponded to deletion of one copy of this segment, resulting in the loss of four amino acids. The effects of these mutations, alone and in combination with streptomycin resistance mutations, on growth, sporulation, and streptomycin resistance were analyzed.  相似文献   

5.
6.
Escherichia coli cells bearing certain mutations in rpsD (coding for the 30S ribosomal protein S4) show a ribosomal ambiguity (Ram) phenotype characterized by increased translational error rates. Here we show that spontaneous mutagenesis increases in Ram cells bearing the rpsD14 allele, suggesting that the recently described translational stress-induced mutagenesis pathway is activated in Ram cells.  相似文献   

7.
8.
Summary Streptomycin-independent revertants were selected from streptomycin-dependent mutants. Twenty-five out of 150 such revertants were temperature sensitive. Ribosomal proteins from 18 temperature-sensitive and 10 temperature-insensitive revertants were analysed by SDS-polyacrylamide gel electrophoresis. Seventeen of the former but none of the latter category showed an alteration of protein S4. The mutated rpsD allele of 6 temperature-sensitive revertants was transduced into a rpsL + strain. In all cases an increased suppressibility of T4 amber phages was observed. Such suppressibility was not observed in the original rpsD, rpsL strains. All 18 temperature-sensitive mutants were disturbed in the processing of 17s to 16s RNA at non-permissive temperature and the accumulated 17s RNA was degraded. Temperature-insensitive rpsD revertants could be isolated, which had gained a second alteration in S4. Such revertants, which had lost the temperature-sensitive property, were also unable to suppress growth of T4 amber phages.It is concluded that temperature-sensitive growth, inability to process 17s RNA and to assemble 30S ribosomes at non-permissive temperature as well as increased translational ambiguity are highly correlated properties in rpsD mutants.  相似文献   

9.
The effect of mutations in ribosomal proteins S4 (rpsD12), S12 (rpsL282) and L7/L12 (rplL265) of Escherichia coli K12 on the EF-Tu-dependent expenditure of GTP during codon-specific elongation (poly(Phe) synthesis on poly(U] and misreading (poly(Leu) synthesis on poly(U], was studied. Under the conditions used the mutations in proteins S4 and L7/L12 did not practically affect the EF-Tu-dependent expenditure of GTR during the poly(Phe) synthesis on poly(U): the GTP/Phe ratio was about 1, as in the case of the wild strain. Under the same conditions, the ribosomes with a mutant S12 protein tended to discard some amount of Phe-tRNA, as a result of which the GTP/Phe ratio increased to about 3. The marked inhibition of misreading by ribosomes with a mutant S12 protein was accompanied by a significant increase of GTP expenditure at the stage of EF-Tu-dependent non-cognate aminoacyl-tRNA binding. In mutant S 12 proteins the GTP/Leu ratio was about 30-40, whereas in the wild type it was about 12. In contrast, stimulation of misreading by ribosomes with mutant S4 and L7/L12 proteins was accompanied by a decrease of the EF-Tu-dependent expenditure of GTP by 2-3 GTP molecules per one Leu residue included into the peptide.  相似文献   

10.
Many mutations in rpsL cause resistance to, or dependence on, streptomycin and are restrictive (hyperaccurate) in translation. Dependence on streptomycin and hyperaccuracy can each be reversed phenotypically by mutations in either rpsD or rpsE . Such compensatory mutations have been shown to have a ram phenotype (ribosomal ambiguity), increasing the level of translational errors. We have shown recently that restrictive rpsL alleles are also associated with a loss of virulence in Salmonella typhimurium . To test whether ram mutants could reverse this loss of virulence, we have isolated a set of rpsD alleles in Salmonella typhimurium . We found that the rpsD alleles restore the virulence of strains carrying restrictive rpsL alleles to a level close to that of the wild type. Unexpectedly, three out of seven mutant rpsD alleles tested have phenotypes typical of restrictive alleles of rpsL , being resistant to streptomycin and restrictive (hyperaccurate) in translation. These phenotypes have not been previously associated with the ribosomal protein S4. Furthermore, all seven rpsD alleles (four ram and three restrictive) can phenotypically reverse the hyperaccuracy associated with restrictive alleles of rpsL . This is the first demonstration that such compensations do not require that the compensating rpsD allele has a ribosomal ambiguity ( ram ) phenotype.  相似文献   

11.
Codon-specific missense errors in vivo   总被引:8,自引:3,他引:8       下载免费PDF全文
We have developed a simple method for measuring the missense substitution of amino acids at specified positions in proteins synthesized in vivo. We find that the frequency of cysteine substitution for the single arginine in Escherichia coli ribosomal protein L7/L12 is close to 10(-3) for wild-type bacteria, decreases to 4 x 10(-4) in streptomycin-resistant bacteria containing mutant S12 (rpsL), and is virtually unchanged in Ram bacteria containing mutant S4 (rpsD). We have also found that the frequency of the cysteine substitution for the single tryptophan in E. coli ribosomal protein S6 is 3-4 x 10(-3) for wild-type bacteria, decreases to 6 x 10(-4) in streptomycin-resistant bacteria and is elevated to nearly 10(-2) in Ram bacteria.  相似文献   

12.
K Sakka  T Watanabe  R Beers    H C Wu 《Journal of bacteriology》1987,169(8):3400-3408
We isolated a globomycin-resistant, temperature-sensitive mutant of Escherichia coli K-12 strain AB1157. The mutation mapped in dnaE, the structural gene for the alpha-subunit of DNA polymerase III. The in vivo processing of lipid-modified prolipoprotein was more resistant to globomycin in the mutant strain 307 than in its parent. The prolipoprotein signal peptidase activity was also increased twofold in the mutant, and there was a threefold increase in the activity of isoleucyl-tRNA synthetase. The results suggest that a mutation in dnaE may affect the expression of the ileS-lsp operon in E. coli. In addition, strain 307 showed a reduced level of streptomycin resistance compared with its parental strain AB1157 (rpsL31). Strain 307 was killed by streptomycin at a concentration of 200 micrograms/ml, which did not affect the rate of bulk protein synthesis in this mutant. A second mutation which was involved in the reduced streptomycin resistance in strain 307 was identified and found to be closely linked to or within the rpsD (ramA, ribosomal ambiguity) gene. Both dnaE and rpsD were required for the reduced streptomycin resistance in strain 307.  相似文献   

13.
The genes for ribosomal proteins S4, S13 or S15 were fused with the gene for staphylococcal protein A, or derivatives thereof (2A'-7A'). The gene fusions were introduced into Escherichia coli strains, mutated in the corresponding ribosomal protein gene, by transformation. These mutated ribosomal proteins cause a phenotype that can be complemented. Thus, the phenotype of the transformants was tested and the ribosomal proteins were analyzed. The S4 N-terminal fusion protein severely disturbed growth of both the mutant and the wild-type strains. The S13 C-terminal fusion protein was proteolyzed close to the fusion point, giving a ribosomal protein moiety that could assemble into the ribosome normally. S15 N-terminal fusion proteins complemented a cold-sensitive strain lacking protein S15 in its ribosomes. These fused proteins were assembled into active ribosomes. The position of S15 in the 30S ribosomal subunit is well known. Therefore, in structural studies of the ribosome in vivo, the S15 fusion proteins can be used as a physical reporter for S15.  相似文献   

14.
15.
We have isolated a mutant form of Escherichia coli ribosomal protein S4. This mutant is temperature sensitive and apparently fails to autogenously regulate the gene products of the alpha operon, which consists of the genes for proteins S13, S11, S4, L17, and the alpha subunit of RNA polymerase (1). We have shown that this mutation results in the production of an S4 protein with a molecular weight approximately 4,000 daltons less than the wild-type protein. Our chemical analyses demonstrate that the mutant protein is missing its C-terminal section consisting of residues 170-203. However, our studies to determine the capacity of this mutant protein to bind 16S RNA show that this protein is unimpaired in RNA binding function. This observation suggests that the functional domain of protein S4 responsible for translational regulation of the S4 gene products requires more of the protein than the 16S RNA binding domain.  相似文献   

16.
Summary A strain of E. coli K12 has been isolated which gives rise to mutations in a large number of ribosomal proteins. Mutant VT, which was derived from A19, shows a novel type of streptomycin dependence and has an altered ribosomal protein S8. Streptomycin-independent isolates from mutant VT contain a great variety of changed proteins on two-dimensional polyacrylamide gels. 120 revertants screened in this way have changes in thirteen 30S proteins and fifteen 50S proteins. Several mutants were found in which additional proteins are present on the ribosome. Further, there is one instance of a ribosomal protein (L1) being absent, and one of apparent doubling of a ribosomal protein (L7/12). The unique properties of mutant VT probably are the result of the altered S8.  相似文献   

17.
18.
Summary Temperature-sensitive mutants of an Escherichia coli K-12 strain PA3092 have been isolated following mutagenesis with nitrosoguanidine, and their ribosomal proteins analyzed by two-dimensional gel electrophoresis This method was found to be very efficient in obtaining mutants with various structural alterations in ribosomal proteins. Thus a total of some 160 mutants with alterations in 41 different ribosomal proteins have so far been isolated. By characterizing these mutants, we could isolate, not only those mutants with alterations in the structural genes for various ribosomal proteins, but also those with impairments in the modification of proteins S5, S18 and L12. Furthermore, a mutant has been obtained which apparently lacks the protein S20 (L26) with a concomitant reduction to a great extent of the polypeptide synthetic activity of the small subunit. The usefulness of these mutants in establishing the genetic architecture of the genes coding for the ribosomal proteins and their modifiers is discussed.  相似文献   

19.
In vivo incorporation of the uridine-photoactivable analogue, 4-thiouridine, into the ribosomal RNA of an Escherichia coli pyrD strain has been demonstrated. It is highly dependent on the exogenous uridine and 4-thiouridine concentrations as well as on temperature. We have defined conditions allowing the substitution of 13 +/- 2% of the uridine residues in bulk RNA by 4-thiouridine. On a high-Mg2+ sucrose gradient, 33 +/- 3% of ribonucleic particles sediment as 70S ribosomes, the remaining being in the form of non-associated 50S and 30S particles containing immature rRNA. The thiolated 70S ribosomes tolerate a 4-5% substitution level (40 thiouridine molecules/particle). Surprisingly, 3-4% of ribosomal proteins, about two protein molecules/particle, were spontaneously covalently bound to 4-thiouridine-substituted rRNA. Specific 366-nm photoactivation increased this proportion to 10-12%, i.e. up to six or seven ribosomal protein molecules/particle. The photochemical cross-linking proceeds with apparent first-order kinetics with a quantum yield close to 5 X 10(-3). Although extensive photodynamic breakage of rRNA occurs under aerobic conditions, both the kinetics and yield of ribosomal protein cross-linking were independent of oxygenation conditions. The thiolated (4.5%) 70S ribosomes allowed the poly(U)-directed poly(Phe)synthesis at 48% the control rate. Photoactivation decreased this activity to 28% and 10% when performed under nitrogen and in aerated conditions, respectively.  相似文献   

20.
Ribosomal protein synthesis by a mutant of Escherichia coli   总被引:1,自引:0,他引:1  
The mutant strain of Escherichia coli, TP28, synthesises ribosomes by an abnormal pathway and accumulates large quantities of 47S ribonucleoprotein particles. The protein complement of mutant 70S ribosomes is normal but 47S particles contain only traces of proteins L28 and L33 and have a significantly reduced content of four other proteins. The mutation reduces the rates of synthesis of L28 and L33 by about half but other widespread alterations ensue. In particular, ribosomal protein synthesis in the mutant strain becomes less well balanced than in its parent: some proteins, particularly those from promoter-proximal genes, are oversynthesized and their excess then degraded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号